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Abstract: This paper shows how most dead-time compensators can be considered as a particular

case of a proposed general control structure. The proposed structure can be tuned taking into account
the performance and robustness of the closed-loop. The obtained controller is more general and allows

better results than previous algorithms. In order to illustrate the results, some simulation examples

are shown. Copyright © 1998 IFAC
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1. INTRODUCTION

The dynamic behaviour of many industrial pro-
cesses can be represented by models consisting of
a differential equation and a dead-time. When the
process exhibits long dead-time the performance
of classical controllers deteriorates. In these cases,
the use of a dead-time compensator in the struc-
ture of the controller can be the most efficient
solution.

The first dead-time compensator (DTC), the Smith
Predictor (sp), was proposed by Smith (1958)
at the end of the 50’s. Since then numerous ex-
tensions and modifications of the sp have been
proposed. Watanabe and Ito (1981) proposed a
DTC which could yield zero steady state error and
desired transient responses to step disturbances
showing that the SP cannot cope with step dis-
turbances when the plant has an integral mode.
In later papers several algorithms were proposed
to improve the regulatory capabilities of the sp
(Palmor and Powers (1985), Palmor (1986)); or
to improve the set-point and disturbance response
when controlling integrative plants with long dead
time (Astrom et al. (1994), Matausek and Micic
(1996)). Also in a recent paper (Hagglung (1996))
a three parameter SP is proposed that provides
an easy way to tune the controller for industrial
applications.
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Furukawa and Shimemura (1983) analysed the
closed loop stability of the sp showing that the sp
cannot be used with unstable plants. This result
was also shown by Morari and Zafiriou (1989)
using the IMC approach. The control schemes
proposed in Furukawa and Shimemura (1983) and
Watanabe and Ito (1981) allow an unstable plant
to be controlled if a proper implementation of the
predictor is used.

The robust stability of the SP has been studied in
several works. In Palmor and Halevi (1983) the
concept of practical unstability is used to show
that if the primary controller is not properly tuned
the sP could be unstable when small missmatch
in the delay are considered, in spite of having
good values of gain margin and phase margin for
the ideal system. In Morari and Zafiriou (1989)
the authors discuss some of the "myths” of sp,
pointing out that the sP do not in any way in-
crease sensitivity to modelling error; that is, the
primary controller defines the robustness of the
closed-loop. In the same work an IMC tuning of
the sp is proposed taking into account robust
performance. Also in Santacesaria and Scattolini
(1993) and Palmor (1986) different tunings of the
parameters of the SP are proposed in order to im-
prove robustness. In a recent work Normey-Rico
et al. (1997) a simple structure for improving the
robustness of dead-time compensators is proposed
which needs only three tuning parameters.



In this paper some of the ideas presented in previ-
ous works are used to design a unified DTC taking
into account the disturbance rejection character-
istics, the robustness and the performance of the
closed-loop.

The paper is organized as follows. Section 2
presents the unified structure for the pTC and
the SP and some of its modifications are analysed
as particular cases. Section 3 analyses the closed-
loop performance of the unified DTC and section
4 presents a design procedure. Some comparative
simulations are shown in section 5 and finally the
conclusions of the work are presented in section 6.

2. A GENERAL STRUCTURE FOR THE
ANALYSIS OF THE DTC’S

In general, the structure of a DTC includes a model
of the process. This model is used to compute
the prediction of the output of the plant. In the
discrete case this prediction is computed using
the actual and previous values of the output and
input of the plant. So it is possible to represent the
DTCs drawing a general block diagram, as shown
in figure 1.
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Fig. 1. Unified representation of the DTC’s

In figure 1 blocks R and @ represent the pre-
dictor structure and blocks C and W represent
the primary controller (a two-degree of freedom
controller is normally used when good perfor-
mance is desired, both for set-point and distur-
bance changes). This structure will be called uni-
fied dead-time compensator - UDTC. It is easy to
show that the SP and its modifications can be
derived from this general structure: (i) the SP is
represented by the ubTcif R=1and Q =G, —
P, where P, and G, represent, respectively, the
model and delay free model of the plant; (ii) with
the same relations but defining Q@ = G; — P,
this structure represents the DTC proposed by
Watanabe and Ito (1981) where G, is computed in
order to eliminate the poles of the plant from the
minor loop; (iii) when Q@ = G, — P, and R is an
approximated inverse of the dead-time, the UDTC
is equivalent to the one proposed by Huang et al.
(1990); (iv) with Q@ = G, — P, and with R a low
pass filter the UDTC is the robust DTC presented
in Normey-Rico et al. (1997), where R is used to
improve the robustness of the closed-loop.

Also other DTCs can be represented by the uDTC
structure. Because of their practical interest the
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DTCs proposed by Astrom et al. (1994) and
Matausek and Micic (1996) to control integrative
plants with long dead time are compared here.
Although these two controlllers use different tun-
ing rules, they could be represented by the block
diagram in figure 2.

Fig. 2. DTCs by Astrom et al. (K, = 0) and by
Matausek and Micic (K, = 1)

Using block diagram transformations these struc-
tures can be drawn as in figure 1 with the following
relation between blocks: (i) for the controller by
Astrometal. Q=0,W=1,R=M and C = K (1 +
P.M)/(M + MKG,) and (ii) for the controller by
Matausek and Micic W = 1, C = K.(1 + MP,),
Q (Gn — Pn)/(1 + PnM) and R (1 + MG, +
M/Kc)/(1+ P M).

Because of its characteristics, the proposed UDTC
structure can be used to compute a controller
taking into account the ideas given in Normey-
Rico et al. (1997) to increase the robustness, in
Watanabe and Ito (1981) to cope with unstable
plants and in Huang et al. (1990) to improve the
disturbance rejection properties; but without the
limitations of each of these previous algorithms,
that cannot be applied to all types of plants or do
not considered a complete set of specifications (ro-
bustness, disturbance rejection and performance).

3. THE UDTC: CLOSED-LOOP ANALYSIS

To analyse the closed-loop behaviour of the uDTC
three transfer functions of the block diagram of
figure 1 will be used: from the reference to the
output (L(z)), from the disturbance to the output
(H(z)) and from the disturbance to the control
action (U(z)):

N W(z)C(z)P(z)
L(z) = 1+ C(z)(P(z)R(z) + Q(2))
_ P(2)(1+C(2)Q(2))
V(o) = —_=PEICEIRE) (1)

"~ 14 C(2)(P(2)R(2) + Q(2))

To analyse the robustness of the control system
the plant will be represented by a transfer func-
tion P(z) and unstructured uncertainties will be
considered: P = P,(1 + 6P). If d is the delay
of the plant it is possible to write, in a discrete
representation: P = Gz~? and for the nominal
case P, = Gpz~% . Thus G represents the plant
without the delay and G, is its nominal value.
The norm-bound uncertainty region for 6P is



computed in order to maintain closed-loop sta-
E)ility )()1 6P(jw) |< AP(jw), Morari and Zafiriou
1989)):

C(PnR ;
[1+C(PR+Q)|

EF s [CRP |

) (2)

with w € [0,7/T] (T is the sampling time). As
the expression (P, R + Q) appears in the closed
loop equations (1) and in the expression of the
norm bound uncertainty region (2), the following
parametrization is proposed:

Define two rational functions in z, R and X such

that Q = X — P.R, 80 Ln,H,,U, and AP are
given by:
_ CWP, _ Pa(1+CQ)
"T1+CX "Tl+cex
U = CRP, _l1+ex|_ 1 3)
14+CX |CRPn| | Un|

In equations 3 L,(z) defines the performance
while H,(z) and U, (z) can be used to evaluate the
disturbance rejection characteristics. Note that in
Un(z) we can better appreciate the effect of the
dead-time on the control action, and it is clear
that an ideal R(z) = z¢ will cancel the effect of
the dead-time (this is the idea used in Huang et al.
(1990) to improve the disturbance rejection of the
SP). On the other hand, using H(z) we can easily
evaluate the effect of the poles of the plant in the
disturbance response.

Also from equations (3) the following conclusions
can be drawn:

e the nominal closed-loop transfer function,
L, can be defined with an appropiate choice
of X,Cand W

e with a defined X, ¢ and w , the uncer-
tainty norm-bound, AP, can be arbitrarily
chosen with an appropiate R and L, is not
affected, so the robustness specifications and
the nominal performance can be attempted
independently (if the internal stability of the
system is preserved).

e for good disturbance rejection performance it
is desirable to have U, close to 1 at frequen-
cies below the bandwidth of the closed-loop.
As AP= .Tlr.r U, cannot be defined indepen-
dently from the robustness specifications.

e when the closed loop dynamic must be faster
than the open loop one, X must verify the
relation X = P.Y (Q = P.(Y — R)) in order
to eliminate the open loop poles from the
denominator of all the closed-loop transfer
functions in equation (3). As the poles of P
are also poles of Q the zeros of Q must cancel
these poles. On the other hand the poles of
R are always poles of @, so if R is chosen
to improve the robustness (for instance as a
low-pass filter) the disturbance rejection will
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be deteriorated. And if R is used to improve
the disturbance rejection of the controller
then the system will be more sensitive to
uncertainties.

e if P is unstable then X must cancel the
unstable poles of P in H, and @ must be a
stable transfer function. This condition guar-
antees the internal stability of the closed-loop
as will be shown in the following.

3.1 Internal Stability

The general structure of the predictor based con-
trol system can be drawn in an alternative way,

defining a cascade controller K and a reference
filter S:

CR

= —— 5=
1+CQ

w
' (4)
thus, the internal stability of the control system
can be analysed using the block diagram of figure
3, where ¢ and v are considered as exogenous
disturbances. The denominator and numerator
of the plant will be considered as A and Bz—¢
respectively; and N; and D; will represent the
numerator and denominator of the others transfer
functions.
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Fig. 3. Classical Representation of the uDTC

The necessary and sufficient condition for the
internal stability of the system is that all the
transfer functions between the inputs r, v and ¢
and the outputs e,u and y are stable. Thus the
polynomials Dg, D,, D, and D.A+N.B must have
their roots inside the unitary circle. Considering
that in every case it is possible to compute C in
order to stabilize the nominal plant without the
delay (the roots of D.A+N.B are positioned inside
the unitary circle) and that D, and D, allways
have their roots inside the unitary circle, D, will
define the internal stability. Now it must be noted
that for the sp and the DTCs proposed by Huang
et al. (1990) and Normey-Rico et al. (1997) D,
always have the same roots outside the unitary
circle as A, so the closed loop will be internally
stable if, and only if, the plant is stable or at the
most has one pole in z = 1. On the other hand, the
DTC analysed in Watanabe and Ito (1981) has no
roots outside the unitary circle. Now, in the UDTC
the roots of D, must be inside the unitary circle.
If the relation @ = X — P,R is used, then X and
R must be chosen in order to cancel the unstable
roots of A in D,. This solution is similar to the
one proposed by Watanabe and Ito (1981) but in
this case the inclusion of blocks R and W allows
a design using stability, set-point and disturbance
rejection performance and robustness criterions.



3.2 Disturbance rejection and robustness

The modified versions of the SP can attempt
better disturbance rejection than the original sp
when the closed loop poles are considerably faster
than the open loop ones or when the dead-time is
small relative to the time constants of the plant,
but this is only possible when plant uncertainties
are small Palmor (1996). The same conclusions
can be obtained using the structure of the UDTC
noting that the transients of the responses of the
system to step disturbances will depend on the
defined closed loop poles (roots of 1+ CX ) and
on the roots of D,. Suppose that P has slow
dynamics, thus if the poles of P are roots of D, (as
in the sP) these poles are poles of H and so it is not
possible to speed the transient of the disturbance
response. This effect can be avoided if the slow
poles of P are not roots of D, in the UDTC.

Another way to improve the disturbance rejection
of the DTC consists of the "elimination” of the
dead-time between the disturbance and the con-
trol action (transfer function U) as proposed by
Huang et al. (1990). Also in the UDTC the block
R can be computed in order to approximate the
inverse of the dead time. Thus, the UDTC allows a
general solution of the disturbance rejection prob-
lem because the design can take into account the
advantages of the solutions proposed in previous
works.

For stable plants with long dead-times, R could be
chosen as a low pass filter in order to improve the
robustness (Normey-Rico et al. (1997)) and the
tuning of this filter is straightforward, allowing its
use in industrial applications.

In other cases, like in the observer predictor Pal-
mor (1996), the controller is computed to have
a high disturbance rejection performance but ob-
taining a closed loop system considerably more
sensitive to uncertainties because of the high pass
characteristics of block R.

For the structure proposed in this paper R corre-
sponds to a low pass filter. If the plant is stable the
cut-frequency of the filter must be chosen taking
into account the compromise between disturbance
rejection and robustness while X,C and W are
used as performance parameters.

If the plant is unstable X and R must be chosen in
order to have the denominator of Q without roots
outside the unitary circle. In this case the design
of C is more involved and it is not always possible
to guarantee the existence of a solution with the
desired performance and robustness. This case
will be analysed in the next section where a
general design procedure is presented.

From the previous analysis it follows that the
proposed UDTC is a two degree of freedom control
structure that can be used with stable or unstable
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plants and it allows the inclusion of robustness
specifications in the design. So, it is more general
than the sP and its modifications but has all the
advantages of these type of controllers.

4. UDTC: A DESIGN PROCEDURE

In this section the best properties of each struc-
ture will be used in order to define a control
scheme that presents the desired control specifica-
tions. The design procedure will first be presented
for the general case. After that, and because of
their practical importance, the stable plant case
will be discussed.

4.1 The general case

The general predictor structure must be computed
using the block diagram of figure 1. In general
the closed-loop specifications will include: inter-
nal stability, zero steady state error for constant
inputs or disturbances, a desired set-point and
disturbance response and robust stability.

To attemp the specifications R, X, C and W are
chosen in order to satisfy the following relations:

e for the internal stability conditions X must
be chosen in order to have a stable @

e to verify the steady state specifications:

R(1) =1 and ﬁ must have integral ac-
tion. For the last condition it is sufficient to
choose C with integral action and @ with a
zeroin z = 1. In the general case C will have [
integrators and () must have [ zeros in z = 1.

e for the performance specifications a set of
desired closed-loop poles must be defined

e for the robustness conditions R must be a
low pass filter, in general R(z) = (125%+)",
0<fB<landv>1.

The denominator of the plant A is factorized as
A = A, A; where A; has the poles inside the
unitary circle, and A, is the unstable part of A.

Taking into account the previous conditions the
following design procedure can be defined:

Step 1: Choose a value of 3 and use v = 1.

Compute R = N, /D,.
Step 2: Define the denominator of X as D; = A,

Step 3: Compute the numerator of X (NNV;) using
the equation X = Q + P, R in order to obtain a
stable Q and to satisfy the steady state specifica-
tions:

Ny _ Ne

BN,z=¢ _ D,A;N: — BN,z¢
D, D2 -

ADr Dr Au As

then N, must be chosen in order to make the
polynomial D,A,N, — BN,z~¢ divisible by A,
and (z — 1)! where [ is the number of integrators
of C. Note that with these conditions N, will
have | + gr(A,) coefficients, where gr(4,) is the
number of poles of A,. Also note that the number



of coefficients in N; does not depend on the order
of A;.

Step 4: Using N, and D, compute C = N./D, to
solve the Diofantine equation N N.+D.D. = Dy
where Dy defines the desired poles.

Step 3: Compute filter W in order to improve the
set-point response.

Step 6: Test the robustness of the system using
an estimation of the plant uncertainties. If the
robust conditions are not verified then increase
the value of 3 and/or v and go to step 2. When
possible, iterate until the desired specifications are
obtained.

Note that the solution of the problem is not
guaranteed for every set of specifications. For
unstable plants R cannot be chosen as low pass as
desired (in order to increase robustness) because
some minimal feedback is necessary to maintain
the closed-loop stability.

Another approach can be also used for the de-
sign of the UDTC instead of the solution of the
previous polynomial diofantine equations. Using
a frequency representation, C, W, X and R can
be computed in order to obtain a desired shape
for the closed loop transfer functions L, H and U,
and for the uncertainty norm boundary AP.

4.2 The stable plant case

Many industrial processes are stable plants with
dominant dead-times. For these plants a general
rule is to retain the open-loop time constant of the
process in the closed-loop system. Note that there
is no sense in speeding up the closed-loop response
in respect to the open-loop when the dead-time is
dominant (Matausek and Micic (1996); Hagglung
(1996)), and there are no advantages in the use of
the modified structures of the sp such as the ones
presented in Watanabe and Ito (1981)or Huang
et al. (1990). In this case it is possible to choose
Q = P,(z%— R) maintaining internal stability and
choosing R as a low pass filter (in this case the
nominal performance is defined by X = G, for
every R). In this case the design procedure starts
in step 4 where the new Diofantine equation is
N.B+D.A= D,

As R must be computed in order to increase the
norm bound uncertainty region at the desired
frequency range, the choice of C and W must be
made in parallel with R in order to also attempt
some dynarmical and steady state specifications for
the disturbance to output time response.

5. SIMULATION EXAMPLES

In this section two typical examples of the pro-
posed method are presented.

Example 1: Stable case The model of the plant is
given by P(s) = —£_e~*, where k € (0.8,1.2),

l+rs
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7 € (0.5,1.5) and t4 € (4,6). The nominal values
of the parameters are: t; =5,k =1and 7 = 1.

The controller must be computed in order to
obtain (for the nominal case) a set point step
response without overshoot and to maintain an
aceptable response for all plants in the family. As
the plant is stable it is possible to use X = G,. A
p1 controller is computed using root locus: C(z) =
24E-07) W (z) = 23> with sampling time T =
0.2. In figure 4, the norm-bound uncertainty for
R =1 (dotted line) and for R(z) = (25
(dashed line) are compared to the unmodelled
dynamics for different cases (solid line). Note that
the system is robutly stable with R = 1 but
to maintain the closed-loop characteristics of the
response a filter is used.

Fig. 4. Robustness analysis for example 1.

The closed loop behaviour of the closed loop sys-
tem when parameter uncertainties are considered
is shown in figure 5. At ¢ = 0 a step change in the
reference is performed and at t = 50 a 10% step
disturbance is added at the input of the plant: case
1 is the nominal case (dashed-dotted line), case 2
is for k = 1.2, 7 = .6 and ty = 6 (dashed line):
case 3 is for k = 1.2, 7 = 1.5 and t5 = 4 (solid
line) and case 4 isfor k = 8, 7 = Sand t; = 6
(dotted line).

-

s
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-
=
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Fig. 5. Output for diferent plant uncertainties

Example 2: unstable plant In this example a plant
with an integrator and long dead time is consid-
ered P(s) = %"e"“. The model of the plant is
the same as the one analysed in Matausek and




Micic (1996) (¢4 = 5) but with k = 2 and using a
sampling time T = 1. It is desirable to have zero
steady state for step references and an overshoot
of less than 5%. The obtained controller must
guarantee robust stability for an error in the dead-
time of two seconds.

Step 1: R(z) is chosen as R(z) =
Step2: D, =1-2"1

Step 3: As A, =1and ! =1, D.N, — BN,2~¢
must have two roots in z = 1. Then N, has two

coefficients: N; = n; + npz~'. In this case the
obtained values are: n; = —16 and n, = 18.

0.2z

z=0.8

Step 4: Using the root locus C(z) is computed
in order to obtain two real poles for the closed
loop, thus C(z) = %l=227) with o = 0.95 and
k. = 0.056.

Step 5: To improve the obtained set point re-
=1
sponse W is computed as W = %.

The final control law is completed with:
Q(z) = =16+14.827140.4224+0.4:7940.427%

1-0.8z-1

The closed loop performance is analysed in figure
6 for the nominal case (solid line). In order to
make a comparative analysis a DTC is computed
using the algorithm proposed in Matausek and
Micic (1996) (with K, = 0.17) so as to obtain
a similar nominal performance (see dashed lines
in figure figure 6). At ¢ = 0 a step change in the
reference is applied to the system and at t = 50 a
5% step disturbance is introduced.

1.2

o
-

PLANT QUTPUT
o
-

o4pr

Fig. 6. Plant output for example 2

Step 6: Using R, X and C the norm-bound uncer-
tainty (solid line) is compared to the unmodelled
dynamics (delay error of 2 sec.) (dotted line) and
to the norm-bound uncertainty of the controller
proposed by Matausek and Micic (1996) (dashed
line) in figure 7. As can be seen, for a similar
nominal performance, the proposed controller is
more robust than the one proposed in Matausek
and Micic (1996).

6. CONCLUSIONS
This paper presents a unified approach for de-
signing a dead-time compensator that considers
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DF and delaP
3.

Fig. 7. Robustness analysis for example 2.

nominal performance and robustness of the result-
ing closed loop and can be used to control stable
and unstable plants. The proposed structure uses
the advantages of several dead-time compensators
proposed in the literature and the obtained struc-
ture is simple. Some simulation results comparing
the unified dead-time compensator with previous
algorithms show the good qualities of the pro-
posed controller.
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