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Hybrid model predictive control for freeway traffic
using discrete speed limit signals

José Ramén D. Frejo!, Alfredo Nifiez,?, Bart De Schutter,® and
Eduardo F. Camacho’

Abstract

In this paper, two hybrid Model Predictive Control (MPC) approaches for freeway traffic
control are proposed considering variable speed limits (VSL) as discrete variables as in current
real world implementations. These discrete characteristics of the speed limits values and some
necessary constraints for the actual operation of VSL are usually underestimated in the literature,
S0 we propose a way to include them using a macroscopic traffic model within an MPC framework.
For obtaining discrete signals, the MPC controller has to solve a highly non-linear optimization
problem, including mixed-integer variables. Since solving such a problem is complex and difficult
to execute in real-time, we propose some methods to obtain reasonable control actions in a limited
computation time. The first two methods (f-exhaustive and #-genetic discretization) consist of first
relaxing the discrete constraints for the VSL inputs; and then, based on this continuous solution
and using a genetic or an exhaustive algorithm, to find discrete solutions within a distance 6 of
the continuous solution that provide a good performance. The second class of methods split the
problem in a continuous optimization for the ramp metering signals and in a discrete optimization
for speed limits. The speed limits optimization, which is much more time-consuming than the ramp
metering one, is solved by a genetic or an exhaustive algorithm in communication with a non-linear
solver for the ramp metering. The proposed methods are tested by simulation, showing not only a

good performance, but also keeping the computation time reduced.
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I. INTRODUCTION

Traffic congestion on freeways is a critical problem due to its negative impact on the
environment and many other important consequences like higher delays, waste of fuel, a
higher accident risk probability, etc. In the last decades, a lot of research has been focused on
making a better use of the available traffic infrastructure, since solutions like the construction
of new freeways are not always viable to implement in the short-term due to technical,
political, legal, or economic reasons. It has been reported in the literature under different
conditions that dynamic traffic control is a good solution to decrease congestion [1]-[3]. In
general, dynamic traffic control uses measurements of the traffic conditions over time and
computes dynamic control signals to influence the behavior of the drivers and to generate a
response in such a way that the performance of the network is improved, by reducing for

example the delays, emissions, etc.

Fig. 1. VSL implementation on A13. Delft, The Netherlands.

Variable speed limits, ramp metering, and route guidance are some of the most often
used examples of freeway traffic signals that can be used to dynamically control traffic.
These measures have been already successfully implemented in USA, Germany, Spain, the
Netherlands, and other countries [3]-[5]. When selecting the control signals, among the
available options described in the literature, the methods based on the use of advanced
control techniques like Model Predictive Control (MPC) [6] have by simulation proved
to substantially improve the performance of the controlled traffic system [1], [2], [7], [8].
In the current paper, we focus on control using variable speed limits (VSL) together with
ramp metering. In most of the works about VSL computed with MPC, the VSL signals are
assumed to have continuous values, meaning that the real VSL panels implemented in the

network should display to the driver those values [1], [2], [7], [9], [10]. However, in the real



implementations of VSL panels, the displayed signals are just allowed to take a limited set
of discrete values. For example, in the Dutch freeway A12 the signals of the panels are just
allowed to take values in the set {60, 80, 100}km/h [3]. Moreover, for safety reasons, some
extra constraints should be considered like a limited variation over time (for each panel) and
a limited variation over space (consecutive panels) so to avoid drastic changes in speed [11],
[12].

The following works have proposed ways to deal explicitly with discrete VSL. In [13], it
is proposed a discrete VSL controller based on shock wave theory. In [14], a traffic model
with variable length segments is used to compute a simple best-effort controller that reduces
congestion considering VSL signals that can only be decreased or increased by steps of
10 km/h. Both controllers, [13] and [14], use simple control laws that are not explicitly
designed to optimize a performance index of the network. In [11] and [12] the VSL are
discretized (by rounding, ceiling, or flooring) after computing them in a continuous way.
These papers conclude that the performance of the discretized speed limits was comparable
with the continuous case. However, those results depend on the network configuration and the
demand conditions, as in our case study we found some important loss of performance due to
the discretization. So, in this paper, we consider explicitly the effects of using discrete signals
for the VSL panels in an MPC framework. Subsequently, we propose new efficient algorithms
for the computation of discrete VSL signals together with continuous ramp metering rates.

Section II briefly introduces the general concepts of traffic model METANET, of Model
Predictive Control, and the safety and operational constraints that appear in a real VSL
implementation. Section III introduces the common characteristics of the proposed methods
to obtain discrete signals using the continuous solution for the VSL panels. In Section IV,
an exhaustive and a genetic procedure are used to obtain feasible discrete solutions within
a ¢ distance to the continuous solution provided by the MPC controller. Section V proposes
methods to obtain the MPC solution by solving iteratively a continuous optimization for the
ramp metering and a discrete optimization for the VSL without using the continuous MPC
solution. Again, an exhaustive algorithm and a genetic algorithm are proposed. The scenario
and the numerical results are presented and discussed in Section VI. Finally, Section VII

shows a summary of the results and the conclusions.



II. FREEWAY TRAFFIC CONTROL USING MODEL PREDICTIVE CONTROL
A. Traffic Model METANET

In this paper, we have selected the traffic model METANET [15]. However, it is important
to note that the methods we propose are independent of the traffic model used, so they can be
equivalently applied using other macroscopic traffic models, if those are capable of including
the effect of VSL in their formulation (like some versions of the Cell Transmission Model
CTM [16]).

The METANET model is a macroscopic second-order traffic model that provides a good
trade-off between simulation speed and accuracy for online control purposes. The METANET
model is deterministic and can be adapted to freeway networks of arbitrary topology and
characteristics, including freeway stretches, bifurcations, on-ramps, and off-ramps, and it
takes into account the effects of control actions such as ramp metering, route guidance, and
VSL. This model discretizes the freeway in consecutive links with segments of length L; and
uses density p;(ky,) and speed v;(k,) as state variables where k,, is the model time step.
For simplicity, in this paper the authors do not differentiate between links and segments in
contrast with the original METANET model. The model is formulated as follows:

- Density equation:

il + 1) = i) + 322 n) = () i) — i1 () (1)

where )\; is the number of lanes, [;(ky,) is the split ratio for off-ramp in between segment
i and segment i + 1 (3;(ky,) = 0 if there is not an off-ramp), T, is the model sample time,
¢i (k) is the flow leaving segment 4, and ¢, ;(k.,) is flow entering by an on-ramp at the start
of segment ¢ (¢ ;(kwn) = 0 for a segment without an on-ramp).

- Speed equation:
T, T
Vi(km + 1) = vi(km) + — (V(pi(km)) — vi(km)) + f”i(km)(vi—l(km) —vi(km)) (2)
T, L; pi(kw) + K; LiXi(pi(kw) + K;)

where K, 7, d;, and p; are model parameters and V'(p;(ky,)) is the speed desired for the

drivers. As proposed in [1], the model can take different values for y;, depending on whether
the downstream density is higher or lower than the density in the corresponding segment.
However, the algorithms we propose are independent of this choice and could be applied in

both cases.



- Flow equation:
Gi(km) = Aipi(km)vi(km)

- Desired speed equation:
1 i(km) \ ™
V(pi(km)) = min (Ufﬂ‘ exp (—; (p; : )) ), (1+ Oz,-)VCJ(km)) 3)

where a;, o; are model parameters, p.; is the critical density, v¢; is the free flow speed and

Ve.i(kw) is the variable speed limit applied to segment 1.

In this paper, the VSL are included by a minimum term in the desired speed equation
(3) as proposed in [1]. However, in [15], VSL are included in the model through the three
parameters of the fundamental diagram p.;, vs; and a,. In [17] the effect of VSL on aggregate
traffic flow behavior is studied on the basis of traffic data comparing the equation (3) used
in this paper with other options. The methods proposed in this paper are independent from
the option selected.

If the desired flow Q(p;(k)) = V(pi(k)) - pi(k) is represented graphically without con-
sidering VSL, the fundamental diagram (which can be seen in Fig.2.) of traffic systems is

obtained. The fundamental diagram gives us the static characteristic of the system.
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Fig. 2. Fundamental diagram of traffic

- Ramp flow equation:

¢ri(km) = min (ri(km)Cm,Di(km) + w; )’Cr,ipp’ ‘ _p/() | >> 4)

where C.; is the ramp capacity, D;(ky,) is the ramp demand, w;(k,) is the ramp queue
length, py,; is the maximum density, and r;(ky,) is the ramp metering rate.

- Queue length equation:



For the sake of simplicity, merge and join nodes, and other extensions are not considered

in this paper (See [15], [18] for further details).

B. Model Predictive Control

The main concepts behind a model-based predictive control (MPC) [6] strategy are:
1) The use of a prediction model to obtain the trajectories of relevant variables of the system.
2) The optimization of a objective function to determine the best sequence of control actions
for the system.
3) The application of the rolling horizon procedure: from the best sequence of control actions
only the first component is applied to the system and in the next control step the initial

conditions are updated and the procedure is repeated again.

u(k) P —

_ ukeN )
u(k+1) u

Fig. 3. Receding horizon strategy. The set of future control signals are computed considering the predicted outputs during

the prediction horizon, but just the first control u(k) is applied

Since MPC is based on an optimization procedure, in the case of systems with discrete
control actions we can include that characteristic as a constraint, and obtain suitable control
laws by using a proper mixed-integer optimization solver.

To formalize all these concepts, consider the discrete-time non-linear system whose dy-

namic evolution is described by the following state-space model:
T(km +1) = f(2(km), u(kn), d(kn)) (6)

with z(ky,) the state, u(ky) = [(ud(km))T, (u¢(kwm))"]T the discrete and continuous input
vector, and d(ky,) the non-controllable input vector, usually demand profiles and other ex-

ogenous variables. In some circumstances, the controller sample time may be different from



the model sample time. In traffic we will use a controller sample time 7' longer than the
simulation sample time 7}, (i.e. t = ky, - 1, = k - T"). The control inputs will be considered

constant during one controller sample resulting in the following state-space model:
z(k+1) = f(z(k), u(k), d(k)) (7

In an MPC controller, the core is the optimization of a cost function J(zy(k), us(k), dy(k)),
which is used to measure the performance of the system where the vectors x(k) = [z(k +
1),...,z(k+ Np)|* and dy(k) = [d(k), ...,d(k + N, — 1)]" are the state and non-controllable
input predictions along the prediction horizon N,; and ui(k) = [u(k), ..., u(k + N, — 1)]* is
the control sequence along the control horizon N,. The control inputs are kept constant after
the control horizon N, (i.e. u(k + N, — 1) =u(k + Ny) = ... = u(k + N, — 1)).

As the formulation is based on the solution of an optimization problem, it is possible to
explicitly include constraints. Assume that the feasible values of the states and the inputs are
given by the following generic constraints z(k) € X, u°(k) € U, and ui(k) € S for all k,
representing explicitly physical or operational constraints of the system. Therefore, the MPC

problem can be formulated as the following mixed-integer non-linear optimization problem:

E(llg J(ui(k), z(k), di(k)) (8)

subject to:
wk+0+1) = fx(k+0),ulk+0),d(k+10)), z(k)=ax4
z(k+0+1) €X, u(k+0) €U, ul(k+¢) €8,
h(ug(k), z4(k), di(k)) € D,

for ¢ =0,1,..., N, — 1,

with S the set of possible control values S = {uy, us, ..., up } for the corresponding feasible
discrete input components (in our case, the VSL). The term h(u.(k),z,(k),di(k)) € D
corresponds to the rest of the constraints and xj, is last measured state at time step k. Using
the rolling horizon procedure, only the first control action u(k) of the optimal sequence is
applied to the system, and in the next time step the initial conditions are updated and the
procedure is repeated.

To properly consider processes with discrete and continuous variables (hybrid systems) in
an MPC formulation, hybrid predictive control techniques have been developed [19]-[21]. For

this formulation, the main difficulty is the computation time needed to solve the optimization



problem because we are dealing with mixed integer nonlinear programming (MINLP). In
cases when the problem can be recast into a MILP, well-known optimization methods are
efficient and many software/toolboxes are available to solve them [22]. However, in the
case of traffic systems, the problem is intrinsically non-linear and any simplification of the
model may lead to non-acceptable predictions, which are incapable of incorporating the real
behavior of traffic. As a way to deal with complexity, and to include the discrete characteristic

explicitly in the solution, we propose a set of methods based on genetic algorithms.

C. Particularities of the MPC controllers used in this paper:

This subsection explains the main particularities of the MPC controllers used in this paper:
—The MPC controller uses an objective function (9) containing one term for the Total Time

Spent (TTS) and two terms that penalize abrupt variations in the ramp metering and VSL:

JE) =310 w40 + Sk + 0L | ©
/=1

€0 liel
Ny—1
+ Y e || Veg(k+0) = Viy(k+£—1) |? (10)
/=0
Ny—1
+ Z & || rej(k+0) —rej(k+0—1) |
/=0

where €., € are weighting parameters, O is the set of all the segments with an on-ramp,
and I the set of all the segments.

—The controlled system is subject to constraints on the maximum and minimum values of
densities, speeds, queues, ramp metering rates, and VSL. The constraints on speed, density,

and queue are made soft by including them as penalization terms in the overall cost function:

Np  Neonst
J(k) = J(k)+> Y Qu(k+1) (11)
(=1 =1

where €;(k + ¢) is a penalization term that is different to zero if the corresponding soft
constraint is violated and N, 1S the total number of soft constraints.

—The optimization is computed using SQP optimization techniques by the Matlab function
fmincon with a control and prediction horizon of N, = 4 and N, = 6, respectively. The
function uses the interior point method with a maximum number of 20000 cost function
evaluations.

—In order to try to avoid that the algorithm ends up in a local minimum, the algorithm runs



an evaluation procedure before the optimization. During the procedure, the TTS is evaluated
for a set of control values (in this case, 252 points). The unfeasible candidates with a small
cost function associated are used for the definition of a new feasible candidate increasing
the set of control values. The best control profile obtained is taken as initial values for the
optimizations. The right choice of this set of initial values is a key step in the design of a
continuous MPC for traffic due to the high non-convexities of the optimization problem. To
use the shifted version of that part of the control signal that was not applied to the process
or the minimum feasible metering rates and VSL (as proposed in [1]) is not enough and may
cause high loss of performance for the majority of the simulations done in this paper. On
the other hand, to use a multi-start optimization increases the complexity making, in many
cases, impossible to compute the control inputs in real time if the optimizations cannot be

solved in parallel.

D. VSL Implementation Issues

In the majority of the references about VSL computed by MPC, the variable speed limits are
considered to be implemented in the network without any operational constraints. Hereafter,
we will assume the MPC controllers will have to consider the following safety and operational

constraints for the VSL:

- Temporal constrained case:
In real implementations, the VSL cannot change abruptly due to driver safety and comfort.
Therefore, we just allow the VSL to change +; km/h as maximum in a controller sample step

including the following constraint as in [11], [12]:
Veilk+0) = Vealk +0) = 1| <y (12)
for each segment ¢ with a VSL and for { =0,1,...N, — 1.

Hereafter, the MPC proposed with temporally constrained VSL will be denoted by T-MPC.

Unlike the state constraints, the constraint (12) is treated as hard constraint.

- Spatial and temporal constrained case:
In addition, in real implementations it is necessary to limit the difference between the VSL

values of two adjacent segments. This can be done by including the following hard constraint



as in [11], [12]:
Veilk +0) = Vei(k 4+ 0) = 1] <, (13)
for each segment and ¢ with a VSL andfor ¢ =0,1,...N, — 1.
[Vejri(k+0) = Ve (k+ 0] < ¢
for j and 7 + 1 corresponding to adjacent VSL and for / =0,1,...N, — 1.

Hereafter, the MPC proposed with spatially and temporally constrained VSL will be denoted
by ST-MPC.

- Discrete case:

Even with the previously proposed ST-MPC, the solution obtained cannot be implemented
in practice since this solution is continuous and the freeway signs are only allowed to show
a limited set S of discrete speed limits. An easy but suboptimal method is to approximate
the continuous optimal control inputs by allowed VSL values (i.e. to apply a discretization
process). The most used way to do this discretization is by rounding the available continuous

solution to the closest discrete value of the VSL [11], [12]:

Vei(k) = arg min(|Vesri (k) — ) (14)

seS

where Visr (k) is the VSL of segment i computed by ST-MPC controller explained in the
previously.

Other easy ways to do the discretization are by ceiling (15), and by flooring (16):

Vei(k) = argmin(|Vest (k) — s| subject to: s > Vigr,(k)) (15)
sES

Vei(k) = argmin(|Vest (k) — s| subject to: s < Vigr,(k)) (16)
sES

In [1], it is reported that the discretization done by ceiling yields a slightly better perfor-
mance than the rounding and the flooring case. In Section IV alternative methods for the
discretization step will be proposed in order to decrease the loss of performance due to the

quantization.

III. HYBRID FREEWAY TRAFFIC CONTROL
A. Problem Definition

The implementation issues explained in the previous section substantially decrease the

performance of the controlled system as will be shown in the simulation results in Section



V and VL. In order to reduce this loss of performance, the discrete characteristic of the VSL
values should be directly considered during the optimization by solving or approximating the

following hybrid optimization problem:

min J(k 17
7t (k), Vet (k) ( ) a7

st 0<r(k+0)<1

VSLmin S ‘/c(k + g) S VSLmax

for {=0,1,..., N, — 1

with (k) € RN and V, (k) € SN Hvsu
where r(k) = [r(k)",....,r(k + Ny — 1)"]", and r(k) = [rj,(k),...,7jy. )" with I, =
{j1,J2, .-, Jn, } the set of segments with a metered on-ramps and N, the number of metered
on-ramps. Equivalently, V, ; (k) is the discrete control input profile: V. (k) = [V.(k)T, ..., Vo(k+
Ny, — DT, and Vo(k) = Ve, (k), ..., Vi w]T with Tysy, = {mq, ma,...,my,} the set

* C,mNVSL

of segments with a VSL and Nyg;, the number of VSL.

B. Problem Relaxation

The proposed optimization problem (17) is a complex to solve mixed-integer optimization
problem with discrete and continuous decision variables and so it is difficult to execute in
real time. Most of the MPC approaches for hybrid systems do not have a standard strategy
to relax a non-convex problem in order to obtain a good solution in a reasonable amount of
computation time. Limiting the number of feasible nodes in the mixed integer optimization
problem is a strategy that has been used before in the context of MPC for sewer networks [23],
as a way to reduce the combinatorial explosion related to the search tree of binary solutions
at the expense of a suboptimal solution. In this paper, a number of feasible nodes limitation
will be obtained by using the spatial and temporal implementation constraints explained in

subsection II.C:
Veilk+0) = Vei(k+0—-1)| < (18)
Vejri(k+0) = Vej(k+L -1 <G
for ¢ =0,1,...N, — 1, for ¢ € Iysr, and for j and j + 1 € Iygy,

The feasible VSL set can be represented by a search tree. Fig. 4 shows an example

of a search tree with 2 VSL, N, = 2, V.(k) = [40,50]", ¢, = 10, v; = 10, and S =



{20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120} where the unfeasible VSL profiles have already

been removed:

k IIIIII IIIIII ; !!

Fig. 4. Search tree example with /N, = 2 reduced by the spatial and temporal constraints.

B,

In this case, the temporal constraints reduce the number possible combinations of discrete
VSL from 1331 to only 81. The spatial constraint reduces again this number from 81 to 38
profiles of discrete VSL. For larger horizons, the number of feasible VSL profiles should
increase exponentially. For example, in the simulation done in this paper (with NV, = 4 and
two VSL) the search tree is initially composed of 2.14 - 10® possible VSL profiles. However,
this number is reduced from 2.14 - 10® to 6561 VSL profiles by the temporal constraint and
from 6561 to an average number of 1998 VSL profiles by the spatial constraint.

In the following two sections, some methods will be proposed in order to solve optimization

(17) with constraints (18) using the search tree of Fig. 4.

IV. 6-GENETIC AND 6-EXHAUSTIVE OPTIMIZATIONS

The first proposed methods makes use of the continuous solution of the ST-MPC problem
(Section II.C) in order to relax problem (17) with constraints (18). The idea is to run a
discrete optimization after the continuous optimization assuming that the optimal discrete
solution is close to the continuous one. This is not generally true and so, in some cases,
could cause loss of optimality.

Firstly, the VSL search tree explained in the previous section is reduced again by including

a new constraint in the optimization problem making use of the ST-MPC solution for the



VSL (Ves,i(k)):

|Veilk +0) — VisTi(k+0)| < 0 (19)
for / =0,1,...N, — 1 and for 7 € IIygy,

where 6 is a tuning parameter.

Therefore, the feasible VSL set can be represented by a smaller search tree than in Section
III (Fig. 4). In Fig. 5 an example of this search tree with Vogr(k+1) = [43,53]7, Vigr(k+1) =
[52,61]7 and @ = 10 is shown. In this case, the constraints reduce the number possible

combinations of discrete VSL from 1331 to only 6 (versus 38 without using constraint (19)).

®®®®
®
®

®®;

Fig. 5. Search tree of Fig. 4 using the ST-MPC solution

For the simulation done in this paper (with N, = 4 and # = 10) the search tree is reduced
from 2.14 - 10% points to an average number of 114 points (versus 1998 without constraint
(19)). If 4 is chosen to be 14, the average number of points in the reduced tree is 971 because
the larger the 6, the more feasible solutions there are to explore.

Moreover, making use of the ST-MPC solution for the ramp metering rates 7.gr ;(k), the
optimization can be reduced to an optimization with only discrete variables. Therefore, in
order to obtain the discrete speed limits using these assumptions (given ramp metering rate

and constraint (19)), the following optimization problem with only discrete variables has to



be solved:

in J 2
nin J (k) (20)

St Vel 0) = Vealh 4 0= D S iy Ve (b +0) — Vg + 0] <&,
Veilk +0) = Vesri(k +0)] <0 and  VSLinin < Vei(k + ) < VSLinax
for ¢ =0,1,..N, — 1, for i € Iysy, and for j and j + 1 € Iyg, with V., (k+/) € S
A. 0-Exhaustive optimization

As we are dealing with non-convex integer optimization, the only way to obtain the global
optimum of (20) is to evaluate the cost function for all the feasible points in the reduced
search tree. The main problem is the computation time needed for the evaluation of such
a large number of possible combinations of discrete VSL. Therefore, this solution is just
applicable for relatively small networks and horizons or in cases where an offline solution
is useful. In order to be able to solve the problem for large networks within the limited

computation time available, a genetic algorithm is proposed in the following section.

B. 0-Genetic optimization

To optimize the discrete control action sequences V. ;(k) (i.e. to solve problem (20)) within
the limited computation time, the use of Genetic Algorithms (GA) [24] is proposed. In
cases where the optimization problem is highly nonlinear, it has been reported that GA can
efficiently cope with it, particularly for mixed-integer nonlinear problems [24]. In the context
of MPC, in cases when the model or the objective function are nonlinear, the use of GA
is fully justified as the computation times can be easily controlled and good solutions can
be obtained within a fixed sampling time [25]-[27]. One of the main characteristics of this
method is that it is gradient-free and that it is possible to limit the number of objective function
evaluations. So, in order to find a good discrete VSL within the limited time available, a GA
will be used to solve optimization problem (20).

A candidate control sequence solution in the genetic algorithm is called an individual, and
each individual has a fixed number of genes (emulating a chromosome). Each gene, in the
context of systems with discrete inputs, will represent a possible input during the control

horizon. For MPC, the individual can be seen then as a candidate control action sequence:

Individual; = [Vepn, (k), ..., Voo, (k + Ny — 1), ..., 1)
Vernnyg, () oos Ve, (K + Ny = 1)]



where {my, ma,...,my,} is the set of segments with a VSL as explained previously.

In GA the idea is to find the fittest individuals (solutions with best objective function values)
within a generation, to apply genetic operators for the recombination of those individuals,
and to generate a good offspring [24]. In this paper, for the selection, a roulette method is
applied, giving the best individuals more chances to be selected for recombination. For the re-
combination, two fundamental operators are used: crossover and mutation. For the crossover,
portions of the chromosomes of two individuals are exchanged with a given probability p.;
and the mutation operator modifies each gene randomly with a given probability p,,. This is

just an specific implementation and alternative genetic methods could be used.

Crossov_er point Crossov:er point
Individual 1a Individual 1b Individual 2a - Individual 2b
Mutation Mutation
Individual 1a Individual 2b Individual 2a Individual 1b
New Individual 1 New Individual 2

Fig. 6. The basic operators in a GA-based control strategy for VSL panels.

Fig. 6 shows an example of the recombination steps for two individuals assuming that
we have two VSLs and the control horizon is 3. First two individuals are selected for
recombination with a higher probability if their objective function is lower. Then, a random
crossover point is selected, and two new individuals are generated. Then the mutation operator
selects randomly a control to modify and its values are changed. Finally two new individuals
for a new generation are obtained.

We have to point out that due to the limited time reaching the global optimum is not
guaranteed. Since for traffic control the optimization is a complex mixed-integer and nonlinear
problem, using the GA optimization is justified. Many different approaches and adaptations

of genetic algorithms have been proposed in the literature in order to deal with many issues



like constraint handling, diversity of the solutions, combination with classical optimization
methods to assure a local convergence, etc [28]-[31]. For constrained optimization, one of
the most used is the GENOCOP algorithm proposed by Michakewicz [32]. The algorithm
we used for the traffic application is the simplest one [24] and in the case a solution does
not satisfy a constraint, we penalize with a high objective function value. Part of the further
research is to implement different adaptations of GA, and other algorithms. In the simulation
results we will compare GA with exhaustive enumeration, so we can see how far the solutions

of GA are from the optimal solution.

V. ALTERNATING OPTIMIZATION

In the previous section, the continuous VSL given by a MPC controller have been used
for the computation of the discrete ones. However, these discrete VSL could be computed
directly (i.e. without using any continuous solution) saving the computation time needed
for the continuous optimization (i.e. to solve optimization (17) without using the ST-MPC
solution). To solve the mixed-integer optimization problem with discrete and continuous
decision variables, we decided to compute the ramp metering and the VSL iteratively in
order to decompose the problem in one continuous optimization problem (22) and one discrete
optimization problem (23).

1) Ramp metering optimization:

min J(k 22
min (k) (22)

st 0<rik+¢)<1foricl,,for/=0,1,..N, —1 and with r,(k) € RNN:

where the VSL profile used V*,(k) for the ramp metering optimization is the profile proposed
in the previous iteration or, for the first iteration, the profile proposed in the previous sample
time shifted by one sample. In this paper, this continuous ramp metering optimization problem
will be solved using an SQP algorithm. The computation time needed is much lower than the
computation time needed for the general continuous optimization problem because it does

not include the VSL signals as decision variables.



2) VSL optimization:

in J 2
in J(k) (23)

str [Veilk+0) =Vei(k+ =1 < [Vejm(k+0) = Ve(k+ 0] <
VSLin < Vei(k 4+ €) < VSLijax
for ¢ =0,1,...N, — 1, for i € Iygy, and for j and j + 1 € Iysy with V. ;(k+¢) € S
where the ramp profile used is the one proposed in the previous iteration r; (k). This opti-
mization (23) is equivalent to the optimization done for the previous section (20) but, in this
case, we do not have any continuous MPC solution for the VSL that can be used for the
reduction of the search space of the problem. The following subsections propose some ways

to solve the resulting discrete optimization problem (23), as done for the problem (20) in

Section IV.

A. Exhaustive optimization

In the same way that it was explained in Section IV, the easiest way to solve problem
(23) is to evaluate the cost function for all the feasible points. Again, the problem is the
computation time needed for the evaluation of such a large number of possible combinations
of discrete VSL. Therefore, this solution is just applicable for relatively small networks and
horizons. For larger networks and horizons, a genetic algorithm is proposed in the following

subsection.

B. Genetic optimization

In the same way that in Section IV.B, a genetic algorithm is proposed to solve the discrete
optimization. The formulation is the same as in Section IV but without using the constraint
related with a solution within a distance 6 from the continuous one. Moreover, it will be
convenient to use a different GA parameters tuning due the greater number of feasible

solutions and the larger computation times available.



VI. SIMULATION

A. Set-up and scenario

In order to simulate the analyzed controllers, the benchmark network in Fig. 7 has been

used. The network has been taken from [1]. The freeway has N = 6 segments with a length

of L; = 1000 m and with A\ = 2 lanes. There are 3 control signals: two VSL (for segments

3 and 4) and a ramp metering rate. All the METANET parameters (which can be seen in

Table I) are considered to be the same for all the segments.

VSL1 VSL2

6

Fig. 7. Stretch used as example.

//f,

Ramp

metering

TABLE I

MODEL PARAMETERS

T 18 s
K 40 veh/(km- lane)
Perit 33.5 veh/(km- lane)
« 0.1
a 1.867
Vtvee 102 km/h
7 60 km?/h
6 0.0122
Pmax 180 veh/(km- lane)
Co 4000 veh/h
Cramp 2000 veh/h

Thirteen variables (density and speed of each segment

and queue of the ramp) are sup-



posed to be measured at each controller sample step and used for the computation of
the control signals. The simulation time chosen is two and half hour corresponding to
75 controller sample steps (7' = 120s) and 900 simulation steps (73, = 10s). See [1]
[8] for further details about the chosen benchmark. The set of allowed VSL is supposed
to be S = {20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120} and the implementation constraints

parameters are (; = 10, and ~; = 10.

B. Continuous MPC controllers results

The results of the closed-loop simulations for the VSL computed by each continuous MPC
controller and the rounding discretization of ST-MPC can be seen in Fig. 8. It can be seen
that VSL; of unconstrained MPC suddenly changes from 76 km/h to 32 km/h at minute
12. However, this change is done at a rate of 10 km/h for T-MPC. Moreover, the absolute
difference between VSL; and VSL, (i.e. |[VSL; — VSLy|) keeps between 40 km/h and 60
km/h for unconstrained MPC and T-MPC during a long period of time. When this difference
is constrained in ST-MPC, the value of VSL, is strongly decreased in order to obtain a

difference of 10 km/h with VSL; (which is also slightly increased).
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Fig. 8. VSL of segment 3 and 4 for continuous MPC and rounding discretization

In the numerical results on Table II can be seen how ST-MPC (the most realistic one)



results on a TTS reduction that is the 36.7% lower than the TTS reduction corresponding
to unconstrained MPC (12.47% versus 8.14%) concluding than the spatial and temporal
constraints substantially decrease the potential controller performance. However, in real im-
plementations, the lack of safety constraints may increase the actual TTS reduction due to

sudden braking and accidents.

TABLE 11

MPC PERFORMANCES

TTS Reduction (%)
Uncontrolled System 0 %
Unconstrained MPC 12.87 %
Temporally constrained MPC (T-MPC) 10.48 %
Spatially and temporally constrained MPC (ST-MPC) 8.14 %

C. Rounding, Flooring and Ceiling
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Fig. 9. Rounding, Ceiling, Flooring and continuous VSL (ST-MPC) of segment 3 and 4



The closed loop VSL discretization by rounding, flooring, and ceiling, and the continuous
ST-MPC solution are shown in Fig. 9. It can be seen than different VSL choices during a few
sample step during the beginning of the congestion can cause a different simulation during a
long period of time (the ceiling VSL are 20 km/h and 30 km/h over the rounding and ceiling
VSL during more than 90 minutes).

The numerical results of the rounding, ceiling, and flooring cases can be seen in Table
III. In this simulation, the three options give a similar performance with a slight advantage
for the rounding case. However, the TTS reduction for the rounding case is 46% lower than
the TTS reduction corresponding to ST-MPC (8.14% versus 4.40%). This shows that the
supposition done in many previous papers about the continuous implementation of the VSL
can entail a large loss of performance for the controlled system for some networks and some

traffic conditions.

TABLE III

MPC PERFORMANCES

TTS Reduction (%)
Spatially and temporally constrained MPC 8.14 %
Rounding discretization 4.40 %
Ceiling discretization 437 %
Flooring discretization 4.22 %

D. 0-Genetic and 0-Exhaustive Optimizations

The VSL discretization of ST-MPC by 6-Genetic and #-Exhaustive optimization are shown
in Fig.10. It can be seen than the solutions of both the genetic and the exhaustive optimizations
keep around the continuous solution during the whole simulation. During the time that the
continuous solution stays relatively constant, the discrete solutions approximate the ST-MPC
switching between two discrete values in the same way as in a pulse-width modulation.

The numerical results can be seen in Table IV. It can be seen that values of # higher than
10 do not bring much increase in the performance of the controlled system as can be seen
in TTS reduction of the case with § = 18 and # = 25. More concretely, the #-exhaustive

optimization with 6 = 10 is only 1.6% worse than for § = 25. However, the computation
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Fig. 10. Exhaustive and genetic optimizations

TABLE IV

0-GENETIC AND 0-EXHAUSTIVE PERFORMANCES

0 TTS Reduction | Discrete optimization time
0-Exhaustive optimization | 10 7.22% 1.85s
0-Exhaustive optimization | 14 7.24% 14.12 s
0-Exhaustive optimization | 18 7.25% 16.26 s
0-Exhaustive optimization | 25 7.34% 26.70 s

0-Genetic optimization 10 6.98% 04s

time is increased from 1.85s to 26.70s. Therefore, we decided to use a value of § = 10 for
the 0-Genetic optimization algorithm.

After a tuning process (equivalent to the one shown in the following subsection for the
alternating genetic optimization), 20 individuals with 100 genes were chosen for the GA. A
crossover parameter of 0.8 and a mutation parameter of 0.01 are used. It can be seen than the
0-Genetic optimization gives a solution that is close to the #-Exhaustive one (6.98% versus

7.22%) but with a lower computation times (0.4 s versus 1.85 s).
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Fig. 11. Exhaustive optimization versus genetic optimizations

E. Alternating Optimization results

The VSL obtained by Alternating Exhaustive Optimization and six examples of the VSL
obtained by using Alternating Genetic Optimization are shown on Fig.11. It can be seen than
for the majority of the profiles obtained by the GA, the VSL stay very close to the exhaustive

solutions.

TABLE V

TUNING OF ALTERNATING EXHAUSTIVE OPTIMIZATION

VSL Iterations

Ramp Iterations

TTS Reduction (%)

Alternating Exhaustive Optimization 1 1 7.4229
Alternating Exhaustive Optimization 2 1 7.4252
Alternating Exhaustive Optimization 3 3 7.4252

The numerical results of the exhaustive optimization for different numbers of iterations
are shown in Table V. It can be seen that the iterations almost do not increase the TTS
reduction (7.4229% without iterations versus 7.4252% with three iterations for the ramp

metering and the VSL). In fact, in this simulation the algorithm converges in one iteration



of the ramp metering for 72 out the 75 sample times. Therefore, we decided to use only one
iteration for the exhaustive and genetic optimizations (i.e. ramp metering optimization and
VSL optimization will be run just one time each sample time). As the algorithm converges
with three iterations for all the sample times and assuming that the ramp metering optimization
is using enough initial points to avoid local minima, it can be said that 7.4252% is likely to
be the maximum TTS reduction that can be achieved with the used horizons and cost function
parameters. It will be difficult to implement the exhaustive algorithm in real time for large
networks due the computation times required. However, in this case it is possible to compute
the control inputs in real time. For the exhaustive optimization with just one iteration, the
mean computation time for one sample step is 31.04 s with a maximum of 40.64 s which is
less than the 2 minutes controller sample time. Using 3 iterations for the ramp metering and

for the VSL, the mean computation time is 95.43 s with a maximum of 125.78 s.

TABLE VI

TUNING OF ALTERNATING GENETIC OPTIMIZATION

Ind | Gen | Muta | Cros || MTR(%) | SD-TR | Mean CT | SD-CT

20 | 100 | 0.01 0.8 6.99 % 0.29 6.14 s 1.71

20 | 100 | 0.001 | 0.8 5.81 % 1.30 722s 1.81

40 | 200 | 0.01 0.8 737 % 0.14 12.55 s 2.65

40 | 200 | 0.001 | 0.8 7.13 % 0.38 9.85s 1.93

60 | 100 | 0.01 0.6 727 % 0.178 8.45 s 1.01

30 | 100 | 0.01 0.6 7.11 % 0.36 6.26 s 1.91

Some of the numerical results obtained during the tuning of the Alternating Genetic
Optimization are shown on Table VI. In the Table, Ind, Gen are the number of individuals and
genes in the GA, Muta and Cros are the Mutation and Crossover parameter of the GA. MCT
is the Mean Computation Time, and SDCT is the Standard Deviation of the Computational
Time. In order to evaluate the performance of the genetic algorithm, the simulations have
been run 10 times and the mean TTS reduction (MTR) and the standard deviation of this
reduction (SDTR) have been used as performance measures.

The controllers show a good behavior for the majority of the parameters sets evaluated,

usually with more than a 7% TTS reduction (close to the maximum of 7.43 %). Moreover,



the standard deviation of the TTS reduction is relatively small showing a good performance
even in the worst cases. It can also be seen that the trade-off between computation time and

performance can be easily done by changing the number of individuals and genes.

VII. SUMMARY OF RESULTS AND CONCLUSIONS

A. Summary of numerical results

A brief summary of the numerical results and the computation times can be seen in Table
VIL. In the table, the row corresponding to Implementable shows whether the corresponding
controller is implementable in terms of respect of the safety constraints and belonging to the
discrete set of VSL. Maximum CT is the maximum computation time for all the sample times.
It can be seen that the computation times for #-Exhaustive and 0-Genetic optimizations are of
the same order of magnitude as those of the continuous cases because the discrete optimization
is faster than the continuous optimization. But the TTS associated to both #-Exhaustive and
0-Genetic optimizations is significantly larger than for the rounding case (7.24 % and 7.22
% versus 4.40 %). Therefore, it can be concluded that if the algorithm is spending much
computational load in order to computing a good solution for the continuous optimization,
it is necessary to run a proper algorithm to obtain a good VSL signals. Otherwise, if we just
use a rounding (or ceiling or flooring), we would be wasting the computational effort spent

in the continuous optimization.

TABLE VII

CONTROLLERS SUMMARY

Implementable | Mean CT | SD-CT | Max CT | MTR | SD-MTR

U-MPC N 20.74 s 13.06 79.67s | 12.87% 0

T-MPC N 22.39 s 10.09 4934 s | 10.48% 0

ST-MPC N 30.02 s 13.67 88.76 s 8.14% 0

Rounding discretization Y 31.39 s 16.34 78.90 s 4.4% 0

0-Exhaustive optimization Y 32.62 s 18.23 7333 s 7.22% 0
0-Genetic optimization Y 3191 s 17.11 64.21 s 6.98% 0.03

Alternating Exhaustive Optimization Y 31.04 s 4.13 40.64 s 7.43% 0
Alternating Genetic Opt. (40/200/0.01/0.8) Y 12.55 s 2.65 2755s | 1.37% 0.14
Alternating Genetic Opt. (30/100/0.01/0.6) Y 6.26 s 1.91 1361s | 7.11% 0.36




From Table VII can be also concluded that both Alternating Optimizations have quite
lower computation times than the other algorithms and a slightly greater TTS reduction.
Especially important is the difference in the Max CT and in the standard deviation of
these computation times (SDCT). This means that the computation times for the genetic
and exhaustive optimization are more stable and, therefore, the inputs can be more likely
computed during the available time.

Comparing the previously proposed solutions for real implementations (rounding, ceiling,
flooring) with the genetic optimization it can be seen that the loss of performance corre-
sponding to the rounding is much higher that the corresponding to the suboptimality of the

genetic optimization.

B. Observed advantages of genetic optimization for freeway traffic control

- In many cases in freeway traffic control with METANET, continuous MPC based on an
SQP optimization algorithm shows a poor performance if a wrong set of initial points is used
for the optimization. For example, in this paper it was used an evaluation procedure (with
252 points conveniently chosen) for the MPC constrained cases in order to choose a proper
initial point for the optimization in a reasonable time. In general, it would be necessary to
run many optimizations with different initial points. To have to run multiple optimizations
makes it impossible to compute the control inputs in real time. The genetic optimization is
able to compute a reasonably good solution faster than the continuous optimization, allowing
obtaining in real time a suboptimal solution in cases where the continuous optimization is
unable due to the high number of initial points required.

- For the Alternating Optimizations the computation times for the different sample times
are lower and with less variation than for typical continuous MPC approaches as can be seen
in Table VII (the standard deviation and the mean of the computational times are much lower
than for the continuous cases). This allows making the most of the time available ensuring
that there will be a suboptimal implementable solution at the end of the time step.

- The genetic and exhaustive optimization substantially improve the performance of the
rounding discretization (7.24 % and 6.98 % versus 4.20 %), which is the best implementable
solution without running a discrete optimization. Moreover, these algorithms can be run after
the continuous optimization in only 1.86 s and 0.4 s, respectively. Both solutions are close

to the best implementable solution (7.43%).



C. Further remarks and future work

- Using genetic algorithms it is impossible to ensure reaching the global optimum within
a limited sampling time. Moreover, stability or other robust properties can be analyzed just
numerically. However, using continuous optimization it is also impossible in practice to
prove stability or to ensure global optimality when solving highly non-linear non-convex
optimization problems.

- GA perform in a different way any time they are executed so the proposed VSL profiles
will randomly show slight changes for one simulation to another. However, in this benchmark
the observed standard deviation of the TTS reduction is low.

- For large networks, where a distributed algorithm is required [8], the iterations between
the continuous ramp metering problem and the discrete VSL problem may use information
from neighbors controllers (corresponding to nearby regions of the freeway) in order to run
a distributed optimization which tries to approach the global minimum using a equivalent
procedure that the one used in [7] for continuous controllers.

- As the methods we propose are independent of the traffic model used, it would be
interesting to apply them using other macroscopic traffic models which are capable of
including the effect of VSL in their formulation (like some versions of the Cell Transmission

Model CTM [16]).

D. Conclusions

This paper has proposed hybrid Model Predictive Control (MPC) approaches for freeway
traffic control considering Variable Speed Limits (VSL) as discrete variables as in current
real world implementations.

Firstly, this paper has analyzed the effect of converting the continuous unconstrained VSL
signal to an implementable VSL signal (i.e. a discrete value respecting the safety constraints).
In the simulated network, the discrete constrained performance is substantially reduced with
respect to the ideal case. Therefore, it can be concluded that the assumption about the
continuous implementation of the VSL entails in some cases a large loss of performance
for the controlled system. Since the majority of the literature makes this supposition, we
have proposed two kind of methods to reduce part of this loss of performance.

The first class of proposed methods discretize the VSL signals solving a discrete opti-
mization problem with a search space limited to a ¢ distance from the continuous MPC

solution. Using an exhaustive evaluation of all the feasible discrete solutions, it is possible to



substantially improve the solution. In the network simulated in this paper, the computation
can be done in a short time compared to the continuous MPC. In cases where this method
entails unacceptable computation times, it is proposed to relax the exhaustive search using a
genetic algorithm. In the analyzed simulation, the §-Genetic optimization is able to closely
approximate the behavior of the #-Exhaustive optimization but with a reduced computation
time.

Finally, we have proposed an algorithm that computes the discrete VSL directly (i.e.
without using the solution provided by the continuous MPC optimization). The mixed-integer
optimization is solved by computing the ramp metering and the VSL iteratively and separately
in order to decompose the problem in one continuous optimization problem and one discrete
optimization problem. The continuous optimization can be solved by using, for instance,
common SQP algorithm. For the discrete optimization, an exhaustive algorithm can be used
and, again, a GA 1is proposed in order to solve the optimization in a reasonable time.

The results show that, for the given case study, the exhaustive optimization can be executed
in real time substantially improving the performance of the rounding discretization, which is
the best implementable solution without running a discrete optimization. In case where the
exhaustive solution cannot be found in real time, the alternating genetic optimization almost
reaches the behavior of the exhaustive one. The alternating genetic optimization does not use
the solution of the continuous MPC problem and so reduces the computation times. Moreover,
the trade-off between simulation speed and accuracy can be easily adapted to the available
time making the algorithm very useful for the application in practical cases, especially if it

is necessary to use a distributed scheme due to the size of the network.
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