
Copyright (;) IFAC Analysis and Design of Hybrid 
Systems, Brinany, France, 2003 IFAC [:0[> 

Publications 
www.elsevier.comnocateJifac 

HYBRID SYSTEMS FOR SOLVING MODEL 
PREDICTIVE CONTROL OF PIECEWISE 

AFFINE SYSTEM 

Miguel Peiia ** E. F. Camacho * Sandra Piii6n *,1 

* Escuela Superior de Ingenieros. Universidad de Sevilla, 
Camino de Los Descubrimientos sin. 41092 Sevilla, Spain 

** INA UT, Fac. de Ingenieria, U. N. San Juan, Argentina 

Abstract: This paper presents a hybrid procedure to solve Model Predictive 
Control (MPC) of Piecewice Affine (PWA) system. The procedure uses the 
concepts of reacheble set, controllable set and State Transition Graph (STG) in 
order to reduce the number of Quadratic Problems (QP) needed to obtain an 
global minimum. The proposed algorithm reduces considerably the number of 
explorations needed during the search of a global minimum and thus the time 
required by the MPC can be reduced to a small fraction of the time required to 
the original problem. Copyright, 2003, IFAC. 
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1. INTRODUCTION 

Different methods for the analysis and design of 
controllers for Hybrid Systems (HS) have been 
reported (Tomlin et al. , 2000), (Bemporad and 
Morari, 1999). Among them, the class of opti­
mal controllers is one of the most studied. Most 
of the literature deals with optimal control of 
continuous-time HS and on the computation of 
optimal or sub-optimal solutions (Hedlund and 
Rantzer, 1999), (Riedinger et al., 1999). Although 
some techniques for determining feedback control 
laws seem to be very promising and many of them 
suffer from the curse of dimensionality. MPC has 
become an accepted standard for complex con­
strained control problems in the process industry 
but some limitations to which processes MPC 
could be used on, due to the computationally 
expensive on-line optimization required. Explicit 
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solutions to the MPC problem from linear con­
strained systems, which could increase the area 
of use for this kind of controller ((Bemporad et 
al., 2000), (Johanssen et al., 2000) and (Seron 
et al., 2000)) have been derived. Unfortunately 
these approaches are so complex for HS. The 
application of MPC to HS requires to solve an 
optimization program with mixed, integer and 
real, decision variables. Mixed Integer Quadratic 
Program (MIQP) algorithm can be used to solve 
this problem (Bemporad and Morari, 1999). In 
spite of this combinatorial nature, several algo­
rithmic approaches have been proposed and ap­
plied successfully to medium and large size ap­
plication problems (Fletcher and Leyffer, 1995). 
However MIQPs are very time consuming and pro­
hibitive for real time in most cases. To reduce the 
computed time, (Bemporad et al., 1999) presents 
a Branch and Bound tree exploring strategy for 
solving MIQP involving time evolutions of ~JLD 
model. 

This paper presents a hybrid procedure to solve 
MPC of PWA in order to reduce the comput-



ing time needed to solve the problem. The ap­
proach presented here do not belong to the class 
of Branch and Bound (B&B) methods, instead 
it uses an enumeration method and an standard 
QP algorithm to solve the mixed integer-real 
optimization. The procedure uses the concepts 
of reachable set and one step controllable sets 
(Kerrigan, 2000) combined to the State Transi­
tion Graph (STG) concepts, in order to reduce 
the number of QP problems need to solves the 
optimization algorithm. The proposed algorithm 
reduces considerably the number of explorations 
needed during the search of a global minimum and 
thus the time required by the MPC can be reduced 
to a small fraction of the time required if the 
optimization algorithm is applied to the original 
problem. 

The paper is organized as follows: in Section 2 the 
PWA systems are described and the used MPC 
strategy is developed. A simulation example is 
shown in Section 3 and concluding remarks are 
given in Section 4. 

2. PROBLEM FORMULATION 

Several modeling frameworks have been intro­
duced for the discrete-time HS, one of them is the 
PWA. A PWA systems is defined as 

Xk+l = Aixk + BiUk + P for: [Xk] E Xi (1) 
Yk = C'Xk + g' Uk 

where {Xi} :=1 is a polyhedral partition of the 
states and input space. Each Xi is given by 

where Xk, Uk, Yk denote the state, input and 
output vector, respectively. Each subsystem §i 

defined by the 7-uple (Ai, B i , C i , f i , gi, Qi, qi), 
i E {1, 2, ... , s} is termed a component of the 
PWA system (1). Ai E jRnxn, Bi E jRnxm, 
and (Ai , Bi) is a controllable pair. C i E jRT X n 
and Qi E jRPi x (n+m) and p , g' ,qi are suitable 
constant vectors. Note that n is number of states, 
m is the number of inputs, r is the number of 
output and Pi is the number of hyperplanes that 
define the i-polyhedral. 

Assume that a full measurement of the state is 
available at the current time k. Most formulation 
of MPC require that the problem 

U = arg(min J) 
U 

i = l 

(2) 

i = ] 

s.t. : Umin ~ Uk+i ~ U max k = 1, ... , M (4) 

is solved at each time k , where Yk +i/k denoted 
the predicted output vector at. the k + i time, 
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obtained by applying the input sequence U ~ 
{Uk, ... 'U k + N _ 1 } to model (1) starting from the 
state Xk subjected to constraints. It be noted 
that Wk is the output reference. The first control 
input is then applied to the process. At the next 
sample, measurements are used to update the 
optimization problem, and the optimization is 
repeated. In this way, this becomes a closed-loop 
approach. 

Let us consider the prediction problems associ­
ated to the MPC in the case of PWA system. 
The subsystem describing the process is known 
if Xk is known, but the following subsystems de­
pends on the applied control sequence. It can be 
considered that a change (transition) of model 
is produced between a sampling instant and the 
next. In general a sequence of subsystems I = 
{h, h+l' .. . , h+N} is activated. Only the initial 
value h = h(Xk) of this sequence is known. 
If no constraints are considered, the number of 
possible sequences for a prediction horizon N is 
SN-l. In order to solve the MPC problem (3) 
the optimization sequence is added to the decision 
variables. The resulting optimization problem can 
be stated as 

U = arg(min J) 
U,! 

(5) 

where constraints relating the dependences of the 
possible sequences U and I have to be added, i.e.: 

Qlk+jXk+l ~ l k+ j, j = {1, .. , N} (6) 

Due to the integer nature of sequence I , the 
problem of finding the optimum can be solved 
by finding the optimum of the solutions for all 
possible sequence of I, i.e. 

U = arg (mJn (rnjn (QIlJ!~Y"))) (7) 

where QIU U ~ qIU indicate the constraints due to 
dependences between I and U. 

2.1 Resolution of the Computational Problem 

Equation (3) can be written as 

J = (y - wfQ(fj - w) + ii7 fw (8) 

where R = diag [rii ], (R = RT >- 0), Q = 
diag [qii ], (Q = QT >- 0). Note that Q (weight ma­
trix of the error) is different to Qi (matrix that de-

fines the polyhedral) and fj = [Yk+l .. . Yk+Nf , 
- [1' T]1' - _ [ l' T ]1' W = W k+l ... wk+N , U - uk ... uk+N- l 
the predicted output vector can be written as 

(9) 

Fy = CyFx , Hy = CyHx, fo" = Cyfox 

where· C = diag(Ch+l CI.-+2 . .. Ch+N) 
. y ' " 

Hx = [hI h2 .. . hN] 



[ 

J1I:!~~Ik 1 
Fx = 

J1h +N- l J1;k+l . .. J1h 

hi = J1h+.ll1h 

l 
l1Ik 1 

J1 Ik+N - l J1h+N - 2 .. . J1Ik+ll1h 

o 
l1 Ik+ 1 

J1h+211h+l 

Note that the following equalities are fulfilled 

x = FxXk + Hxu + fo x 

y = Cyx 

- [T T T]T X = Xk+l Xk+2 . . . Xk+N 

Replacing (9) in (8) the index is 

(10) 

J(I , U) = uHQpu + f~'pu + gQP (11) 

where 

HQP = [H~QHy + Q] 

f~p = [2XkF:'QHy + 2/;QHy + 2wTQHy] 
T T - T - T --

gQP = xk Fy QFyXk + 2fo QFyXk + 2fo Qw 
T- T - T-

+ fo Qfo - 2w QFyXk + w Qw 

The constrain over the control (4) can be written 

Qu - ~ U QU - [ I I JT u_ as U ~ q , - - NxN N x N , q -

[ 
T T]T - (Urnin) (umax ) and the constraints due to 

I and U dependence (6) can be written as 

(12) 
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Fig. 1. Reacheble regions 

where Xl = [xI+! , ... , XI+N_d
T

, Qlx = diag(Qh+l, 

... , Qlk +N- 1 ), XI = [(qh+l )T , ... , (qh +N- l (] T, 

X I can be written by 

(13) 

where Cx = [In* Nxn*N 0]. Replacing (13) and 
(10) in (12), the constraints due to the depen­
dency between U and I results in QIU u ::S qIU, 
QIU = QlxCxHx, qIU = qr,,_ QlxCxFxXk­
QI xC x fox' If constraints on the control actions are 
also considered then 

(14) 

QQP = [(Qu)T (QIU)Tf, qQP = [(qu)T (qIU)Tf . 

Therefore, once the sequence I is fixed , the prob­
lem can be solved by minimizing (11) subject to 
the constraints (14). 

2.2 Reach set, controllable set and src J11gorithm 

The key idea of the proposed algorithm is to 
determine the set of possible regions that can be 
reach from the actual region in next few sampling 
times. The reach set concept (Kerrigan, 2000) is 
used for this purpose. The set of regions that can 
be reached from a particular one can be organize 
as a STG as can be seen in figure 1. A search 
directed by this graph can then be organized. 
That is, all sequence that cannot be obtained 
following the transition graph are not considered. 

Definition 1: (Kerrigan, 2000) Reach set (RS) 
'ken), Given a discrete-time dynamic system 
Xk+l = f(Xk , Uk , Wk) where Wk E WeIRd is an 
unknown disturbance (Ware closed set in ]Rd) 
and Uk E 1U c IRm (1U is compact set in ]RTn) . The 
set 'ken) is the set of states in ]Rn to which the 
system will evolve at the next time step given any 
Xk e n, admissible control input and allowable 
disturbance, i.e. 

'ken) ~ { Xk+l E ]Rnl :3Xk E n , Uk E 1U, } (15) 
Wk E W:Xk+l = f(Xk> Uk, Wk) 

The RS for discrete-time linear system Xk+l = 
J1xk + l1uk of a poly to pe set n of the state space, if 
it is consider that the control action Uk E 1U C ]RTn 
(1U is a polytope (compact set) in ]Rm) can be 
computed as Minkowski sum of the orthogonal 
projection of the set n over J1 and the 1U over 
11. Sce (Kerrigan, 2000) for more details. 



One-Step Reachable Neighbors (I-SRN) can be 
defined based in the reach sets idea. The §.1 sub­
system is one-SRN of the §i subsystem, denoted 
by §i 7 §:i, if the set Xj can be reached from the 
set Xi in one step. It is possible to determine 
if §i7§:i due to §i7§:i ~ R(Xi) n Xj i= 0. 
In the same way it can be determine the two­
SRN if it is considered the two steps reach set 
R2 (Xi) = R(R(Xi )) as §i;§:i ~ R2 (Xi) n 
Xj i= 0 . An so on for the n-SRN. 

Definition 2: n-Step Reachable Neighbour 
§i -§:i. 

n 

§i --+ Si ~ Rn(Xi ) n Xj i= 0 
n 

The index of all subsystems that are n-SRN of the 
subsystem i form the index set of n-SRN. 

Definition 3: Index set of n-SRN N~ 

N~ ~ {kE [1, ... ,sj/§i:§k} 

Transition from state 1j to 1j +1remains bounded 
by the one-SRNs of the corresponding subsystem 
to 1j . This allow to prune the transition graph: 
a transition from 1j to 1j+I are not considered if 

1j+1 rt Nij
• If this concept is extended, the search 

tree can be pruned further considering that 1j+k 

should belong to N:j 
• Therefore, if only the one­

SRN for a prediction horizon N are considered, 
the number of possible sequences to test by the 
QP algorithm is s(h) s(h+Il .. . s(Jk+N-,) (instead of 
sN, s(h) ::; s), where sI. is the number of one­
SRNs corresponding to subsystem h. 

It should be noted that the determination of the 
1 to n-SRN s for each subsystem can be done 
off-line. The neighbor list for each of the sub­
systems is included in the model description. 
Each subsystem is, therefore, defined by the (7 + 
N)-uple (Ai,Bi,Ci,fi ,gi,Qi,qi,NL ... ,N~), i E 

{I , 2, .. . , s} where, Ni is list containing the reach­
able neighbors of subsystem i. STC can be further 
pruned by considering the robust one step control­
lable set (SCS). 

Definition 4: (Kerrigan, 2~OO) The rol?ust 
one-Step Controllable Set Q(f2). The set Q(f2) 
is the set of states in lRn for which an admissible 
control input exists which will guarantee that the 
system will be driven to f2 in one step, for all 
allowable disturbances, i.e. 

(16) 

In (Kerrigan, 2000) is show a method to compute 
the robust one-SCS. It is important to recognise 
that the one-SCS and the RS operate in different 
directions. The one-SCS is the set of states from 
which the system can be driven to a given set. The 
RS is the set of states to which the system can be 
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Fig. 2. Controllables set at one, two and three 
steps of de sector 9 over the sector 12 

driven from a given set. No explicit relation exists 
between the two sets. 

The l-SCS of the subsystems j over the subsystem 
i Q{/i, is the subset of Xi from there subsystem j 
(Xj) can be reached in one step. That is, 

~ /i A { xk E Xi I :JUk E 1U : } 
1 - f(Xk, Uk, Wk) E Xj, "i/wk E W 

This set can be computed as 

~/i = QJ (RI (Xi) n Xj) n Xi 

This concept can be extended from 1 to n steps 
as ciji. Note that the next state function cor­
responding to the system i is involved in the RS 
calculation as well as in the CS calculation. Figure 
2 shows the controlable set to 1, 2 and 3 steps to 
the sector 9 over the sector 12. 

To reduce the number of QP problems evalua­
tions, the state of Xk rt Q;k+' / h has been consid­
ered. If this statement is satisfied then the Xk+l 

state does not belong to h+1 transition; therefore, 
the transition from h to h+I is not allowed. In 
order to apply these concepts, the definition of 
the Q{/ i, ... , ~~i sets should be added to the 
definition of each subsystem. 

3. ILLUSTRATIVE EXAMPLE 

The proposed tree exploring strategy has been 
applied to the MPC of a simple pendulum system. 
A linearized equation of the discrete dynamic of 
the simple pendulum system is used as model. 
Consider the following linear system 

... T 
ml() + kW + mg sine 8) = I 

where 8 is pendulum angle, l is length of pendu­
lum, m is mass of pendulum, 9 is the gravitational 
force, k is a friction coefficient and T is a torque 
applied. Then, the state space model discretized 
to a sample time To is 

xk+ I, = xk , + Toxk2 



x,(k+1) 

;I·4f::, 
x,(k+1) .. ' 

20 

Fig. 3. PWA model representation of the pendu­
lum 

Table 1. Matlab Benchmark: PC 
performance, Window 98, Matlab 5.3 

ODE LU Sparce 3-D 2-D 
0.33 0.38 0.39 1.21 1.21 

1 - -- xk - -- sm x + --uk [ 
Tok] Tog . ( ) To 
m 2 I k\ 12m 

where Uk = T(k), Xk\ = B(k) and X2 k = 8(k). 
Using m = 1, I = 1, k = 0.5, g = 9.8, To = 
0.02 as modelling parameters. Starting from a 
discretized model, a continuous PWA system as 
(1) has been obtained using a sectors linearization 
over the state space uniform grid. A partition 
Xi ~ {X k I Qi X k ::; qi} is defined after obtaining 56 
sectors over the state space. Matrixes C i and Bi, 

are considered invariants, i.e.: Bi = B = [0 ~] T 

and C· = C = I(m,rn)' Figure 3 shows the state 
linearization functions. Once the linearized model 
has been obtained, the neighbors corresponding to 
each sector are found using a reach set algoritlun. 
In this example, the bounds of the torque are 
10.78 ::; T ::; 10.78 (10.78 = 1.1 mgl), where 
the maximum torque in stable state to reach any 
position is T = mgl. All simulations test have 
been carried out in Matlab. Table 1 shows the 
performance of the computer used. Table 2 shows 
the prune method acronyms and their explana­
tion. A prediction horizon N =4 is considered. 
The weights of the error and control action are 
QX\ =1000, QX2 =100, R=l, respectively. 

Figure 4 shows the results with a reference w 
[00] and with different initial conditions. Dotted 
line and solid line show the behavior of the system 
to T = 0 (open loop) and the controlled system, 
respectively. It is possible to observe that the 
open loop state diverges for initials conditions 
Xo = [3 3jI'. 

Figure 5 shows a time parametric state curve and 
the number of QP evaluations for the N123 prune 
method. In this case the number of QP evaluations 
is an exclusive function of the belonged subsys­
tem. Figure 6 compares the responses of (NI) with 
(N123). Note that in general the number of QP 
problems decreases when N123 is used. 

61 

Table 2. Acronyms of the method. SRN 
= steps reachable neighbors; SCOS = 

step controllables over sets 

Acronym 
Nl 
N123 
NI-Cl 
NI-CI2 
Nl-CI23 
N 123-C1 
NI23-C12 
N123-C123 

., 

." 

Explanation 
Consider only I-SRN 
Consider 1, 2, 3-SRN 
Consider l-SRN and I-SCOS 
Consider I-SRN and 1, 2-SCOS 
Consider I-SRN and 1, 2, 3-SCOS 
Consider 1, 2, 3-SRN and I-SCOS 
Consider 1, 2, 3-SRN and 1, 2-SCOS 
Consider 1,2, 3-SRN and 1, 2, 3-SCOS 

, : 

I I , I , I 

I' , 

I' · I I', 

., ., 

Fig. 4. Phase postrait with w [0 0] and 
Xo = [2 l]T) Xo = [3 3j7', Xo = [- 3 3j7' 

2 32 '36 , ,"0 ' 46 , 

, ' . 
, ' . Method: (_) N123' '''-0, 

o 
- 1 '.:~~ -~.~::···'.;;d2 
-2 27 "', - 35 1" 06 .. t ~OfJ 10:04 <113 

,263. ,:J6 .:2, 
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N° QP Evaluations 

1000 

800 ! t=., .2 .~O . 4 I 

~~O i ! 
600 i.., I 
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Method: (-) N123 
tsP 8 i -' .1=1.2 

\ . - -" . - L.S -2 -2..2. -2. 

w,_o 
200 ~----~~--~------~----~----~ 

o 0.5 1 .5 2 t [seg)2.5 

Fig. 5. Number of QP evaluations (N123) 

60 Computin9Time (sef;11 ....., --- ~- .. --- --1 

:~ ~'~ - ; ; ~-' ....: 
;-- - -~ ~""~- I 

30 ' '. \ i ' .r---' Method : ~ 
20 "-:: '..,..... (-) N123 1! 
10 ~_.. ,'-', (-) ~1 _ 

~o QP .fv~luations 1 

1200 l ~ . 
1000 r-. __ ~ i 
800 . , , ----...-:---------! 

:~~t~-------~~--------~------~--~ 0 .5 

Fig. 6. Computing time and number of QP Eval­
uations [ (-) 1\"123 (:) NI] 



o 0 .5 1 1 .5 2 t[aeg)2.5 
N° OP Evaluations 

Fig. 7. Computing time and number of QP Eval­
uations [(-) NI-Cl (- -) N1-C123] 
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Fig. 8. Number of QP evaluations (N1- C123) 

Method ,....-----~--~-~----, 

Nl 

N1 23 

N1-C1 __ ... 

N1-C12 

N1 -C1 23 

N123-C 1 ~ 

N123-C12 ~ 

N123 .C 1 2 3 

o -m. 

~------<~-... , 

(x) N° QP Evaluations Min. 
(*) N° QP Evaluations Max. 
(0) N° QP Evaluations Means. 

Number of QP Evaluations 1 
400 600 BOO 1000 1200 

Fig. 9. Comparison table 

Figure 8 shows that if N1-C123 is used, the num­
ber of QP decreases when the initial state is far 
away from the regions frontier , that is, when Xo 
does not belong to any controllable sets at its 
neighbour. In this sectors the number of QP eval­
uations decreases when NI-Cl is compared with 
N1-C123 (Fig. 7). Figure 9 compares the number 
of (minimum, maximum and means values) QP 
evaluations for different pruning methods. Note 
that when a high number of controllable sets 
is considered although the quantity of evalua­
tions minimum and means decrease, the maxi­
mum quantity of evaluations remains constant. 
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4. CONCLUSIONS 

In this paper we have proposed a new approach 
for solving MPC control of PWA processes. The 
algorithm is based on the exploitation of state 
transition graphs and the concept of reach and 
controllable sets. The proposed tree exploring 
strategy chooses the reach set to diminish the 
number of possible realizations of the integer 
variables thus reducing considerably the number 
of QP problems needed to be solved. 
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