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Influence of the Surface Viscosity on the Breakup of a Surfactant-Laden Drop
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We examine both theoretically and experimentally the breakup of a pendant drop loaded with an
insoluble surfactant. The experiments show that a significant amount of surfactant is trapped in the resulting
satellite droplet. This result contradicts previous theoretical predictions, where the effects of surface tension
variation were limited to solutocapillarity and Marangoni stresses. We solve numerically the hydrodynamic
equations, including not only those effects but also those of surface shear and dilatational viscosities. We
show that surface viscosities play a critical role to explain the accumulation of surfactant in the satellite

droplet.
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The use of surfactants possesses a number of applica-
tions in diverse technological fields like ink-jet printing, the
food industry, and biotechnology. For instance, surfactants
enhance the stability of emulsions and bubbles, reduce
the surface tension to adjust wettability conditions, regulate
the transport conditions across interfaces, and enable the
encapsulation of cells and biomolecules in droplets (see,
e.g., Ref. [1] and references therein). The presence of a
surfactant monolayer significantly affects the dynamical
response of capillary systems. In fact, the spatiotemporal
scales characterizing the fluid-dynamical problem may be
comparable with those of the surfactant transport, which
gives rise to complex and interesting phenomena. Attention
has been frequently paid to the influence of the Marangoni
convection caused by a nonhomogeneous surfactant con-
centration over the interface. On the contrary, the role
played by the surface viscous stresses [2] associated with
the surfactant monolayer has been neglected in most studies
for no apparent physically meaningful reason. While both
surface diffusion and Marangoni convection opposes to
surfactant concentration variations over the interface, sur-
face viscous stresses reduce the surface velocity gradients.
A natural question is whether this latter mechanism can be
comparable to or even dominate Marangoni convection in
the problems analyzed.

In this Letter, we will show how surface viscous stresses
can fundamentally change the dynamics of surfactant-laden
capillary systems. For this purpose, we have selected a
paradigmatic phenomenon in surface tension-driven flows:
the breakup of a pendant drop. Specifically, we will study,
experimentally first and then theoretically, the influence of
an insoluble surfactant monolayer on the free surface
pinching and the subsequent formation of satellite droplets.
This phenomenon is essentially independent of the specific
configuration (pendant drop, liquid bridge, liquid lens,
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jet, ...) considered. Although we restrict ourselves to
insoluble and Newtonian surfactants because the model is
more tractable in this case, one can expect the main
conclusions to be applicable to soluble surfactants with
adsorption and desorption time scales much larger than the
breakup time, and to non-Newtonian surface active agents
as well.

During the free surface breakup, the liquid evacuates
from the pinch-off region, and the resulting surface con-
vection sweeps away the surfactant accumulated there.
Several numerical studies [3—7] have predicted that surface
diffusion and Marangoni convection fail to restore the
initial homogeneous surfactant density, and the pinch-off
dynamics eventually approach the universal self-similar
solution for clean interfaces [8]. In addition, those two
dissipative effects are not capable of retaining the surfactant
in the satellite droplet formed after the breakup. As will be
shown, our experimental results contradict these predic-
tions, and can be explained when surface viscous stresses
are accounted for in a simple way.

In our experiments, use was made of the insoluble
surfactant C;3OH, which is well characterized and has
been used in previous works [7]. The equilibrium surface
tension of spread C;3OH monolayers on water at 25° is
approximately given by the equation of state [7]

~ 3 (600 = o) fahla(T =T + 1), (1)

0 =0,
where 6, = 72 mN/m, 6,,;, = 36 mN/m, a = 0.752 m?/
umol, I' is the surfactant surface density, and [ =
6.46 umol/m? (Fig. 1, left).

A pendant drop of deionized water was formed by
injecting this liquid across a vertical needle 3.4 mm in
diameter. A C;3OH/hexane solution was gently deposited
on the pendant drop surface with a micropipette. After
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FIG. 1. (Left) Equilibrium surface tension of spread C;3OH

monolayers on water at 25° [7]. The open symbols are the

experimental data while the solid line is the fit (1) to them. The

solid symbols correspond to the experimental realizations shown

in Fig. 4, and the straight lines represent the surface tension drops

during the satellite droplet formation in those experiments.
(Right) Pendant drop at the maximum volume stability limit.

about 3 min, the drop surface tension was measured with
the drop shape tensiometer TIFA-AI [9]. If necessary, more
C,3OH/hexane solution was introduced onto the drop
surface until the desired surface tension o; was reached.
The pendant drop free surface area S; was also measured
from the drop image. The surfactant surface density I'; was
calculated from the isotherm (1). Then, the pendant drop
was inflated by injecting more deionized water until the
maximum volume stability limit was reached (Fig. 1, right).
The pendant drop surface tension o, and area S, were
measured at that limit. For surface tensions sufficiently
different from 72 mN/m?, the corresponding surfactant
density Iy was calculated from the equation of state (1).
This calculation leads to considerable errors for oy =
72 mN/m due to the Plateau in this part of the curve
o(') (Fig. 1, left). In this case, Iy was calculated from the
surfactant mass conservation during the last drop inflation;
ie,, Iy =T,S,/S,. The result of the above experimental
procedure is a pendant drop right at the maximum volume
stability limit with known values of its surface tension o
and surfactant density Iy (Fig. 1, right).

The pendant drop broke up spontaneously (Fig. 2). In
this process, a thin liquid thread forms between the upper
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FIG. 2. Sequence of magnified images showing the formation
of the satellite droplet. The upper (lower) images correspond to a
clean (surfactant-laden, T’y = 6.38 umol/m?) pendant drop. The
instant ¢ = 0 is defined as that at which the free surface pinches
for the first time. The corresponding videos can be found in the
Supplemental Material [11].

and lower parent drops. Because of surface tension, the
liquid thread contracts and oscillates until reaching a
quasispherical shape. The last phase of these oscillations
corresponds to the linear evolution of the axisymmetric
mode m = 0 and [ = 2 [10]. The frequency of this mode is
approximately given by the equation @ = 8(pd>/c,4)"/2,
where p, d;, and o, are the satellite droplet density,
diameter, and surface tension, respectively. We measured
the distance d(f) between the north and south poles
of the satellite droplet by processing images acquired at
84000 fps (Fig. 3). By fitting the function d(r) = d; +
ae " cos(wt + ¢) to the experimental data, one obtains the
diameter d,, the frequency w, and therefore the surface
tension o, and the corresponding surfactant density I';(o)
given by the isotherm (1).

Figure 2 shows the breakup process of both a clean and a
surfactant-laden pendant drop. Despite the relatively small
value of Iy in the latter case, these two processes are
different qualitatively. The surfactant makes both the initial
pendant drop and the central liquid thread smaller, and
accelerates the free surface pinching at the upper drop. The
satellite droplet ejects a tiny drop in the clean case, and its
size is bigger than that produced by the surfactant-laden
pendant drop. Figure 3, left shows the minimum free
surface radius R;, as a function of the time to the pinching
7. In all the cases, the asymptotic behavior R, « 72/3
characterizing the inertiocapillary regime is reached [8,12].
The prefactor of that scaling law, and, therefore, the surface
tension in the pinching point [8,12], decreases as the initial
surfactant concentration I’ increases. This experimental
result agrees with the theoretical predictions [5-7]. For
Rin < 30 um, the curve slope slightly increases, a sign of
the incipient viscous regime [8,12]. The so-called free
surface overturning (free surface depression right before the
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FIG. 3. (Left) Minimum free surface radius R, as a function
of the time to the pinching 7 for I'y = 0 (open circles), 6.38 (solid
circles), and 7.82 ymol/m? (triangles). (Right) Satellite droplet
vertical size d(r) after the breakup of a clean (I'y =0 and
6o =723 mN/m) and surfactant-laden (Ij = 6.15 gmol/m?>
and oy = 58.1 mN/m) pendant drop. The lines are the fits of
the function d(t) = dy + ae™"" cos(wt + ¢) to the experimental
data. These fits lead to d; = 540 and 476 ym, y = 36.7 and
62.6 57!, and @ = 5.44 and 4.76 s~! for the clean and surfactant-
laden drops, respectively. The corresponding surface tensions and
surfactant densities are 6, = 72.3 and 38.3 mN/m, and I'; =0
and 8.24 ymol/m?, respectively.
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pinch-off) disappears for I'j > 0 even for the lowest
concentration.

The comparison between the values of d(¢) for the clean
and surfactant-laden drops (Fig. 3, right) clearly shows that
a significant amount of surfactant is trapped in the satellite
droplet. The surfactant monolayer increases the damping
factor y and decreases the frequency w of the oscillations.
The surfactant density corresponding to the frequency in
the surfactant-laden case is 'y = 8.24 ymol/m?, signifi-
cantly larger than the initial value I'y = 6.15 gmol/m?,
which contradicts all the theoretical predictions
[5-7,13,14]. Therefore, there must be a physical mecha-
nism not accounted for previously and responsible for such
behavior. Here, we demonstrate that the shear and dilata-
tional viscosities associated with the surfactant monolayer
play a critical role in the process, and fundamentally change
the drop dynamics.

In what follows, all the variables are made dimensionless
with the needle radius R,, the capillary time ¢, =
(pR}/60)'? (p is the bulk density), and the capillary
pressure 6/ Ry. The velocity v(r, 7) and reduced pressure
p(r, 1) fields are calculated from the continuity and Navier-
Stokes equations V-v =0 and 9v/0t+v-Vv=-Vp+
V- T, respectively, where T = C[Vv + (Vv)7] is the vis-
cous stress tensor, and C = pu(poyR,)~"/? is the volumetric
Ohnesorge number (u is the bulk viscosity). These equa-
tions are integrated over the liquid domain of (dimension-
less) volume V considering the nonslip boundary condition
at the solid surface, the anchorage condition at the needle
edge, and the kinematic compatibility condition at the free
surface. Neglecting the dynamic effects of the surrounding
gas, the balance of normal stresses at the free surface yields
—p+Bz+n-T-n=56k, where B=pgR3/c, is the
Bond number, n the unit outward normal vector, ¢ =
0/0y is the ratio of the local value o of the surface tension to
its equilibrium value o), and « is (twice) the mean curvature
of the free surface. In addition, the balance of tangential
stresses leadsto t - T -n = t - ©°, where t is the unit vector
tangential to the free surface meridians,

T = VS5 + VS - {CS[VSVS + (VSv9)T]}

+ V(€3 - CHVE - v, 2)

v3(z, 1) is the (two-dimensional) tangential velocity to the
free surface [15], V5 the tangential intrinsic gradient along
the free surface, and C5, = uf , (poR})™"/* are the super-
ficial Ohnesorge numbers defined in terms of the surface
shear and dilatational viscosities y; and u3, respectively.
These viscosities are expected to depend on the surfactant
concentration. For the sake of simplicity, we assume the
linear relationships i, = ui%I', where u7% are surfactant
Cf,z = Cf.2f7 Cls.z =
w5 o(pogRy) /% are the superficial Ohnesorge numbers

constants. Therefore, where

for the initial configuration, and = I'/T,. To calculate
this latter quantity, one must consider the equation gov-
erning surfactant transport on the free surface OI'/dr+
VS . (I'v) = 0. In this equation, surface diffusion has been
neglected because the surface Peclet numbers are typically
in the range 10°-10° [16]. Finally, the Marangoni stress
V36 is evaluated by considering the isotherm (1). For
¢} = C5 = 0, one recovers the standard formulation where
only solutocapillarity and Marangoni convection are taken
into account [5-7,13,14].

The above theoretical model is numerically solved by
mapping the time-dependent liquid region onto a fixed
numerical domain through a coordinate transformation.
The hydrodynamic equations are spatially discretized with
the Chebyshev spectral collocation technique, and an
implicit time advancement is performed using second-order
backward finite differences [17].

The problem has been formulated in terms of the
nondimensional parameters {V,B,C, C‘S,C‘g} and those
characterizing the dimensionless form of the isotherm (1):
{6./60, Omin/ 00, g, al ' s}. In the experiments, the
dimensional properties {g, Ry, p, i ¢, Omin, &, Ler} Were
fixed, while the surfactant concentration I, and hence the
surface tension o((I'y), was varied. The values of
{V,B,C,0./60,0min/00,aly} were directly calculated
from the experimental data, while the superficial
Ohnesorge numbers C; and C5 were adjusted for the
simulation to reproduce the experimental satellite droplet
diameter d; and surfactant concentration I'; (Table I). Here,
we consider four cases: clean free surface and three
representative values of I'y selected within the interval

TABLEI Parameters characterizing the representative experimental realizations, as well as the diameter d; and variation I"; = I';/T,
in the surfactant concentration of the satellite droplet. The superscripts “exp”, “all”’, and “Mar” stand for the experimental measurements,
the numerical results with all the effects (solutocapillarity, Marangoni convection, and surface viscosities), and the numerical results
only with solutocapillarity and Marangoni convection, respectively.

1—‘0 (/HIlOl/mz) 14 B Cx 102 05/60 gmin/UO aFO éf X 102 ég X 102 dep/Ro d;“/R() ddMar/R() fZXP vaII fvg/la.r
0 6.22 0376 0.287 0.993 0.497 0 0 0 0.324 0.3276 03276 O 0 0
4.19 6.01 0385 0291 1.02 0508 3.151 0.3 1.4 0.320  0.3320 0.3168 1.04 1.030 0.1183
5.82 529 0440 0311 1.16 0581 4376 048 0.3 0.316  0.3108 0.3000 1.09 1.103 0.4035
6.15 5.02 0469 0.321 124 0.620 4.624 0.6 0.7 0.284 0.2820 0.2708 1.34 1.330 0.5712
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FIG. 4. Free surface radius R(z) calculated numerically (solid

lines) and measured experimentally (symbols) for I’y = 0 (a),

4.19 (b), 5.82 (c), and 6.15 umol/m> (d). The time to the

pinching was 7 = 77.3 us (a),(b) and 59.5 us (c),(d). The values

of the parameters characterizing each case are displayed in
Table I.

where o significantly depends on that
(Fig. 1, left).

Figure 4 shows the free surface position calculated
numerically and measured experimentally at some instants
before pinching. The remarkable agreement for the clean
case shows the high accuracy of our numerical procedure.
The experimental shapes are correctly reproduced by the
simulations for the adjusted values of the superficial
Ohnesorge numbers C5 and C5. We estimated the satellite
droplet diameter d; from the volume of the thread con-
necting the two parent drops right before the free surface
pinch-off. Table I shows the experimental and theoretical
values of d, as well as those calculated for C§ = C5 = 0,
i.e., when only solutocapillarity and Marangoni convection
are accounted for. Table I also displays the variation ['; =
I';/T, in the surfactant surface concentration of the satellite
droplet. As can be observed, the inclusion of the surface
viscosities does not considerably affect the satellite droplet
diameter (this probably explains why the relevance of
surface stresses in this phenomenon has not been previ-
ously detected). However, the role of these viscosities is
essential to explain the increase of surfactant concentration
in the satellite droplet. Essentially, surface viscosities
oppose to velocity gradients along the free surface, which
greatly hinders the outwards convection of surfactant in the
central liquid thread of the pendant drop. As a consequence,
a significant amount of surfactant is trapped in the satellite
droplet, where the concentration becomes considerably
larger than the average value. For I’y = 4.19 umol/m?,
solutocapillary effects and Marangoni stresses alone under-
estimate in 1 order of magnitude the surfactant surface
concentration of the satellite droplet.

The surface viscosities in Table I are consistent with the
literature values. Specifically, the surface shear viscosity
value 2.3 0.1 x 107® Pasm has been reported [18] for a
1-octadecanol monolayer with a concentration very similar
to the case I’y = 5.82 pmol/m? in Table I. We obtained the
value 2.6 x 107% Pasm for that case. Interestingly, surface

parameter

viscous stresses alter considerably the surfactant transport
over the free surface even when one considers surface
viscosities in the lower limit of the range of values reported
in the literature [19-23].

The present analysis shows the importance of surface
viscosities in the dynamics of surfactant-laden capillary
systems by considering the paradigmatic example of the
pendant drop breakage. According to the previous numeri-
cal studies [3-7], Marangoni elasticity does not prevent
surface convection from transporting surfactant away from
the center of the pendant drop, and the resulting satellite
droplet is cleaner than the parent droplets. Our experiments
have clearly shown the opposite effect. The numerical
simulations have explained this effect in terms of the
surface viscosities. Therefore, the formulation of a com-
pletely predictive model (without adjustable variables)
requires the knowledge of both the equation of state
o(I") and the presumably nonlinear constitutive relation-
ships u7, = p} ,(I'). The conclusions derived from this

analysis may be extrapolated to the breakup of liquid
bridges, capillary tubes, liquid lenses and jets, charged not
only with insoluble surfactants but also with soluble ones
characterized by adsorption and desorption time scales
much larger than the breakup time.
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