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Abstract: This paper deals with the design of robust predictive controllers for uncertain
constrained nonlinear systems. The considered controller is based on nominal predictions and
can be posed as a standard MPC. Robust feasibility is ensured by imposing more conservative
constraints in the optimization problem to take into account explicitly the effect of the
uncertainty. This is done by means of the calculation of a sequence of sets, which can be easily
obtained exploiting the uniform continuity of the model function. Sufficient conditions to prove
input-to-state stability of the proposed controller are presented. The proposed approach can
be considered an enhanced and updated formulation of a previous approach presented by the
authors aimed to the reduction of the conservativeness.

1. INTRODUCTION

Model predictive control is one of the few techniques
capable to control a nonlinear plant guaranteeing asymp-
totic stability to the target operating point fulfilling hard
constraints on the state and input. The control law is
implicitly derived from the solution of an optimization
problem at each sampling time and the receding horizon
technique (Mayne et al. [2000]).
In the case that the prediction model differs from the
real plant, then the effect of the uncertainty must be
considered. Under some mild assumptions, the predictive
control law ensure robust stability in the case that the
uncertainty is small enough (Grimm et al. [2007], Limon
et al. [2002b]). In other case, the uncertainty model must
be considered in the controller calculation in order to
provide robust stability and robust constraint satisfaction.
In this case particularly interesting are those approaches
that provide robustness based on the solution of a nominal
optimization problem. Input-to-state stability appears as
a suitable framework for the robust stability analysis while
constraint satisfaction can be ensured by means of approx-
imations of the reachable sets. See Limon et al. [2009] and
the references there in for a survey on this topic.

In this paper we present an enhanced formulation of the
robust NMPC controller based on restricted constraints
(Limon et al. [2002a]). In this paper, the uncertainty
is modeled as a parametric uncertain signal, not as an
additive disturbance. Assuming that the model function is
uniformly continuous, enhanced design of the robust con-
troller is achieved: in the calculation of the constraints of
the optimization problem and in the stabilizing conditions.
The obtained stabilizing design of the controller results
particularly interesting to relax the terminal conditions
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for a certain class of model functions yielding to a less
conservative control law.

Notation and basic definitions:

Let R, R≥0, Z and Z≥0 denote the real, the non-negative
real, the integer and the non-negative integer numbers,
respectively. Given two integers a, b ∈ Z≥0, Z[a,b] , {j ∈
Z≥0 : a ≤ j ≤ b}. Given two vectors x1 ∈ Ra and x2 ∈ Rb,
(x1, x2) , [x′1, x

′
2]
′ ∈ Ra+b. A norm of a vector x ∈ Ra

is denoted as |x|. Given a signal w ∈ Ra, the signal’s
sequence is denoted by w , {w(0), w(1), · · ·} where the
cardinality of the sequence is inferred from the context.
0 denotes a suitable signal’s sequence taking a null value.
If a sequence depends on a parameter, as w(x), w(j, x)
denotes its j-th element. The sequence w[τ ] denotes the
truncation of sequence w, i.e. w[τ ](j) = w(j) if j ≤ τ and
w[τ ](j) = 0 if j > τ . For a given sequence, we denote
‖w‖ , supk≥0{|w(k)|}. The set of sequences w, whose
elements w(j) belong to a set W ⊆ Ra is denoted by MW .
For a compact set A, Asup , supa∈A{|a|}.
Consider a function f(x, y) : Ra×Rb → Rc, f is said to be
uniformly continuous in x for all x ∈ A and y ∈ B if for all
ε > 0, a δ(ε) > 0 exists such that |f(x1, y)− f(x2, y)| ≤ ε
for all x1, x2 ∈ A with |x1 − x2| ≤ δ(ε) and for all y ∈ B.
For a given set A ⊂ Ra, the range of the function is
f(A, y) , {f(x, y) : x ∈ A} ⊂ Rc.
A function γ : R≥0→ R≥0 is of class K (or a “K-function”)
if it is continuous, strictly increasing and γ(0) = 0. A
function γ : R≥0→ R≥0 is of class K∞ if it is a K-function
and γ(s) → +∞ as s → +∞. A function β : R≥0 ×
Z≥0 → R≥0 is of class KL if, for each fixed t ≥ 0, β(·, k)
is of class K, for each fixed s ≥ 0, β(s, ·) is decreasing and
β(s, k) → 0 as k → +∞. Consider a couple of K-functions
σ1 and σ2, then σ1 ◦ σ2(s) , σ1(σ2(s)), besides σj

1(s)
denotes the j-th composition of σ1, i.e. σj+1

1 (s) = σ1◦σj
1(s)
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with σ1
1(s) , σ1(s). A function V : Ra → R≥0 is called

positive definite if V (0) = 0 and there exists a K-function
α such that V (x) ≥ α(|x|).

2. PROBLEM STATEMENT

In this paper it is considered that the plant to be con-
trolled is described by a discrete-time invariant nonlinear
difference equation as follows

x(k + 1) = f(x(k), u(k), w(k)), k ≥ 0 (1)
where x(k) ∈ Rn is the system state, u(k) ∈ Rm is the
current controlled variable and w(k) ∈ Rp is a signal
which models mismatches between the real plant and the
model. The origin is an equilibrium point for the plant (i.e.
f(0, 0, 0) = 0) which is the control target.

The solution of system (1) at sampling time k for the
initial state x(0), a sequence of control inputs u and
uncertainty signal w is denoted as φ(k, x(0),u,w), where
φ(0, x(0),u,w) = x(0). It is assumed that there is no
trajectory φ(k, x(0),u,w) that exhibits finite escape time
for any x(0), u and w. It is also assumed that the state of
the plant x(k) can be measured at each sample time.

It is considered that the uncertainty signal w(k) lies in a
known ball W = {w : |w| ≤ µ}. Furthermore, the control
input and state of the plant must fulfill the following hard
constraint:

(x(k), u(k)) ∈ Z (2)
where Z ⊆ Rn+m is closed and contains the origin in its
interior.

The model function is assumed to be uniformly continuous
in all its arguments in the set Z×W. Then, there are three
K-functions σx, σu and σw such that

|f(x1, u1, w1)− f(x2, u2, w2)| ≤ σx(|x1 − x2|) (3)

+σu(|u1 − u2|)
+σw(|w1 − w2|)

for all (x1, u1, w1) and (x2, u2, w2) in Z ×W.

The nominal model of the plant (1) denotes the system
considering zero-disturbance and it is given by

x̃(k + 1) = f̃(x̃(k), u(k)), k ≥ 0 (4)

where f̃(x, u) , f(x, u, 0). The solution to this equation
for a given initial state x(0) is denoted as φ̃(k, x(0),u) ,
φ(k, x(0),u,0).

The aim of the paper is to design a model predictive
controller based on nominal predictions such that the
controlled plant is robustly stable while satisfying the
constraints throughout the evolution. In the following
sections, the stability notion used in this paper is briefly
introduced: the regional input-to-state stability.

2.1 Regional input-to-state stability (ISS)

The existence of constraints limits the domain where the
system can be stabilized. Then, a regional definition of the
stability notions must be considered. In this paper, robust

stability is studied resorting in the notion of input-to-
state stability (Sontag and Wang [1996], Jiang and Wang
[2001]). ISS has demonstrated to be a useful framework
to analyze robust stability of predictive controllers (see
Limon et al. [2009] and the references there in).

Consider that the system (1) is controlled by the law
u = κ(x) leading the following closed-loop system

x+ = fκ(x, w) , f(x, κ(x), w) (5)

x ∈ Xκ , {x ∈ Rn : (x, κ(x)) ∈ Z} (6)

Now, some definitions and well-known results on regional
ISS are summarized.
Definition 1. (Robust positively invariant (RPI) set). A set
Γ ⊆ Rn is a robust positively invariant (RPI) set for
system (5) if fκ(x,w) ∈ Γ, for all x ∈ Γ and all w ∈ W.
Furthermore, if Γ ⊆ Xκ, then Γ is called admissible RPI
set. �

Notice that the fact that the RPI set Γ is admissible
ensures the robust satisfaction of the constraints since for
any initial x0 ∈ Γ, Φ(k, x0,w) ∈ Γ ⊆ Xκ for all k ∈ Z≥0

and w ∈MW .
Definition 2. (Regional ISS in Γ). Let Γ ⊆ Rn be an
admissible RPI for system (5) including the origin as an
interior point. The system (5) is input-to-state stable (ISS)
in Γ if there exist a KL-function β and a K-function σ such
that

|φκ(j, x(0),w)| ≤ β(|x(0)|, j) + σ(||w[j−1]||) (7)
for all x(0) ∈ Γ, w ∈MW and j ∈ Z≥0.

ISS can be determined by means of a Lyapunov-like
condition (Jiang and Wang [2001], Magni et al. [2006]),
as follows.
Definition 3. (ISS-Lyapunov function in Γ) Let Γ be a
RPI set containing the origin in its interior. A function V :
Rn → R≥0 is called an ISS-Lyapunov function in Γ for
system (5) if there exist a compact set Ω ⊆ Γ (including the
origin as an interior point), suitable K∞-functions α1, α2,
α3 and K-function λ such that:

V (x)≥ α1(|x|), ∀x ∈ Γ (8)

V (x)≤ α2(|x|), ∀x ∈ Ω (9)
and for all x ∈ Γ and w ∈ W, the following condition holds

V (fκ(x,w))− V (x) ≤ −α3(|x|) + λ(|w|) (10)
�

Based on this Lyapunov-like functions, the following sta-
bility theorem can be derived (Jiang and Wang [2001],
Magni et al. [2006]):
Theorem 1. If system (5) admits an ISS-Lyapunov func-
tion in Γ then it is ISS in Γ.

3. PROPOSED ROBUST MPC

3.1 Semi-feedback approach

The most simple robust MPC formulations derive the
control law from the solution of an optimization problem
based on open-loop predictions of the uncertain system
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evolution. This open-loop scheme results to be very conser-
vative from both a performance and domain of attraction
points of view (see [Mayne et al., 2000, Section 4]). In order
to reduce this conservativeness, a closed-loop (or feedback)
formulation of the MPC has been proposed (Scokaert and
Mayne [1998]). In this case, control policies instead of
control actions are taken as decision variables, yielding
to an infinite dimensional optimization problem that is in
general very difficult to solve and for which there exists few
efficient algorithm in the literature in the case of linear sys-
tems (Muñoz de la Peña et al. [2006], Goulart et al. [2006]).
A practical formulation between these two approaches is
the so-called semi-feedback formulation, where a family of
parameterized control laws is used (Chisci et al. [2001],
Fontes and Magni [2003]). Thus the decision variables
are the sequence of the parameters of the control laws,
and hence the optimization problem is a finite-dimensional
mathematical programming problem.

Consider that the control actions are derived from a given
family of controllers parameterized by v ∈ Rs,

u(k) = π(x(k), v(k))
which is assumed to be uniformly continuous in its domain.
The family of control laws is typically chosen as an affine
function of the state (Chisci et al. [2001]). Thus, system
(1) is transformed in

x(k + 1) = fπ(x(k), v(k), w(k)), k ≥ 0 (11)

where fπ(x, v, w) , f(x, π(x, v), w). Notice that v plays
the role of the input of the modified system. The solution
of this equation is denoted as φπ(k, x,v,w). The nominal
model of system (11) is denoted as f̃π(x, v) , fπ(x, v, 0)
and its solution as φ̃π(k, x,v) , φπ(k, x,v,0). Analo-
gously, the constraints can be rewritten as

(x(k), v(k)) ∈ Zπ (12)
where Zπ is such that (x, π(x, v)) ∈ Z for all (x, v) ∈ Zπ.

3.2 Nominal model predictive control

The proposed predictive controller is based on the nominal
prediction of the trajectories and follows the standard
formulation of the MPC (Mayne et al. [2000]). The control
law is derived from the solution of the following math-
ematical programming problem PN (x) parameterized in
the current state x.

min
v

N−1∑
j=0

Lπ(x̃(j), v(j)) + Vf (x̃(N)) (13)

s.t. x̃(j) = φ̃π(j, x,v), j ∈ Z[0,N ] (14)

(x̃(j), v(j)) ∈ Zπ(j), j ∈ Z[0,N−1] (15)

x̃(N) ∈ Xf (16)

where Lπ(x, v) , L(x, π(x, v)) and L : Rn × Rm → R≥0

is the stage cost function, Vf : Rn → R≥0 is the terminal
cost function. The sequence of constraint sets {Zπ(j)} will
be defined later on and Xf ⊆ Rn is the terminal region.
It is assumed that PN (x) is feasible in a non-empty region
denoted XN . For each x ∈ XN , the argument of PN (x) is
denoted v∗(x) and the optimal cost is V ∗

N (x). The MPC
control law derives from the application of the solution

in a receding horizon manner κN (x) = v∗(0;x) and it is
defined for all x ∈ XN .

3.3 Robust design of the proposed controller

The proposed controller is based on the availability of two
sequence of sets {R(j)} and {F(j)} that are assumed to be
calculated off-line (see next section). The sequence {F(j)}
is related with the free response of the nominal system and
must satisfy the following hypothesis:
Assumption 1. The sequence of sets {F(j)} is such that:
For every (x,v), φ̃π(k, x̂,v) ∈ φ̃π(k, x,v) ⊕ F(k) for all x̂
such that |x̂− x| ≤ σw(µ).

On the other hand, the sequence {Rj} is related to the
reachable sets, that is, the sequence of possible trajectories
due to the effect of the disturbances. This sequence must
satisfy the following conditions
Assumption 2. The sequence of sets {R(j)} is such that:

(1) For every (x,v), φπ(k, x,v,w) ∈ φ̃π(k, x,v) ⊕ R(k)
for all w ∈MW

(2) F(j)⊕R(j) ⊆ R(j + 1)

The first condition states that each set of the sequence is
an outer bound of the effect of the uncertainty throughout
the trajectory, while the second condition ensures that
the sequence is monotone. This fact will be more clearly
demonstrated in the proof of lemma 2. Practical methods
to calculate the proposed sequences are presented in the
following section.

Since sequence of sets {R(j)} provides an estimation of
the effect of the disturbance with respect to the nominal
predictions, this can be used to counteract the effect of the
disturbances in the constraint satisfaction. This is done by
using a sequence of tighter constraint sets {Zπ(j)} defined
as follows:
Definition 4. Let the sequence {Zπ(j)} be defined as fol-
lows

Zπ(j) = Z 	 (R(j)× {0})

On the other hand, the terminal constraint set Xf must
satisfy the following assumption
Assumption 3. The input vf ∈ Rs and the sets Ω and Xf

are such that

(i) Ω and Xf are invariant sets for the system x̃+ =
f̃π(x̃, vf )

(ii) Ω× {vf} ⊆ Zπ(N − 1)
(iii) Xf ⊕F(N − 1) ⊆ Ω
(iv) f̃π(x̃, vf ) ∈ Xf , for all x̃ ∈ Ω.

Notice that this assumption requires that Ω is an invariant
set for the nominal system and Xf a set where the system
evolves in one step. The main restriction is that Ω must
be a contractive invariant set such that f̃π(Ω, vf )⊕F(N−
1) ⊆ Ω. This implicitly states that Ω is a robust positively
invariant set for the system x+ = fπ(x, vf ) + ω where
ω ∈ F(N − 1). In the case that the control law π makes
the system asymptotically stable in (x, v) ∈ Zπ , which is
usual for simple systems such that linear systems (Chisci
et al. [2001]) or feedback linearizable system (Raković
et al. [2006]), set F(N − 1) can be arbitrarily small for
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large enough prediction horizon. This relaxes the standard
assumption on the terminal constraint, that must be a
robust positively invariant set for the whole uncertainty
set.

This proposed method to design the constraints of the
optimization problem PN has been chosen in order to
ensure the robust feasibility of the controller, as it is
demonstrated in the following lemma.
Lemma 2. Consider the system (11) and the sequence of
sets {Zπ(j)} based on the sequences of sets {R(j)} and
{F(j)} which satisfy assumptions 1 and 2. Let the triplet
(vf ,Ω,Xf ) fulfill assumption 3. Consider now a feasible
state x ∈ XN and v∗ the argument of PN (x). Let x+ be
the uncertain successor state and define the sequence of
inputs v+ , {v∗(1), · · · , v∗(N−1), vf}. Then the following
properties hold.

(1) (φ̃π(j, x+,v+), v+(j)) ∈ Zπ(j)
(2) φ̃π(N,x+,v+) ∈ Xf

The proof can be found in the appendix.

3.4 Calculation of the sequence of sets

The sequence of sets {F(j)} and {R(j)} provides outer
bounds on the effect of the uncertainty throughout the
prediction, then these can be calculated by methods that
provides guaranteed prediction of the uncertain system
(Bravo et al. [2006], Raković et al. [2006], Limon et al.
[2009]). Among these, it is worth to cite those based
on polytopic algorithms, interval arithmetics, zonotopic
methos or DC-programming based techniques.

In this paper we provide a simpler, although probably
more conservative method, based on the uniform conti-
nuity of the model function.
Lemma 3. Let a system be given by model (1) and let
define the following sets:

F(j) , {x ∈ Rn : |x| ≤ σj
x ◦ σw(µ)} (17)

R(j) , {x ∈ Rn : |x| ≤ cj(µ)} (18)
where cj(µ) is given by the following recursion

cj(µ) = max{ σw(µ) + σx ◦ cj−1(µ),
cj−1(µ) + σj−1

x ◦ σw(µ)} (19)

with c1(µ) = σx(µ).

Then the sequence of sets {F(j)} and {R(j)} satisfy the
assumptions 1 and 2.

This lemma is proved in the appendix.

As it can be seen, these sets can be easily calculated off-
line once provided the bounding functions. In the case that
Lipschitz continuity is exploited to derive the bounding
functions, the resulting sets are equal to those presented in
Limon et al. [2002a]. Notice that if the uniform continuity
is exploited, tighter (non-linear) bounding functions can be
used, and hence less conservative results will be obtained.

4. INPUT-TO-STATE STABILITY OF THE
CONTROLLED SYSTEM

In the previous sections, conditions on the constraints of
the optimization problem PN (x) that suffices to ensure ro-

bust feasibility are provided. However these conditions are
not sufficient to derive robust stability of the closed-loop
system. To this aim, the following additional assumptions
are required.
Assumption 4.

(1) Let the stage cost function Lπ(x, v) be a definite
positive function in (x, v) uniformly continuous in Zπ

such that

Lπ(x, v)≥ αL(|x|)
|Lπ(x1, v1)− Lπ(x2, v2)| ≤ λx(|x1 − x2|) + λv(|v1 − v2|)
where αL, λx and λv are K-functions.

(2) Let the terminal cost function Vf (x) be a definite
positive function uniformly continuous in Ω (see as-
sumption 3) such that

αV (|x|) ≤ Vf (x)≤ βV (|x|)
Vf (f̃π(x, vf ))− Vf (x)≤−Lπ(x, vf )

|Vf (x1)− Vf (x2)| ≤ δ(|x1 − x2|)

These assumptions are standard for the stabilizing design
of nominal MPC (Mayne et al. [2000]). The only additional
requirement is the uniform continuity of the functions.
Based on this, stability is stated in the following theorem.
Theorem 4. Consider that assumptions 1 ,2, 3 and 4, hold.
Then the system (1) controlled by κMPC(x) = π(x, κN (x))
is ISS in XN and satisfies the constraints throughout the
evolution.

The proof can be found in the appendix.

5. CONCLUSIONS

This paper has demonstrated that outer estimation of the
reachable sets can be used to derive robust stabilizing
predictive controller based on nominal predictions. This
class of controllers are appealing from a practical point
of view since can be constructed from standard nominal
MPC. On the other hand, the open-loop nature of the
problem may yield to the results to be useful only for
small uncertainties. In order to reduce this effect, semi-
feedback approach is proposed. This is a simple and
practical method, but requires an analysis of the system
to be controlled in order to find a nice family of control
laws.

Based on the uniform continuity of the model function and
the defining functions of the MPC, sufficient conditions
for input-to-state stability has been proposed. Moreover,
uniform continuity can also be exploited to calculate the
sequence of sets necessary for the design of the proposed
controller.

As future work on this topic, the authors will study how to
use these ideas in the context of tube-based robust MPC.

Appendix A. PROOF OF LEMMA 2

First statement: Since φ̃π(j, x+,v+)− φ̃π(j +1, x,v∗) ∈
F(j) we have that
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φ̃π(j, x+,v+)∈ φπ(j + 1, x,v∗)⊕F(j)

∈ φπ(j + 1, x,v∗)⊕R(j + 1)	R(j)
Since (φπ(j+1, x,v∗), v∗(j+1)) ∈ Zπ(j+1), we have that

(φπ(j + 1, x,v∗), v∗(j + 1)) ∈
(
Zπ(j + 1)
⊕(R(j + 1)× {0})
	(R(j)× {0})

) (A.1)

By definition,
Zπ(j + 1)⊕ (R(j + 1)× {0}) ⊆ Zπ

and v∗(j + 1) = v+(j) which implies that

(φ̃π(j, x+,v+), v+(j))∈Zπ 	 (R(j)× {0})
∈Zπ(j).

Second statement:Feasibility of the solution v∗ implies
that φ̃π(N,x,v∗) ∈ Xf . On the other hand, from the
definition of set F(N − 1) we have that

φ̃π(N − 1, x+,v+) ∈ φ̃π(N,x,v∗)⊕F(N − 1)
Then

φ̃π(N − 1, x+,v+) ∈ Xf ⊕F(N − 1)
Since Xf⊕F(N−1) ⊆ Ω, from assumption 3 we infer that
the terminal state φ̃π(N −1, x+,v+) must be contained in
the terminal region Xf .

Appendix B. PROOF OF LEMMA 3

First, it is proved that equation 17 satisfies assumption 1.
This is proved by induction. For j = 1 we have that

|φ̃π(1, x̂,v)− φ̃π(1, x,v)|= |f̃π(x̂, v)− f̃π(x, v)|
≤ σx(|x̂− x|)
≤ σx ◦ σw(µ)

Assume that
|φ̃π(j, x̂,v)− φ̃π(j, x,v)| ≤ σj

x ◦ σw(µ)
then

|φ̃π(j + 1, x̂,v)− φ̃π(j + 1, x,v)|
≤ σx(|φ̃π(j, x̂,v)− φ̃π(j, x,v)|)
≤ σj+1

x ◦ σw(µ)

Now it is proved that the set defined in equation (18)
satisfies assumption 2. For j = 1, we have that

|φπ(1, x,v,w)− φ̃π(1, x,v)| ≤ σw(µ) = c1(µ)
Assume that

|φπ(j, x,v,w)− φ̃π(j, x,v)| ≤ cj(µ)
then

|φπ(j + 1, x,v,w)− φ̃π(j + 1, x,v)|
≤ |φπ(j + 1, x,v,w)− f̃π(φπ(j, x,v,w), v(j + 1))|

+|f̃π(φπ(j, x,v,w), v(j + 1))− φ̃π(j + 1, x,v)|
≤ σw(µ) + σx(|φπ(j, x,v,w)− φ̃π(j, x,v)|)
≤ σw(µ) + σx(cj(µ)) ≤ cj+1(µ)

Condition F(j)⊕R(j) ⊆ R(j + 1) is fulfilled iff
cj(µ) + σj

x ◦ σw(µ) ≤ cj+1(µ)
Notice that this is directly inferred from equation (19).

Appendix C. PROOF OF THEOREM 4

Robust feasibility of the problem has been stated in lemma
2, which implies the robust constraint satisfaction. Then,
it suffices to prove the input-to-state stability. This is
achieved by demonstrating that the optimal cost function
V ∗

N (x) is a ISS-Lyapunov function.

Consider that x ∈ XN and the optimal solution of PN (x)
is v∗. Let define x∗(j) = φ̃π(j, x,v∗). Let x+ the suc-
cessor state and let v+ the feasible solution proposed in
lemma 2. Let define x+(j) = φ̃π(j, x+,v+). Then the cost
VN (x+,v+) is given by

VN (x+,v+) =
N−1∑
j=1

Lπ(x+(j), v+(j)) + Vf (x+(N))

From the uniform continuity of the model we have that
|x+(j) − x∗(j + 1)| ≤ σj

x ◦ σw(|w|) (this is immediate
from the proof of lemma 2). Then considering the uniform
continuity of Lπ and Vf , we have that ∆V = VN (x+,v+)−
V ∗

N (x) + Lπ(x, κN (x)) is such that

∆V =
N−1∑
j=1

(Lπ(x+(j), v+(j))− Lπ(x∗(j + 1), v∗(j + 1))

+Lπ(x+(N − 1), vf ) + Vf (x+(N))− Vf (x∗(N))
Since

Lπ(x+(j), v+(j))− Lπ(x∗(j + 1), v∗(j + 1))

≤ |Lπ(x+(j), v+(j))− Lπ(x∗(j + 1), v∗(j + 1))|
≤ λx ◦ σj

x ◦ σw(|w|)
and

Vf (x+(N − 1))− Vf (x∗(N))

≤ |Vf (x+(N − 1))− Vf (x∗(N))|
≤ δ(|x+(N − 1)− x∗(N)|)
≤ δ ◦ σN−1

x ◦ σw(|w|)

we have that

∆V ≤
N−1∑
j=1

λx ◦ σj
x ◦ σw(|w|) + δ ◦ σN−1

x ◦ σw(|w|)

+Lπ(x+(N − 1), vf ) + Vf (x+(N))− Vf (x+(N − 1))
From assumption 4 we have that

Lπ(x+(N − 1), vf ) + Vf (x+(N))− Vf (x+(N − 1)) ≤ 0
and hence, there exists a K function θ such that ∆V ≤
θ(|w|). In virtue of the optimality, we have that

V ∗
N (x+)− V ∗

N (x) ≤ −Lπ(x, κN (x)) + θ(|w|)
On the other hand, for all x ∈ XN ,

V ∗
N (x) ≥ Lπ(x, κN (x)) ≥ αL(|x|)

Besides, from the optimality of the solution we have that
for all x ∈ Xf ,

V ∗
N (x) ≤ Vf (x) ≤ βV (|x|)
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Then V ∗
N (x) is a ISS-Lyapunov function in XN , and from

theorem 1 we derive that the closed-loop system is ISS in
XN .
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