
A bounded-search iterated greedy algorithm for the

distributed permutation �owshop scheduling problem∗

Victor Fernandez-Viagas1†, Jose M. Framinan1

1 Industrial Management, School of Engineering, University of Seville,

Ave. Descubrimientos s/n, E41092 Seville, Spain, {vfernandezviagas,framinan}@us.es

May 21, 2015

Abstract

As the interest of practitioners and researchers in scheduling in a multi-factory
environment is growing, there is an increasing need to provide e�cient algorithms
for this type of decision problems, characterised by simultaneously addressing the
assignment of jobs to di�erent factories/workshops and their subsequent scheduling.
Here we address the so-called distributed permutation �owshop scheduling problem,
in which a set of jobs has to be scheduled over a number of identical factories,
each one with its machines arranged as a �owshop. Several heuristics have been
designed for this problem, although there is no direct comparison among them. In
this paper, we propose a new heuristic which exploits the speci�c structure of the
problem. The computational experience carried out on a well-known testbed shows
that the proposed heuristic outperforms existing state-of-the-art heuristics, being
able to obtain better upper bounds for more than one quarter of the problems in the
testbed.

Keywords: distributed permutation �owshop, scheduling, heuristics, iterated greedy

algorithm.

∗Preprint submitted to International Journal of Production Research,
http://dx.doi.org/10.1080/00207543.2014.948578.

†Corresponding author. Tel.: +34-954487220.

1

1 Introduction

Although the majority of scheduling problems in the literature assumes that the jobs have to

be scheduled in a single factory, the number of companies using this environment is decreasing

(Moon et al., 2002; Naderi and Ruiz, 2010; Wang et al., 2013). Instead, a multi-factory environ-

ment is becoming more and more important, since it reduces production costs and risks while

increases the product quality (see e.g. Kahn et al., 2004). As a consequence, distributed produc-

tion scheduling problems dealing with both the allocation of jobs to di�erent factories and their

subsequent scheduling has been receiving an increasing attention in the literature (e.g. Jia et al.,

2003, 2007; Chan et al., 2005; Chan and Chan, 2010; Chung et al., 2009). Among this type of

decision problems, Naderi and Ruiz (2010) recently presented the so-called distributed permuta-

tion �owshop scheduling problem, or DPFSP in the following. In this problem, a set of n jobs has

to be processed in one of F identical factories, each one consisting of m machines that all jobs

must visit in the same order. The decisions involved in this problem are to simultaneously decide

in which factory the jobs have to be processed and which is the sequence of the jobs for each fac-

tory. If the objective sought for this problem is the minimisation of the global makespan (i.e. the

maximum makespan across the F factories), then the problem can be denoted as DF |prmu|Cmax

(see Naderi and Ruiz, 2010) following the well-known notation of Graham et al. (1979).

The problem under consideration can be seen as a generalization of the well-known Permu-

tation Flowshop Scheduling Problem (PFSP) since, once a set of jobs has been assigned to a

factory, the remaining decision problem is a PFSP. Since the latter problem is known to be

NP-hard for more than two machines (Garey et al., 1976), DF |prmu|Cmax is also NP-hard for

m > 2. Therefore, researchers have focused on �nding methods able to �nd good �but not nec-

essarily optimal� solutions within a reasonable computational e�ort. Among them, the works by

Naderi and Ruiz (2010); Gao and Chen (2011); Gao et al. (2013); Wang et al. (2013); Lin et al.

(2013) have provided increasingly better heuristics for the problem.

In this paper, a new e�cient approximate algorithm is proposed for the DPFSP. This al-

gorithm is based on one of the most e�cient methods for the PFSP (i.e. the iterated greedy

algorithm) and exploits the speci�c structure of solutions of the problem, thus allowing an up-to

2

30% reduction of the search space. Furthermore, two new e�cient local search methods are em-

bedded in our proposal to improve the so-found solutions. The results prove that the proposed

algorithm is very e�ective, being the best one for each size of the problems in the testbed of

Naderi and Ruiz (2010). Indeed, new upper bounds are found for 27.6% of the instances in this

testbed.

The remainder of the paper is organized as follows: in Section 2 the problem under consider-

ation is described along with its state-of-the-art; in Section 3 the proposed algorithm is detailed;

in Section 4 the algorithm is compared with the rest of existing heuristics in the literature; and,

�nally, in Section 5 the main conclusions are presented.

2 Problem statement and state-of-the-art

The problem under consideration can be stated as follows: n jobs have to be scheduled in one of

the F �owshop-factories consisting of m machines. Each factory is identical with the same set

of m machines and is able to process all jobs. Once a job is assigned to a factory, it has to be

processed there without being transferred to another factory. On each machine i, each job j has

a processing time denoted as pij regardless the factory f where the job is processed. The problem

determines the sequence πf , formed by nf jobs, to be scheduled in each factory f . Therefore, a

solution π is formed by the sequence in each factory (π =
[
π1, . . . , πf , . . . , πF

]
). Let us Cf

i,j be

the completion time of job j in machine i when assigned to factory f , and Cf
max = Cmax(π

f) the

makespan of factory f . Then Cmax = Cmax(π) denotes the global makespan. i.e. the completion

time of the last job to be processed in any factory. Additionally, πf [i] is employed to denote the

element of factory f in position i. By using fmax to denote the factory with maximum makespan,

the global makespan can be also written as Cfmax
max .

On one hand, the DPFSP can be seen as a special case of the distributed assembly permutation

�owshop scheduling problem (DAPFSP), see Hatami et al. (2013). When each factory is formed

by exactly two machines, the problem has been also studied in the literature under the name of

Parallel Flowline (Vairaktarakis and Elhafsi, 2000) or Parallel Flowshops (Cao and Chen, 2003).

In this special case, the problem turns to be a pure assignment problem, since Johnson's rule

3

(Johnson, 1954) can be applied to �nd the optimal sequence for each shop (examples of heuristics

can be found in Zhang and Van De Velde, 2012; Al-Salem, 2004). On the other hand, it has been

already mentioned that it is a generalization of the PFSP, which is one of the main combinatorial

optimization problems (Zhang et al., 2009) and in consequence one of the most studied scheduling

problems (Pan et al., 2008a). As mentioned before, the PFSP was proved to be NP-complete for

more than three machines. In order to provide e�cient approximate methods for this problem,

numerous contributions have been presented in the literature (see e.g. Framinan et al., 2004;

Reza Hejazi and Sagha�an, 2005; Ruiz and Maroto, 2005 for recent reviews). Among them, the

NEH heuristic (Nawaz et al., 1983) stands out as one of the most e�cient heuristics for the

problem. Basically, the NEH algorithm consists of two phases:

1. Jobs are sorted according to descending sums of processing times.

2. The �rst job resulting from the previous phase is placed in a partial sequence. Then, each

remaining job j (from j = 2 · · ·n) in the sorted list is inserted in all possible positions of

the partial sequence, thus building j partial sequences. The partial sequence with the best

(lowest) makespan is chosen as reference for the following iteration. The procedure �nishes

when the n jobs are sequenced.

The complexity of the NEH is de�ned by its second phase, which has a complexity of

O(n3 · m) due to the fact that, in each iteration k (with k ∈ [1 · · ·n]) the evaluation of the

k partial sequences can be completed in O(n2 · m). The complexity was reduced to O(n2 · m)

by Taillard (1990) by proposing a mechanism (named Taillard's acceleration in the following) to

perform the evaluations of the k partial sequences in O(n ·m). Additionally, di�erent approaches

have been introduced in the literature to treat the tie-breaking of the NEH algorithm outper-

forming the original tie-breaking mechanism (see e.g. Fernandez-Viagas and Framinan, 2014

and Kalczynski and Kamburowski, 2008). Regarding the initial order of the NEH algorithm,

Framinan et al. (2003) studied di�erent initial orders showing that the original order (decreasing

sum of processing times) remained the best one.

The �rst heuristics to solve the DPFSP were proposed by Naderi and Ruiz (2010). They

suggested four constructive heuristics, denoted NEH1, NEH2, VND(a) and VND(b), following

4

the ideas taken from the PFSP and employing Taillard's acceleration. More speci�cally, NEH1

and NEH2 are adaptations to the problem of the original NEH by means of using two assignment

rules to choose the factory where a job has to be introduced were tried, i.e.:

1. To allocate the job to the factory with the lowest current makespan (included in the NEH1

heuristic).

2. To allocate the job to the factory that can process it at the earliest time (used in NEH2

algorithm).

On the other hand, VND(a) and VND(b) are composed of a �rst step in which the NEH2 heuristic

is performed, and then its solution is improved by means of a simple variable neighborhood descent

consisting of two di�erent neighborhoods and two di�erent acceptance criteria, one for VND(a)

and another for VND(b).

Using NEH2 and VND(a) as initial solutions, Gao and Chen (2011) were the �rst authors who

proposed an iterated optimization algorithm for the problem. More speci�cally, they presented

a genetic algorithm with a local search phase including mechanisms of exchange and insertion

of jobs. Their proposal was later outperformed by the tabu search algorithm (TS) by Gao et al.

(2013), in which partial sequences of two di�erent factories were iteratively exchanged and im-

proved by means of several enhanced local search based also on methods of exchange and insertion

of jobs. Next, Wang et al. (2013) implemented an Estimation of Distribution Algorithm (EDA),

although their proposal was not compared with the tabu search algorithm from Gao et al. (2013),

arguing that no results were listed for direct comparisons. Finally, Lin et al. (2013) proposed for

the problem a variation of the iterated greedy, denoted MIG, in which the size of the destruction

was randomly chosen between two bounds and the temperature of a simulated annealing-like

acceptance criterion decreased with the iterations. However, they do not include any local search

phase in their algorithm to improve the solution. Their algorithm was compared with algorithms

implemented in Gao and Chen (2011); Gao et al. (2013) concluding that the MIG is the most

e�cient. However, the CPU times for each instance of the testbed were di�erent for each heuristic

under comparison so there is up-to-now no comparison of the state-of-the-art algorithms under

the same exact conditions.

5

To summarise the state-of-the-art in the DPFSP problem, there are two types of algorithms

available:

1. Very fast heuristics, i.e. NEH1, NEH2, VND(a) and VND(b). They are simple or composite

heuristics (see notation of Framinan et al., 2005) where the computational time is non

controllable by the decision-maker and the solutions can be quickly found even for large

size of the problem.

2. Iterative improvement algorithms, i.e. TS, EDA, and MIG. The improvement phase of

these algorithms is performed iteratively improving the solutions �usually based on any

of the aforementioned very fast heuristics� at the expense of substantially increasing the

computation times. To the best of our knowledge, there are no direct comparison among

these algorithms under the same conditions in the literature.

In this paper, we focus in the second type of algorithms. Thereby, we �rst implement these

algorithms (MIG, TS and EDA) using the same computer and programming language and re-

porting the results in Section 4. By doing so, a direct comparison among these algorithms is

provided. Additionally, in Section 3, we propose a new heuristic for the DPFSP that uses the

speci�c structure of solutions of the problem to reduce the search space and that improves the

results obtained by existing algorithms, as we show in a subsequent computational experience in

Section 4.

3 The proposed bounded-search iterated greedy algo-

rithm (BSIG)

In this paper we propose an algorithm labeled Bounded-Search Iterated Greedy (BSIG) which can

be seen as a special case of the Iterated Greedy (IG) algorithm (Ruiz and Stützle, 2007). The IG

starts with an initial solution and then iteratively applies four steps. First, a number of jobs are

taken out of the sequence. Then these jobs are again inserted in the sequence, one by one, follow-

ing a greedy procedure until no more job has to be inserted. After that, a local search mechanism

6

is performed in order to improve the solution. Finally, a simulated annealing procedure decides

if the actual sequence is kept as iteration sequence. IG is one of the best algorithms for the

PFSP (see e.g. Pan et al., 2008a) and it has been successfully applied to a variety of scheduling

problem, such as the sequence dependent setup times problem (Ruiz and Stützle, 2008), �ow-

shop scheduling problem with blocking (Ribas et al., 2011), unrelated parallel machine scheduling

(Fanjul-Peyro and Ruiz, 2010), or the no-wait �owshop scheduling problem (Pan et al., 2008b).

BSIG also iteratively constructs and destructs a solution trying to improve it in each iteration

by means of three local search phases. In order to reduce the search space, two properties are

derived in Subsection 3.1. In Subsection 3.2, the main procedure of BSIG is described. Its

construction phase is detailed in Subsection 3.3, while in Subsections 3.4 and 3.5, two new local

search phases are described. Finally, in Section 3.6 a full factorial design of experiment is carried

out in order to obtain the best values of the parameters of the algorithm.

3.1 Problem Properties

It is clear that, when a job is assigned to a speci�c factory in the DPFSP, the makespan of this

factory is increased by a certain value. The following properties serve us to de�ne lower and

upper bounds for this makespan:

Property 3.1 (Lower bound on makespan): The makespan of a factory with m machines

must increase at least mini (pi,l) ∀pi,l > 0 with i ∈ [1, · · · ,m] when a new job l is assigned to this

factory, regardless its speci�c position in the schedule of this factory.

Proof. The proof of this property is obvious: Before assigning job l in position k of the sequence,

there was a set H of machines (with |H| ≥ 1 being at least one in the �rst machine) where there

was no idle time between positions k-1 and k (worst case). Hence, the new completion times of

the jobs placed after position k are increased at least the processing time ph,l in each machine

h ∈ H and at leastminh∈H (ph,l) in the rest of machines, withminh∈H (ph,l) ≥ mini∈[1,··· ,m] (pi,l).

This fact proves that the makespan of the factory after introducing the job increases at least the

minimum processing time of the job l. �

7

Property 3.2 (Upper bound of makespan): The makespan of a factory with n− 1 jobs and

with m machines must increase at most
∑m

i=1 pi,l with i ∈ [1, · · · ,m] when a new job l is assigned

to this factory, regardless its speci�c position in the schedule of the factory.

Proof. The proof of the property is obvious using the same reasoning as in Property 3.1. �

Both properties can be useful for the DPFSP and have been taken into account in the design

of BSIG. Since BSIG includes iterations where a job has to be assigned to one of the f factories,

there are f possible options. The idea is to discard the options where its lower bound (according

to Property 3.1) is higher than the current best value of the objective function. The e�ect in the

reduction of the search space of Property 3.1 will be explained in detail in Section 4.1. However,

Property 3.2 was not found to be signi�cant for the algorithm and it has not been incorporated

in the BSIG. Note that more sophisticated (and tighter) lower bounds for the makespan of each

factory have been tested, however they have not resulted in a signi�cant improvement of the

objective function due to the increase in the CPU time when the lower bound is calculated.

In contrast, the simple lower bound of Property 3.1 can be calculated without increasing the

complexity of the algorithm, since the minimum processing time of each job is obtained at the

beginning of the algorithm.

3.2 Main Procedure

The main procedure of the proposed algorithm is summarised in Figure 1. It starts with the

implementation of the fast constructive heuristic NEH2 of Naderi and Ruiz (2010). Once an initial

solution is so-obtained, it is improved by using three di�erent local search methods (LS1, RLS1

and RLS2) before entering in the iterated procedure. The local search method LS1 was presented

in Naderi and Ruiz (2010) and is a simple iterative improvement algorithm for each factory

using a �rst-improvement type pivoting rule. This local search method has been successfully

applied in numerous algorithms for PFSP to minimize makespan and total �owtime (see e.g.

Ruiz and Stützle, 2007; Li et al., 2009). In Figure 2 the pseudo code of this method is shown.

When the solution cannot be further improved, the algorithm begins an iterative procedure

composed of the following four phases, which are repeated until the stopping criteria is reached:

8

• Destruction phase: This phase tries to perturb the solution and �together with the simu-

lated annealing phase� its objective is to provide diversi�cation of solutions. In this phase,

d jobs are randomly chosen to be removed of the sequence without repetition forming a

new sequence denoted π1.

• Construction phase: Each one of the aforementioned d jobs is inserted, one by one, in the

sequence following a greedy procedure (ConstructionFunction, see subsection 3.3) using

Taillard's acceleration and Property 3.1 , i.e. when a job is to be inserted, there are f

factories where the job can be assigned. Property 3.1 is used to discard factories in which

the insertion of the job does not improve the current makespan.

• Improvement phase: It serves to implement the intensi�cation of the algorithm. The se-

quence constructed in the last phase is improved using three di�erent local search methods:

LS1, RLS1 and RLS2. The complexity of these local search methods are n2 ·m/F , n2 ·m/F

and n3 · m/F 2 respectively being the RLS2 the procedure with highest complexity. This

fact may cause a non-e�cient behaviour of the heuristic when n is very high in comparison

with F since it could lead to a low diversi�cation. Therefore, RLS2 is used only when n/F

is lower or equal than a parameter L. By doing so, we get a total complexity of n2 ·m/F

for the local search phase of the algorithm.

• Simulated annealing phase: A simple simulated annealing criterion is introduced in the

algorithm with a constant Temperature which is a function of a parameter T of the algo-

rithm:

Temperature = T ·
∑

∀i
∑

∀j pi,j

n ·m · 10

3.3 ConstructionFunction

As Taillard's acceleration allows performing the insertion phase with low complexity, πd (the de-

structed jobs) are inserted in the sequence using a similar procedure as in NEH2 (see ConstructionFunction

in Figure 3). The d destructed jobs are introduced, one by one, in the position of sequence π1

which minimises the makespan. If we denote by Cref
max the reference makespan or best-known

9

π := NEH2(decreasing sum of processing times) ;
for f = 1 to F do

πf := LS1(πf) ;
end

flag := true;
while flag do

π := RLS1(π) ;
if solution improved then

flag := false;
end

end

if n/F ≤ L then

flag := true;
while flag do

π := RLS2(π) ;
if solution improved then

flag := false;
end

end

end

πb := π;
while stopping criterion is not reach do

π1 := π;
for i = 1 to d do

π1 := randomly remove a job from π1 and insert it in πD;
end

π2 := ConstructionFunction(π1, πD)
for f = 1 to F do

πf
2 := LS1(πf

2) ;
end

π3 := RLS1(π2) ;
if n/F ≤ L then

π3 := RLS2(π3) ;
end

if Cmax(π3) < Cmax(π) then
π := π3

if Cmax(π3) < Cmax(πb) then
πb := π3

end

else if random ≤ exp{−(Cmax(π3)− Cmax(π))/Temperature} then
π := π3

end

end

return πb

Figure 1: Main Procedure of the BSIG

10

flag := true;
while flag do

flag := false;
for f = 1 to F do

Cref
max = Cmax(π

f);
Remove job πf [i] placed in position i of the factory f .
Test job πf [i] in any possible position of πf (using Taillard's accelerations) and
place it in the position with the lowest makespan
if Cmax(π

f) < Cref
max then

flag := true;
break;

end

end

end

Figure 2: Local Search LS1

makespan, then it is clear that it makes sense to assign the job to a factory only if its lower bound

(calculated according to Property 3.1) is lower than the reference makespan. This mechanism

serves to decrease the number of factories where the jobs are tried (bounded search mechanism).

The procedure of this bounded search in each iteration is relative simple: First the job πd is tried

to be placed in the �rst factory and the best makespan is kept as Cref
max. Secondly, the job is tried

to be assigned to factories f which satisfy Cf
max + mini (pi,πd

) < Cref
max. Cref

max is then updated

when the new makespan (due to the insertion of job πd in factory f) improves the actual Cref
max.

3.4 Simple Relative Local Search, RLS1

The relative local search RLS1 searches for better solutions by inserting jobs from one factory

to another. More speci�cally, each job of the factory with maximum makespan is tried to be

scheduled in all positions of each factory verifying Property 3.1. If the global makespan improves,

then the job is scheduled in the factory that minimises the makespan. The procedure then restarts

�rst by looking for the new factory with maximum makespan until each job assigned to the factory

with maximum makespan is tried without solution improvement. The pseudo code of RSL1 is

shown in Figure 4.

11

Function ConstructionFunction(π, πD)
for d = 1 to D do

Test job πD[d] in any possible position of πf=1 (using Taillard's accelerations) and
denote Cref

max the best makespan.
pmin := minimum processing time of job πD[d] in any machine i;
for f = 2 to F do

Cf
max := makespan of the factory f ;

if Cf
max + pmin < Cref

max then

Test job πD[d] in any possible position of the factory f (using Taillard's
accelerations) and denote C0

max the best makespan.
if C0

max < Cref
max then

Cref
max = C0

max;
end

end

end

π := permutation obtained by inserting πD[d] in the factory and in the position
with less makespan;

end

return π;
end

Figure 3: Procedure ConstructionFunction

3.5 Relative Local Search based in exchange, RLS2

The relative local search RLS2 exchanges jobs between factories. Thereby, each job of the factory

with the maximum makespan is tried to be exchanged with each job of the rest of the factories. In

order to apply Taillard's acceleration, each of both jobs is removed of the sequences of the factories

and inserted in the other factory looking for the best position there. This procedure is repeated

for each pair of jobs of both factories choosing the pair of jobs and positions minimizing the

makespan of the chosen factories. If the new maximum makespan of both factories is lower than

in the last iteration, the procedure begins again by the factory with maximum makespan. The

procedure stops when each job of the factory of maximum makespan is tested without improving

the solution. The pseudo code of this relative local search is shown in Figure 5.

3.6 Experimental Parameter Tuning

The proposed algorithm is composed of three parameters T, d, L. In order to �nd the best values of

the parameters, a full factorial design of experiment is performed for the BSIG with the following

12

Procedure RLS1(π)
h(f) = 1, for f = 1 · · ·F ;
i(f) = 1, for f = 1 · · ·F ;
πb := π being π =

[
π1, · · · , πf , · · · , πF

]
;

Determine the factory fmax with maximum makespan (C
′
max)

while i(fmax) < nfmax do

j := h(fmax) mod nfmax ;
π0 := remove job πfmax [j] from πfmax ;
Cfmax

max := makespan of the sequence π0;
pmin := minimum processing time of job πfmax [j] in any machine i;
for f = 1 to F do

Cf
max := makespan in the factory f ;

if Cf
max + pmin < C

′
max then

Test job πfmax [j] in each position of the factory f (using Taillard's acceler-
ations)

end

end

π := permutation obtained by inserting πfmax [j] in the factory and in the position
with less makespan;
Determine the factory fmax with maximum makespan (Cmax)
if Cmax < C

′
max then

C
′
max = Cmax;

i(fmax) = 1;
πb := π;

else

i(fmax) + +;
end

h(fmax) + +;
end

return πb;
end

Figure 4: Relative Local Search RLS1

13

Procedure RLS2(π)
h(f) = 1, for f = 1 · · ·F ;
i(f) = 1, for f = 1 · · ·F ;
πb := π being π =

[
π1, · · · , πf , · · · , πF

]
;

Determine the factory fmax with maximum makespan (C
′
max)

while i(fmax) < nfmax do

Caux
max = C

′
max;

flag := false;
j := h(fmax) mod nfmax ;
for f = 1 to F do

for g = 1 to nf do

if f ̸= fmax then

π0 := remove job πfmax [j] from πfmax ;
π1 := remove job πf [g] from πf ;
Best makespan C1

max due to testing job πfmax [j] in each position of π1 denoting
Posf the chosen position (using Taillard's acceleration).
Best makespan C0

max due to testing job πf [g] in each position of π0 denoting
Posfmax the chosen position (using Taillard's acceleration).
if C1

max < Caux
max&C0

max < Caux
max then

flag := true;
BestPosfmax := Posfmax ;
BestPosf := Posf ;
choseng := g;
chosenf := f ;
Caux
max = max

(
C0
max, C

1
max

)
;

end

end

end

end

if flag then

πfmax := permutation obtained by inserting πchosenf [choseng] in the factory fmax and
in the position BestPosfmax ;
πchosenf := permutation obtained by inserting πfmax [j] in the factory chosenf and in
the position BestPosf ;
Update π with πfmax and πchosenf ;
Determine the factory fmax with maximum makespan (Cmax)

end

if Cmax < C
′
max then

C
′
max = Cmax;

i(fmax) = 1;
πb := π;

else
i(fmax) + +;

end

h(fmax) + +;
end

return πb;
end

Figure 5: Relative Local Search with interchange RLS2
14

Source Df Chi-Square Sig.

Parameter d 4 43.453 0.000
Parameter T 4 4.353 0.360
Parameter L 3 5.717 0.126

Table 1: Kruskal-Wallis for the parameters d, L and T

level of the parameters:

• T ∈ [0.1, 0.2, 0.3, 0.4, 0.5]

• d ∈ [3, 4, 5, 6, 7]

• L ∈ [15, 20, 25, 30]

The BSIG is evaluated by means of relative percentage deviation (RPD) which is de�ned as

follows:

RPD =
Cmax −Base

Base
· 100

where Cmax is the makespan obtained by the BSIG and Base is the solution obtained by an

alternative algorithm (VNDa).

Each combination of parameters has been tested for 96 combination of n,m and F , i.e.

n ∈ [20, 50, 100, 200], m ∈ [5, 10, 15, 20] and F ∈ [2, 3, 4, 5, 6, 7] using 5 instances for each one

representing a total of 480 instances where the processing times of each job in each machine was

uniformly distributed between 1 and 99. Note that we perform 5 runs of each instance due to

the randomness of the algorithm. Each replicate is stopped when the CPU time reaches a limit

of n · m · F · 1.5 milliseconds. Since the normality and homoscedasticity assumptions were not

con�rmed, a non-parametric Kruskal-Wallis analysis is used to determine statistically di�erence

between the parameters. A summary of the results is shown in Table 1. It can be observed that

there are statistically signi�cant di�erences only between the levels of parameter d, being the

level of all other parameters non-statistically signi�cant. Additionally, the analysis reveals that

the best values for the parameters were found for d = 5, L = 20 and T = 0.4, so these are the

values used in the subsequent computational experience.

15

4 Computational Evaluation

The proposed BSIG is compared with the best available algorithms for the DPFSP: MIG, EDA

and TS. In order to de�ne the most e�cient algorithm, the same computer conditions have to be

used, which implies that the heuristics have to be implemented:

• Under the same computer.

• Using the same programming language.

• And using the same stopping criterion for compared heuristics in each instance of the

testbed.

Thereby, each algorithm is again implemented in C# in the same computer, a PC with 2.80

GHz Intel Core i7-930 processor and 16 GBytes of RAM memory. The algorithms are evaluated

for all instances presented by Naderi and Ruiz (2010) which are available in http://soa.iti.es. A

total of 720 instances are included in this testbed varying the number of jobs, machines and

factories according to the following values n ∈ [20, 50, 100, 200, 500], m ∈ [5, 10, 15, 20] and F ∈

[2, 3, 4, 5, 6, 7] and using 10 instances for each combination of parameters. In order to increase the

power of the analysis, 5 runs have been performed per instance for each algorithm. Regarding

the stopping criteria, we have used three di�erent stopping criteria based on computation time

for the heuristics: n ·m ·F ·0.5, n ·m ·F ·1 and n ·m ·F ·2 milliseconds (see e.g. Ruiz and Stützle,

2007; Lin et al., 2013 for similar stopping criteria in the literature). Thereby, each heuristic has

been stopped when the computation time reaches these values.

The performance of the algorithms is again evaluated by means of relative percentage devia-

tion (RPD) which is now de�ned as follows:

RPDi =
Cmax,i −Best

Best
· 100

where Cmax,i is the makespan obtained by the algorithm i and Best is the best known solution

taken from http://soa.iti.es.

The ARPD values are shown in Table 2 and 3 for the stopping criterion n · m · F · 0.5

milliseconds, in Tables 4 and 5 for the stopping criterion n ·m ·F ·1 and, �nally, in Tables 6 and 7

16

n x m BSIG TS EDA MIG

20 x 5 4.94 8.75 5.99 5.34
20 x 10 4.28 7.14 5.17 4.44
20 x 20 3.69 5.78 4.28 3.80
50 x 5 0.50 2.63 4.77 1.64
50 x 10 0.92 3.46 5.48 1.73
50 x 20 0.85 3.01 4.59 1.32
100 x 5 0.14 0.90 5.81 1.02
100 x 10 0.40 1.59 7.76 1.41
100 x 20 0.62 1.66 7.22 1.37
200 x 10 0.23 0.69 9.58 0.93
200 x 20 0.44 0.97 10.27 1.18
500 x 20 0.19 0.70 12.44 0.92

Average 1.43 3.11 6.95 2.09

Table 2: ARPD (by n and m) of the heuristics BSIG, TS, MIG and EDA for the stopping
criteria of n ·m · F · 0.5 milliseconds

f BSIG TS EDA MIG

2 1.45 2.35 6.27 1.78
3 1.22 2.52 6.57 1.80
4 1.12 2.84 6.71 1.82
5 1.12 3.07 6.86 1.85
6 1.47 3.49 7.26 2.27
7 2.25 4.36 8.01 3.03

Average 1.43 3.11 6.95 2.09

Table 3: ARPD (by f) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria
of n ·m · F · 0.5 milliseconds.

for for n ·m ·F ·2 milliseconds yielding e.g 1.43 for the BSIG heuristic, 3.11 for TS algorithm, 6.95

for the EDA and 2.09 for the MIG heuristic according to the �rst stopping criterion. The results

show that the BSIG heuristic outperforms the rest of the heuristics for all stopping criteria. In

fact, BSIG outperforms MIG, TS and EDA for each size of the problem regardless the stopping

criterion. Additionally, the BSIG algorithm �nds the best solution for 93.0% instances, while

MIG, TS and EDA found the best solution for 1.9%, 3.0% and 12.6%, respectively. Comparing

the results with the best known solution for the largest CPU time, in 263 of the 720 instances

(36.53%) new best solutions are found by BSIG. In contrast, only 0 new best solutions were found

for TS, 38 instances for MIG and 0 for EDA.

17

n x m BSIG TS EDA MIG

20 x 5 4.80 8.67 5.66 5.08
20 x 10 4.18 7.20 4.93 4.29
20 x 20 3.60 5.81 4.19 3.69
50 x 5 0.21 2.64 3.70 0.97
50 x 10 0.55 3.53 4.72 1.10
50 x 20 0.55 3.06 3.96 0.89
100 x 5 -0.01 0.93 4.84 0.46
100 x 10 0.11 1.56 6.83 0.72
100 x 20 0.32 1.69 6.55 0.71
200 x 10 -0.02 0.62 8.69 0.33
200 x 20 0.14 0.89 9.48 0.43
500 x 20 -0.09 0.54 11.95 0.23

Average 1.20 3.10 6.29 1.58

Table 4: ARPD (by n and m) of the heuristics BSIG, TS, MIG and EDA for the stopping
criteria of n ·m · F · 1 milliseconds

f BSIG TS EDA MIG

2 1.16 2.34 5.63 1.45
3 0.95 2.50 5.83 1.34
4 0.88 2.79 6.00 1.28
5 0.87 3.04 6.23 1.31
6 1.27 3.50 6.64 1.67
7 2.05 4.40 7.43 2.41

Average 1.20 3.10 6.29 1.58

Table 5: ARPD (by f) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria
of n ·m · F · 1 milliseconds.

18

n x m BSIG TS EDA MIG

20 x 5 4.72 8.74 5.55 4.92
20 x 10 4.11 7.16 4.88 4.19
20 x 20 3.57 5.76 4.19 3.64
50 x 5 0.00 2.65 2.99 0.43
50 x 10 0.26 3.50 4.01 0.70
50 x 20 0.31 3.03 3.45 0.60
100 x 5 -0.18 0.89 3.92 0.10
100 x 10 -0.14 1.61 6.04 0.20
100 x 20 0.01 1.66 5.99 0.24
200 x 10 -0.22 0.66 7.81 -0.01
200 x 20 -0.12 0.88 8.86 -0.02
500 x 20 -0.34 0.43 11.44 -0.13

Average 1.00 3.08 5.76 1.24

Table 6: ARPD (by n and m) of the heuristics BSIG, TS, MIG and EDA for the stopping
criteria of n ·m · F · 2 milliseconds

f BSIG TS EDA MIG

2 0.96 2.30 4.96 1.15
3 0.74 2.50 5.26 0.98
4 0.65 2.74 5.46 0.94
5 0.67 3.05 5.72 0.94
6 1.06 3.52 6.18 1.32
7 1.89 4.39 6.99 2.09

Average 1.00 3.08 5.76 1.24

Table 7: ARPD (by f) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria
of n ·m · F · 2 milliseconds.

19

Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance

TS vs BSIG 1.672 1.525 1.561 1.784 29.452 0.000
EDA vs BSIG 5.511 3.715 5.240 5.783 39.839 0.000
MIG vs BSIG 0.656 0.457 0.623 0.690 38.548 0.000

Table 8: Paired samples t-test for stopping criterion of n ·m · F · 0.5 milliseconds.

Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance

TS vs BSIG 1.899 1.522 1.788 2.011 33.504 0.000
EDA vs BSIG 5.096 3.607 4.832 5.359 37.930 0.000
MIG vs BSIG 0.379 0.315 0.356 0.402 32.329 0.000

Table 9: Paired samples t-test for stopping criterion of n ·m · F · 1 milliseconds.

Additionally, a paired samples t-test is carried out in order to compare the heuristics for each

stopping criterion. These tests can be applied since the random variables (ARPD) are related

(the same test bed is used for each algorithm) and the hypothesis of independence can be rejected.

The results of the tests (see Tables 8, 9 and 10) show that BSIG statistically improves each other

algorithm being the maximum p-value 0.000.

4.1 Impact of reduction of the search space

The proposed BSIG includes a mechanism (using Property 3.1) to reduce the number of solu-

tions to be evaluated. In this section, the impact of this mechanism on the e�ectiveness of the

heuristic is analysed by comparing the performance of the proposed algorithm with and without

the bounded search mechanism for each stopping criterion. The results are shown in Table 11

and in Table 12 aggregated by the number of factories, and by n and m, respectively. In both ta-

bles, the second column indicates the average percentage of branches (factories) discarded in the

functions that use this mechanism, whereas the third column shows the average reduction in the

Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance

TS vs BSIG 2.084 1.500 1.974 2.194 37.306 0.000
EDA vs BSIG 4.763 3.497 4.507 5.019 36.572 0.000
MIG vs BSIG 0.239 0.247 0.221 0.258 26.077 0.000

Table 10: Paired samples t-test for stopping criterion of n ·m · F · 2 milliseconds.

20

f Average Discarded Factories (%) Decrease in the number of iterations (%)

2 30.71% 14.74%
3 33.05% 12.71%
4 32.99% 13.93%
5 32.48% 9.01%
6 32.31% 9.85%
7 32.33% 9.86%

Average 32.31% 11.68%

Table 11: Impact of the bounded search mechanism with the number of factories.

number of iterations in the BSIG when employing this mechanism. Additionally, the results have

been calculated averaging for the three stopping criteria. Summarizing, it was obtained that a

32.31% of the branches (factories) are discarded in the construction phase and in the RLS1 of the

proposed iterated algorithm. Note that there is a substantial decrease of the discarded factories

with the increase in the number of machines of the problem for the same number of jobs. This

is due to the fact that the chosen lower bound is mini (pi,l) with i ∈ [1, · · · ,m] and it therefore

less tight as m increases. Furthermore, the number of iterations of the proposed BSIG for each

analysed stopping criterion is increased an 11.7% in average. The di�erence between this value

for large and small size instances is due to RLS2, which does not include the bounded search

and needs large computational time when used. Both the number of discarded factories and the

decrease in the number of iterations stress the importance of the bounded search mechanism in

the algorithm.

5 Conclusions

The Distributed Permutation Flowshop Scheduling Problem (DPFSP) consists of two interrelated

decision problems: First, jobs are assigned to be processed in one of the f identical factories of

the company. Secondly, the sequence of jobs in each factory is determined taking into account

that each job has the same manufacturing �ow through each one of the m machines. To solve the

problem, we have presented a new algorithm (BSIG) consisting of an iterative destruction and

greedy construction of the solution with three local search phases. BSIG employs a property of the

problem to estimate the makespan of a factory when a new job is inserted, so the search space can

21

n x m Average Discarded Factories (%) Decrease in number of iteration (%)

20 x 5 40.42% 8.50%
20 x 10 25.73% 5.07%
20 x 20 19.54% 4.04%
50 x 5 45.79% 6.13%
50 x 10 30.94% 4.79%
50 x 20 19.30% 3.16%
100 x 5 51.90% 21.11%
100 x 10 35.80% 12.65%
100 x 20 21.64% 8.58%
200 x 10 40.27% 27.47%
200 x 20 25.18% 14.86%
500 x 20 31.22% 23.84%

Average 32.31% 11.68%

Table 12: Impact of the bounded search mechanism order with the problem size n and m.

be reduced. The evaluation of the performance of BSIG was compared with that of the existing

algoritms TS, EDA and MIG using the instances presented by Naderi and Ruiz (2010) for three

di�erent stopping criteria. Each algorithm was implemented under the same computer conditions.

Furthermore, paired samples t-tests were carried out to determine statistically di�erences between

the heuristics. The comparison shows that the proposed BSIG outperforms existing heuristics,

thus being the most e�cient iterative improvement algorithm for the problem (with a p value of

0.000). On the one hand, comparing the four heuristics, the best solution of the four heuristics

was found by BSIG 2008 times out of a total of 2160 instances (summarising results of the three

stopping criteria). On the other hand, using the proposed heuristic, a new best known solution

was found in 263 of the 720 instances (36.5%) using the stopping criterion of n·m·F ·2milliseconds.

Additionally, the e�ect of the bounded search method in the algorithm was analysed reporting a

decrease in the computational times of 32.31% whenever applied.

Acknowledgements

This research has been funded by the Spanish Ministry of Science and Innovation, under the

project �SCORE� with reference DPI2010-15573/DPI.

22

References

Al-Salem, A. (2004). A heuristic to minimize makespan in proportional parallel �ow shops.
International Journal of Computing & Information Sciences, 2(2):98�107.

Cao, D. and Chen, M. (2003). Parallel �owshop scheduling using tabu search. International

Journal of Production Research, 41(13):3059�3073.

Chan, F., Chung, S., and Chan, P. (2005). An adaptive genetic algorithm with dominated genes
for distributed scheduling problems. Expert Systems with Applications, 29(2):364�371.

Chan, H. and Chan, F. (2010). Comparative study of adaptability and �exibility in distributed
manufacturing supply chains. Decision Support Systems, 48(2):331�341.

Chung, S., Chan, F., and Chan, H. (2009). A modi�ed genetic algorithm approach for schedul-
ing of perfect maintenance in distributed production scheduling. Engineering Applications of

Arti�cial Intelligence, 22(7):1005�1014.

Fanjul-Peyro, L. and Ruiz, R. (2010). Iterated greedy local search methods for unrelated parallel
machine scheduling. European Journal of Operational Research, 207(1):55�69.

Fernandez-Viagas, V. and Framinan, J. M. (2014). On insertion tie-breaking rules in heuristics for
the permutation �owshop scheduling problem. Computers and Operations Research, 45(0):60
� 67.

Framinan, J., Gupta, J., and Leisten, R. (2004). A review and classi�cation of heuristics for per-
mutation �ow-shop scheduling with makespan objective. Journal of the Operational Research

Society, 55(12):1243�1255.

Framinan, J., Leisten, R., and Rajendran, C. (2003). Di�erent initial sequences for the heuristic of
nawaz, enscore and ham to minimize makespan, idletime or �owtime in the static permutation
�owshop sequencing problem. International Journal of Production Research, 41(1):121�148.

Framinan, J., Leisten, R., and Ruiz-Usano, R. (2005). Comparison of heuristics for �owtime
minimisation in permutation �owshops. Computers and Operations Research, 32(5):1237�1254.

Gao, J. and Chen, R. (2011). A hybrid genetic algorithm for the distributed permutation �owshop
scheduling problem. International Journal of Computational Intelligence Systems, 4(4):497�
508.

Gao, J., Chen, R., and Deng, W. (2013). An e�cient tabu search algorithm for the distributed
permutation �owshop scheduling problem. International Journal of Production Research,
51(3):641�651.

Garey, M., Johnson, D., and Sethi, R. (1976). Complexity of �owshop and jobshop scheduling.
Mathematics of Operations Research, 1(2):117�129.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979). Optimization
and Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete
Mathematics, 5:287�326.

Hatami, S., Ruiz, R., and Andrés-Romano, C. (2013). The distributed assembly permutation
�owshop scheduling problem. International Journal of Production Research.

Jia, H., Fuh, J., Nee, A., and Zhang, Y. (2007). Integration of genetic algorithm and gantt
chart for job shop scheduling in distributed manufacturing systems. Computers and Industrial

Engineering, 53(2):313�320.

Jia, H., Nee, A., Fuh, J., and Zhang, Y. (2003). A modi�ed genetic algorithm for distributed

23

scheduling problems. Journal of Intelligent Manufacturing, 14(3-4):351�362.

Johnson, S. (1954). Optimal two- and three-stage production schedules with setup times included.
Naval Research Logistics Quarterly, 1(1):61�68.

Kahn, K., Castellion, G., and Gri�n, A. (2004). The PDMA Handbook of New Product Develop-

ment: Second Edition. Wiley.

Kalczynski, P. J. and Kamburowski, J. (2008). An improved NEH heuristic to minimize makespan
in permutation �ow shops. Computers & Operations Research, 35(9):3001�3008.

Li, X., Wang, Q., and Wu, C. (2009). E�cient composite heuristics for total �owtime minimiza-
tion in permutation �ow shops. Omega, 37(1):155�164.

Lin, S.-W., Ying, K.-C., and Huang, C.-Y. (2013). Minimising makespan in distributed permuta-
tion �owshops using a modi�ed iterated greedy algorithm. International Journal of Production
Research, 51(16):5029�5038.

Moon, C., Kim, J., and Hur, S. (2002). Integrated process planning and scheduling with min-
imizing total tardiness in multi-plants supply chain. Computers and Industrial Engineering,
43(1-2):331�349.

Naderi, B. and Ruiz, R. (2010). The distributed permutation �owshop scheduling problem.
Computers and Operations Research, 37(4):754�768.

Nawaz, M., Enscore, Jr, E. E., and Ham, I. (1983). A Heuristic Algorithm for the m-Machine,
n-Job Flow-shop Sequencing Problem. OMEGA, The International Journal of Management

Science, 11(1):91�95.

Pan, Q.-K., Tasgetiren, M., and Liang, Y.-C. (2008a). A discrete di�erential evolution algorithm
for the permutation �owshop scheduling problem. Computers and Industrial Engineering,
55(4):795�816.

Pan, Q.-K., Wang, L., and Zhao, B.-H. (2008b). An improved iterated greedy algorithm for
the no-wait �ow shop scheduling problem with makespan criterion. International Journal of

Advanced Manufacturing Technology, 38(7-8):778�786.

Reza Hejazi, S. and Sagha�an, S. (2005). Flowshop-scheduling problems with makespan criterion:
A review. International Journal of Production Research, 43(14):2895�2929.

Ribas, I., Companys, R., and Tort-Martorell, X. (2011). An iterated greedy algorithm for the
�owshop scheduling problem with blocking. Omega, 39(3):293�301.

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation �owshop
heuristics. European Journal of Operational Research, 165(2):479�494.

Ruiz, R. and Stützle, T. (2007). A simple and e�ective iterated greedy algorithm for the permu-
tation �owshop scheduling problem. European Journal of Operational Research, 177(3):2033�
2049.

Ruiz, R. and Stützle, T. (2008). An iterated greedy heuristic for the sequence dependent setup
times �owshop problem with makespan and weighted tardiness objectives. European Journal

of Operational Research, 187(3):1143�1159.

Taillard, E. (1990). Some e�cient heuristic methods for the �ow shop sequencing problem.
European Journal of Operational Research, 47(1):65�74.

Vairaktarakis, G. and Elhafsi, M. (2000). The use of �owlines to simplify routing complexity in
two-stage �owshops. IIE Transactions (Institute of Industrial Engineers), 32(8):687�699.

24

Wang, S.-Y., Wang, L., Liu, M., and Xu, Y. (2013). An e�ective estimation of distribution
algorithm for solving the distributed permutation �ow-shop scheduling problem. International
Journal of Production Economics, 145(1):387�396.

Zhang, X. and Van De Velde, S. (2012). Approximation algorithms for the parallel �ow shop
problem. European Journal of Operational Research, 216(3):544�552.

Zhang, Y., Li, X., and Wang, Q. (2009). Hybrid genetic algorithm for permutation �owshop
scheduling problems with total �owtime minimization. European Journal of Operational Re-

search, 196(3):869�876.

25

View publication statsView publication stats

https://www.researchgate.net/publication/271945145

