
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326680884

New efficient constructive heuristics for the hybrid flowshop to minimise

makespan: A computational evaluation of heuristics

Article in Expert Systems with Applications · July 2018

DOI: 10.1016/j.eswa.2018.07.055

CITATIONS

4
READS

115

3 authors:

Some of the authors of this publication are also working on these related projects:

Collaboration strategies in de centralized supply chains with partial information sharing View project

Models and algorithms for the order scheduling problems considering setup times View project

Victor Fernandez-Viagas

Universidad de Sevilla

34 PUBLICATIONS 401 CITATIONS

SEE PROFILE

Jose M. Molina-Pariente

Universidad de Sevilla

14 PUBLICATIONS 112 CITATIONS

SEE PROFILE

Jose M. Framinan

Universidad de Sevilla

188 PUBLICATIONS 3,131 CITATIONS

SEE PROFILE

All content following this page was uploaded by Victor Fernandez-Viagas on 04 February 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/326680884_New_efficient_constructive_heuristics_for_the_hybrid_flowshop_to_minimise_makespan_A_computational_evaluation_of_heuristics?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/326680884_New_efficient_constructive_heuristics_for_the_hybrid_flowshop_to_minimise_makespan_A_computational_evaluation_of_heuristics?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Collaboration-strategies-in-de-centralized-supply-chains-with-partial-information-sharing?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Models-and-algorithms-for-the-order-scheduling-problems-considering-setup-times?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victor_Fernandez-Viagas?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victor_Fernandez-Viagas?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Sevilla?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victor_Fernandez-Viagas?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_M_Molina-Pariente?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_M_Molina-Pariente?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Sevilla?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_M_Molina-Pariente?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Framinan?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Framinan?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Sevilla?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Framinan?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victor_Fernandez-Viagas?enrichId=rgreq-702680b3d46341924a6d72f6f317d561-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY4MDg4NDtBUzo3MjI2MzA3NjgzNTMyODNAMTU0OTMwMDAwOTgwNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

New efficient constructive heuristics for the hybrid
flowshop to minimise makespan: A computational

evaluation of heuristics. ∗

Victor Fernandez-Viagas1†, Jose M. Molina-Pariente1, Jose M. Framinan1

1 Industrial Management, School of Engineering, University of Seville,

Camino de los Descubrimientos s/n, 41092 Seville, Spain, {vfernandezviagas,jmolina1,framinan}@us.es

February 4, 2019

Abstract

This paper addresses the hybrid flow shop scheduling problem to minimise
makespan, a well-known scheduling problem for which many constructive heuris-
tics have been proposed in the literature. Nevertheless, the state of the art is not
clear due to partial or non homogeneous comparisons. In this paper, we review
these heuristics and perform a comprehensive computational evaluation to deter-
mine which are the most efficient ones. A total of 20 heuristics are implemented and
compared in this study. In addition, we propose four new heuristics for the problem.
Firstly, two memory-based constructive heuristics are proposed, where a sequence is
constructed by inserting jobs one by one in a partial sequence. The most promising
insertions tested are kept in a list. However, in contrast to the Tabu search, these
insertions are repeated in future iterations instead of forbidding them. Secondly,
we propose two constructive heuristics based on Johnson’s algorithm for the permu-
tation flowshop scheduling problem. The computational results carried out on an
extensive testbed show that the new proposals outperform the existing heuristics.

Keywords: Scheduling, hybrid Flowshop, Heuristics, Makespan, Computational
evaluation, HFS, memory-based constructive heuristics
∗Preprint submitted to Computers & Industrial Engineering. DOI:10.1016/j.eswa.2018.07.055
†Corresponding author. Email: vfernandezviagas@us.es

1

1 Introduction

The flowshop scheduling problem is one of the most active research areas within Operations

Research (see e.g. Framinan et al., 2004; Ruiz and Maroto, 2005; Fernandez-Viagas et al., 2017

for reviews on the topic). In the flowshop layout, n jobs have to be processed on m stages, each

one composed of a single machine, following each job the same route of stages. The problem

then consists in obtaining the best sequence of jobs in each machine according to a certain

objective (typically the minimisation of makespan, see e.g. Fernandez-Viagas and Framinan,

2014, or the total completion times, see e.g. Fernandez-Viagas and Framinan, 2017a). However,

in many manufacturing scenarios several machines in parallel are used to perform an operation

as it serves to increase the capacity and/or throughput; to balance the use of the stages; and to

decrease the influence of the bottleneck machine (Naderi et al., 2010). This flowshop problem

with parallel machines in each stage is usually denoted as the Hybrid Flowshop Scheduling (HFS)

problem or flexible flowshop scheduling problem. In this paper we address the HFS with the

objective of makespan minimisation which is known to aim at minimising production run and

maximising machine utilisation. The problem can be denoted as HFm||Cmax or FFm||Cmax

following Graham et al. (1979) and, alternatively, by FHm, ((PMk)mk=1)||Cmax following Ruiz

and Vázquez-Rodríguez (2010).

Since the problem under consideration is known to be NP-hard by Gupta, 1988 (for the

problem even when there are two stages: one with two machines and the other one with a single

machine), and by Rinnooy Kan, 1976 (for the problem with a single stage with more than two

machines), many approximated algorithms have been developed in the literature (see in this

regard the reviews by Ruiz and Vázquez-Rodríguez, 2010; Ribas et al., 2010 and e.g. Dios et al.,

2018; Chung et al., 2017; Zhong and Shi, 2018; Ying and Lin, 2018). In these reviews, most

contributions focus on the HFS with identical parallel machines and the maximum completion

time or makespan (denoted as Cmax) as objective, which is also the problem under consideration

here. Despite the different heuristics proposed for the problem (see Section 2), we are not aware of

any computational evaluation comparing all of them under the same conditions, and only partial

comparisons have been performed in the existing literature, using a small subset of heuristics

2

and/or different sets of instances for each comparison.

Among the heuristics proposed for the problem, the NEH (originally proposed by Nawaz

et al., 1983 for flowshop scheduling and adapted for our problem by Brah and Loo, 1999) seems

to be, up to now, one of the best heuristics for the problem, due to its extensive use as initial

solution of metaheuristics or as a reference procedure for other constructive heuristics. Despite

the excellent performance of the NEH for a range of scheduling problems, recent research has

shown different strategies to enhance it: On the one hand, the use of the original objective

function of the problem to select the best partial sequence in a heuristic must not necessary

imply the best decision in an iteration of the algorithm (see e.g. Dong et al., 2008; Fernandez-

Viagas and Framinan, 2015b, where tie-breaking mechanisms based on idle times are included

in the evaluation of partial sequences to improve the solutions in related problems); On the

other hand, Fernandez-Viagas and Framinan (2017b) found that, under certain conditions, some

stages could be ignored in the traditional flowshop, being approximately equivalent to a single-

machine scheduling problem. Note that both reasonings could be also applied to the problem

under consideration.

To tackle these challenges, our contribution to the problem is twofold: Firstly, an exhaustive

computational evaluation of the heuristics available for the problem is performed. Secondly, we

propose four new efficient (memory-based and Johnson-based) constructive heuristics that take

into account the aforementioned ideas and that our experiments show that they outperform the

existing ones. The first two heuristics construct a solution step by step in a greedy manner, but

also taking into consideration the most promising partial solutions obtained in the previous iter-

ation. The last two heuristics reduce the problem to different two-machine flowshop scheduling

problems and use the Johnson’s algorithm (Johnson, 1954) to solve them exactly. The remainder

of the paper is organised as follows: In Section 2, the problem under consideration is formally

described and its background is discussed. The constructive heuristics proposed are described

in Section 3. The computational evaluation of both existing and new heuristics is presented in

Section 4. Finally, the conclusions are discussed in Section 5.

3

2 Problem description and background

The problem under study can be defined as follows. There is a set N of n jobs that have to be

processed on a set M of m stages. Each stage i (∀i ∈ {1, . . . ,m}) is composed of mi identical

machines. Each job has to be processed on only one machine in each stage, all jobs following

the same order of stages. The processing time of job j in stage i is denoted by pij . The problem

then consists in determining, for each stage, both the machines where each job is to be processed

and the order of jobs to process for each machine in order to minimise the maximum completion

time or makespan (Cmax). In addition, the following hypotheses are also adopted: each machine

processes at most one job at the same time, and each job is available at initial time; setup times

are considered as sequence-independent and non-anticipatory, and they can hence be included in

the processing times of the jobs; finally, unlimited inventory is considered between stages.

Note that many approximated algorithms have been proposed to solve the problem in the

existing literature, as already mentioned in Section 1 (see Ruiz and Vázquez-Rodríguez, 2010;

Ribas et al., 2010 for a more detailed review and explanation of all these approaches). Approx-

imate algorithms can be classified in heuristics and metaheuristics (Framinan et al., 2005 and

Ruiz and Maroto, 2005). While heuristics (constructive and improvement) typically obtain a

fast solution using a fixed number of iterations, metaheuristics are typically forced to stop after

a fixed CPU time or number of iterations. In this section, we focus in studies proposing con-

structive or improvement heuristics for the HFm||Cmax problem. In addition, metaheuristics

typically require initial solutions obtained using constructive/improvement heuristics. There-

fore, we also review the existing metaheuristics for the problem in order to identify additional

constructive/improvement heuristics.

Lee and Vairaktarakis (1994) solve the two-stage HFS problem to minimise makespan by

using a simple heuristic that assigns jobs to the first stage with the First Available Machine rule

(FAM), i.e. each job in a sequence is assigned to the first machine which becomes available. In

the second stage, a mirror image of the FAM rule, named Last Busy Machine rule (LBM), is

developed to assign the jobs. Koulamas and Kyparisis (2000) propose three linear time heuristics

to solve the two- and three-stage case. More specifically, the HL heuristic solves the two-stage

4

case and two heuristics (denoted as H0 and HS) solve the three-stage case. Several heuristics

are also proposed by Soewandi and Elmaghraby (2001) to solve the three-stage problem.

For the m-stage case, Santos et al. (1996) adapt four heuristics by Campbell et al. (1970),

Palmer (1965), Gupta (1971), and Dannenbring (1977), originally developed for the permutation

flowshop to minimise makespan. In their experiments, the proposals by Campbell et al. (1970)

(denoted as CDS1) and Dannenbring (1977) (denoted as DNN) outperform the heuristics by

Palmer (1965), and Gupta (1971). Brah and Loo (1999) compare the CDS1 heuristic against

four other heuristics originally proposed for the permutation flowshop problem by Nawaz et al.

(1983), Hundal and Rajgopal (1988), Park et al. (1984), and Ho (1995). All heuristics were

adapted to the hybrid flowshop to minimise makespan and other objectives. The most promising

heuristic regarding the makespan are the heuristic by Nawaz et al., 1983 (denoted as NEH),

the CDS1 heuristic, and the adaptation of CDS2 (originally proposed by Park et al., 1984).

Acero-Dominguez and Paternina-Arboleda (2004); Paternina-Arboleda et al. (2008) propose a

heuristic, denoted as BH, based in the bottleneck concept according to the theory of constraints

(Goldratt and Cox (1992)). They compare their proposal against the traditional shifting bot-

tleneck heuristic (proposed by Adams et al., 1988 to solve a job shop layout) and against the

hybrid shifting bottleneck-local search (proposed by Pinedo and Chao, 1999).

Regarding metaheuristics, Alaykýran et al. (2007) and Engin and Döyen (2004) propose an

Artificial Immune System and an Ant Colony Optimisation, respectively. With respect to the

generation of initial solutions for these algorithms, the former uses a random population based

on the idle times between the jobs, while in the latter the method to obtain the initial population

is not described. Their algorithms outperform a B&B by Néron et al. (2001) (using a maximum

CPU time) on the set of instances proposed by Carlier and Néron (2000) (note that, although this

benchmark only considers a maximum number of jobs equal to 15, it is the most used benchmark

so far for the problem under consideration). Negenman (2001) adapts several local search algo-

rithms from the flow shop and job shop literature, and compares them against a variable-depth

search and a Simulated Annealing. No indication of the initial solution is detailed. Niu et al.

(2009) propose a quantum algorithm using an initial population randomly generated (see e.g.

Norman and Bean, 1999; Kurz and Askin, 2004). Liao et al. (2012) propose a hybrid Particle

5

Swarm Optimization (PSO) using the BH heuristic to obtain the initial solution. Their results

have been compared using the benchmark from Carlier and Néron (2000) against some existing

metaheuristics (Carlier and Néron, 2000; Néron et al., 2001; Engin and Döyen, 2004; Niu et al.,

2009; Alaykýran et al., 2007). A simple iterated greedy algorithm and two different constructive

heuristics, denoted as WT1(x) and WT2(x), are proposed by Kizilay et al. (2015). Regarding

WT1(x) and WT2(x), they found that both outperform NEH. However, the comparison is carried

out using different computational CPU times. An Estimation of Distribution Algorithm using

a random population is proposed by Wang et al. (2013). This algorithm outperforms the pro-

posals by Liao et al. (2012), and Engin and Döyen (2004). Pan et al. (2014) develop a Discrete

Artificial Bee Colony Algorithm (DABC). In addition, they propose several dispatching rules

and NEH-based heuristics to solve the problem. These heuristics reduce the number of positions

where each job has to be inserted. Among them, the best results are found by the dispatching

rules SPTB (jobs ordered according to non-decreasing processing times till bottleneck stage) and

bLPTB (jobs ordered in a backward manner according to non-decreasing processing times till

bottleneck stage), and by the NEH-based heuristics NEHLPT(λ), and bNEHSPT(λ).

Regarding contributions in related (more constrained) problems, Barman (1997) proposes

several dispatching rules for the three-stage problem considering release dates, and minimising

total flow time, total tardiness or number of tardy jobs. Each rule uses a different method

to construct the sequence in each stage. The best result is found for the total flow time by

chosing the jobs in the queue between stages according to the SPT rule, denoted as FIFO(SPT).

Jayamohan and Rajendran (2000) extend the experimentation performed by Barman (1997) to

other objectives (maximum flowtime, variance of flowtime, maximum tardiness and variance

of tardiness) and considering new dispatching rules. The PT+WINQ+AT rule (Holthaus and

Rajendran, 1997), denoted as FIFO(PT+WINQ+AT), obtains the best result for the maximum

flowtime minimisation.

To summarise, different heuristics have been proposed to solve the problem under study

during the last twenty years. Nevertheless, the state-of-the art regarding heuristic methods is

nowadays unclear due to the following issues:

1. Despite the good results obtained by Santos et al. (1996), and Brah and Loo (1999), to

6

the best of our knowledge, their heuristics have not been used and/or compared against

new proposals, so their actual performance remains unclear.

2. Several heuristics have been proposed in the literature during the last years (see e.g. Acero-

Dominguez and Paternina-Arboleda, 2004; Paternina-Arboleda et al., 2008; Pan et al.,

2014) to solve the problem either to obtain fast solutions or to be used as seed sequences

of more complex algorithms. However, to the best of our knowledge, a direct comparison

between them does not exist.

3. In most of the existing heuristics, jobs are sequenced between stages according to simple

rules, such as the FIFO rule (jobs ordered according to non decreasing completion times

in the previous stage). However, the results by Barman (1997), Holthaus and Rajendran

(1997) and Jayamohan and Rajendran (2000) suggest that other rules could provide good

solutions for the problem. Despite their potential, such rules have not been incorporated

so far in the existing algorithms.

4. Recent advances in constructive greedy heuristics have shown the potential of using tailored

indicators to improve the myopic nature of these heuristics (Fernandez-Viagas et al., 2017).

5. Finally, it can be seen that additional heuristics could be developed by further exploring

the division of the original problem in subsets. Particularly, the use of heuristics for the

2-machine flowshop (i.e. Johnson) has not been sufficiently analysed: despite being a

straightforward adaptation from the flowshop layout, the CDS2 heuristic provides very

good results, and it could be further refined by considering the number of machines on

each stage.

As a result, both a computational evaluation of heuristics and new efficient approaches are

pertinent. In Section 3 we propose several heuristics based in the aforementioned considerations,

while in Section 4 the computational evaluation is carried out.

7

3 Proposed constructive heuristics

In this section, two memory-based constructive heuristics (see Subsection 3.1) and two Johnson-

based constructive heuristics (see Subsection 3.2) are proposed to find fast solutions for the

problem. All these heuristics use a unique sequence to represent a solution for the problem. This

sequence indicates the order in which the jobs are processed in the first stage. The FIFO rule

is used to extend the solution to other stages, i.e. the sequence of jobs in stage i (with i > 1)

is obtained by ordering the jobs according to non-decreasing completion times in stage i − 1.

Furthermore, within each stage, jobs are processed in the machines according to the FAM rule,

i.e. the first job of the sequence in a stage is assigned to the first machine that becomes available

and so forth.

3.1 Memory-based constructive heuristics

Two memory-based constructive heuristics are proposed in this section: a Fast Memory-based

Constructive Heuristic (denoted as FMCH), and a Memory-based Constructive Heuristic (de-

noted as MCH). Both heuristics construct a complete sequence by inserting, one by one, a job

in the best position of a partial sequence, following a mechanism similar to that in the NEH

heuristic. However, these heuristics use an objective function that combines the minimisation of

makespan and idle time to evaluate the partial sequences. As explained in Section 1, the evalu-

ation of these partial sequences substantially influences the efficiency of this type of heuristics.

Although the final objective is minimising the makespan, using solely the minimisation of this

criterion to select the best partial sequence may result in a wrong choice in the first iterations of

the algorithm when the partial sequences are composed of very few jobs. In addition, a memory

mechanism is incorporated in our proposals. This mechanism works exactly in the opposite way

than the tabu list in the tabu search. Thus, the idea behind this mechanism is to keep the most

promising moves to test them in future iterations.

Regarding FMCH, in the related permutation flowshop scheduling problem

(Fm|prmu|Cmax), Kalczynski and Kamburowski (2007, 2008, 2009) obtained very good

results by inserting each job in the position with the lowest makespan, and in case of ties, in

8

either the first or the last position (among those with the lowest makespan). These positions

are chosen based on ideas taken from Johnson’s algorithm (Johnson, 1954). In addition,

Fernandez-Viagas and Framinan (2014) also found promising results by selecting the partial

sequence with the lowest idle time among the sequences with the lowest makespan. However,

in the aforementioned heuristics, the relative position of a job already inserted in a previous

iteration remains unchanged. The idea behind our proposal is not to discard other promising

insertions that have the same value of the objective function in future iterations. More

specifically, let Γ := (γ1, . . . , γn) be a sequence where the jobs are sorted according to the

non-increasing sum of their processing times. In iteration k, γk job is tested in each position of

a partial sequence Π(k−1) = (π(k−1)
1 , . . . , π

(k−1)
k−1). Let Π(k) be the sequence after the insertion of

γk in the position with lowest Cmax among the k tested positions. In case of ties (i.e. several

positions with the same value of the best makespan), the position with the lowest value of

the indicator OF ′ = Cmax + I/L (instead of directly Cmax) is chosen, where I is the total

idle time after the insertion of γk and L is a big number. In addition, the last position l with

lowest makespan (in case of ties) is kept to be tested in the next iteration. Let r(k) denote its

previous job in the sequence, i.e. r(k) = π
(k−1)
l−1 . Finally, once the final sequence Πn is generated,

n different solutions are generated by fixing Πn in the first stage and randomly varying the

sequence in the other stages, i.e. a random job in the queue of a stage is selected when a

job should be placed in any machine of that stage. The pseudocode of the proposed FMCH

algorithm is shown in Figure 1.

9

Procedure FMCH
Γ := {γ1, ..., γi, ..., γn}: Jobs ordered by non-increasing sum of the processing times;

T (1) := 1;

Π(1) := {γ1};

for k = 2 to n do
Insert job γk in any possible position j of Π(k−1), with j ∈ {1, . . . , k}.

T (k) := number of sequences with the lowest value of Cmax;

Π(k) := sequence obtained by inserting γk in the position of Π(k−1) with lowest OF ′ . Let F b

denote such value of the objective function;

if T (k) > 1 then
r(k) := job before γk, after testing γk in the last position with the lowest value of Cmax;

end

if T (k−1) > 1 then
Φ(k) := permutation obtained by removing job γk−1 from Π(k) and re-inserting it after job

r(k−1). Let Fm be the value of OF ′ ;

if Fm < F b then
F b = Fm;

Π(k) = Φ(k);
end

end

end

for k = 1 to n do
Ω:= solution obtained by considering Π(n) as the sequence in the first stage, and by generating

a random sequence for the other stages as follows: Once a machine becomes free, the next job

to be processed is randomly chosen among the jobs in the queue. Let F s denote the objective

function obtained;

if F s < F b then
F b = F s;

end

end

end

Figure 1: Pseudocode of FMCH

Our second proposal extends the idea of using several promising insertions to be tested in

10

the following iterations. As compared to the previous one, this heuristic keeps several moves in a

list, denoted as memory list, instead of only one. Let S(k) then be the size of such list in iteration

k. Note that we develop a dynamic list size S(k) whose size increases linearly with each iteration,

i.e. S(k) = k · x where x is a constant of proportionality, as the number of tested positions in

each iteration also linearly increases in the algorithm proposed (e.g. for x = 1 there are two

jobs in the memory list in the first iteration, k = 2, and n in the last iteration). Let r(k)
s denote

the job before γk, after testing γk in the sth position of Πk with lowest OF ′ , in iteration k.

Hence, in each iteration k, the S(k−1) best insertions in the last iteration are again tested. More

specifically, γk−1 is again tested after the S(k−1) best jobs (i.e. r(k−1)
s with s ∈ {1, . . . , (k−1) ·x})

found in the last iteration. The pseudocode of the proposed MCH algorithm is shown in Figure

2.

11

Procedure MCH(x)
Γ := {γ1, ..., γi, ..., γn}: Jobs ordered by non-increasing sum of the processing times;

Π(1) := {γ1};

for k = 2 to n do
S(k) := k · x;

Insert job γk in any possible position j of Π(k−1), with j ∈ {1, . . . , k};

Π(k) := sequence obtained by inserting γk in the position of Π(k−1) with lowest OF ′ . Let F b

denote such value of the objective function;

r
(k)
s (with s ∈ {1, . . . , S(k)}):= job before γk, after testing γk in the sth position with lowest OF ′ ;

if k > 2 then

for s = 1 to S(k−1) do
Φ(k) := permutation obtained by removing job γk−1 from Π(k) and re-insert it after job

r
(k−1)
s . Let Fm be the value of OF ′ ;

if Fm < F b then
F b = Fm;

Π(k) = Φ(k);
end

end

end

end

for k = 1 to n do
Ω:= solution obtained by considering Π(n) as the sequence in the first stage, and by generating

a random sequence for the other stages as follows: Once a machine becomes free, the next job

to be processed is randomly chosen among the jobs in the queue. Let F s denote the objective

function obtained;

if F s < F b then
F b = F s;

end

end

end

Figure 2: Pseudocode of MCH

12

3.2 Johnson-based Constructive Heuristics

As stated in Section 2, a subset of the stages in flowshop-type scheduling problems can have

a big influence on the final objective function. This reasoning might explain the good results

found in the literature by Santos et al. (1996), and Brah and Loo (1999) using the CDS1 and

CDS2 heuristics (adapted from the permutation flowshop scheduling problem). However, these

adaptations consist of simply changing the evaluation of the final sequence, and the fact that

there are parallel machines in the stages is not explicitly considered. In this section, we propose

two new Johnson-based heuristics, denoted as JbH1 and JbH2. The heuristics reduce the HFS

in m− 1 and (m+1)m
2 two-machine flowshop problems, respectively, which are optimally solved.

This reduction is performed taking into account the workload of the stages as explained below.

Regarding JbH1, the heuristic constructs m− 1 two-machine flowshops which are optimally

solved by Johnson’s algorithm. The processing times of the jobs in the first and second artificial

machines of the k flowshop (k ∈ {1, . . . ,m− 1}) are formed by considering the first and last kth

machines in the shop, respectively (let m′ and m′′ be the number of machines which form the

first and second artificial machines, respectively, i.e. m′ = m
′′ = k). To form the first artificial

machine, the algorithm gives a higher value to the processing times on the first machines in the

shop, and the opposite in the second artificial machine. In addition, the resulting processing

times are weighted by the number of machines in each stage. More specifically, the processing

times of each job in the kth reduced problem (k ∈ {1, . . . ,m}) are p′
1j in the first machine:

p
′
1j =

k∑
i=1

(k + 1− i+m · a)/(mi + b)pij

and p′
2j in the second machine:

p
′
2j =

m∑
i=m−k

(i−m+ k +m · a)/(mi + b)pij

a and b are parameters of the algorithms to set more precisely the weight of the processing times

of the reduced problems. A detailed pseudocode of the algorithm is shown in Figure 3.

13

Procedure JbH1

for k = 1 to m− 1 do

for j = 1 to n do
p

′

1j =
∑k

i=1
k+1−i+m·a

mi+b · pij ;

p
′

2j =
∑m

i=m−k
i−m+k+m·a

mi+b · pij ;

end

Πk := permutation obtained by applying Johnson’s algorithm to the reduced kth two-machine

flowshop problem using p′

ij (with i ∈ {1, 2}) as the processing times. Let OF k denote the value

of the objective function of such sequence;

if k = 1 then
OF b := OF k;

else if OF k < OF b then
OF b := OF k;

end

end

end

Figure 3: Pseudocode of JbH1

In the heuristic JbH2, the number of machines which compose the first and second artificial

machines changes as respect to JbH1. Thereby, an index k1 is introduced to indicate the number

of machines (m′ = k1) grouped to form the first artificial machine (i.e. machines i = 1 . . . k1

are used). In a similar manner, an index k2 for the second artificial machine (in this case,

machines i = k2 . . .m are used to construct the second machine of the reduced problem). Let

m
′′ = m − k2 + 1 be such number of machines. Note that a different number of machines may

be used to form both artificial machines of the reduced two-machine problem, and therefore we

must normalize the processing times in both artificial machines, which are constructed as follows:

p
′
1j =

k1∑
i=1

(max{m′
,m

′′} − i+ 1) ·m′′
/m

′ +m · c
mi + d

· pij

p
′
2j =

m∑
i=k2

max{m′
,m

′′} −m+ i+m · c
mi + d

· pij

14

To normalize the processing times in a machine i, they are multiplied at most by max{m′ ;m′′}

(to have the same maximum reference in both artificial machines). In addition, the processing

times which form the first reduced machine are normalised by m′′
/m

′ if m′′ 6= m
′ (this weight is

introduced to balance the case where the number of machines considered in the second artificial

machine is either lower or greater than in the first one). c and d are again parameters of the

algorithm which are introduced to balance the expressions.

Procedure JbH2

for k1 = 1 to m do

for k2 = k1 to m do
m

′ = k1;

m
′′ = m− k2 + 1;

max=max{m′ ;m′′}

for j = 1 to n do

p
′

1j =
∑k1

i=1
(max{m

′
;m

′′
}−i+1)·m

′′
/m

′
+m·a

mi+b · pij ;

p
′

2j =
∑m

i=k2

max{m
′
;m

′′
}−m+i+m·a

mi+b · pij ;

end

Π := permutation obtained by Johnson’s algorithm in the reduced two-machine flowshop

problem using p′

ij (with i ∈ {1, 2}) as the processing times. Let OF denote the value of the

objective function of such sequence;

if k1 = 1&k2 = 1 then
OF b := OF ;

else if OF < OF b then
OF b := OF ;

end

end

end

end

Figure 4: Pseudocode of JbH2

15

4 Computational evaluation

In this section, a computational evaluation is carried out to compare the different heuristics.

Subsection 4.1 explains the sets of instances generated for the comparisons. The indicators to

assess the algorithms are detailed in Subsection 4.2. In Subsection 4.3, an experimental parameter

tuning is performed to find the best values of the parameters for JbH1 and JbH2. The heuristics

implemented are listed in Subsection 4.4. Finally, the results of the computational evaluation

are presented in Subsections 4.5.

4.1 Testbeds

In the problem under study, the parameters n, m, mi, and pij must be completely defined for

each instance. Several approaches and instances have been employed in the literature to test

approximate algorithms. However, most of them use small instances (see e.g. Carlier and Néron,

2000; Liao et al., 2012) and/or very different values for the parameters. In this paper, a common

set of big instances (denoted as β1) is generated as follows:

• Number of jobs, n: n ∈ {20, 50, 100, 150} (see e.g. Naderi et al., 2009; Pan et al., 2014 for

similar ranges).

• Number of stages, m: m ∈ {5, 10, 20} (taken from Taillard, 1993).

• Number of machines per stage,mi: three different procedures have been applied to generate

the set of instances using parameter s ∈ {0, 1, 2}. s = 0 generates instances with 2 machines

in a unique stage (randomly generated) and 3 machines in the rest (see e.g. Carlier and

Néron, 2000; Kouvelis and Vairaktarakis, 1998 for similar approaches); s = 1 generates

instances with the same number of machines, mi = 3 ∀i, in each stage (see e.g. Naderi

et al., 2009); finally, s = 2 generates machines using a uniform distribution [1,3]. Note that

the use of uniform distribution is the most common approach to generate the machines,

see e.g. Liao et al., 2012; Pan et al., 2014; Dios et al., 2018).

• Processing times, pij : all instances are generated using a uniform distribution [1,99] (see

e.g. Naderi et al., 2009; Pan et al., 2014).

16

• Number of replications. 10 instances have been generated for each combination of n, m,

and s, which results in a total of 360 instances.

In addition, a different testbed of 360 instances, denoted by β2, is generated following the

same procedure as above and is used to obtain the best values for the parameters of the algorithms

JbH1 and JbH2, in order to avoid an overcalibration of these algorithms.

4.2 Performance indicators

In this paper, a total of 20 heuristics are compared under the same conditions. Since each

algorithm obtains a value of the objective function typically requiring a different CPU time in

each instance, in order to have a fair comparison, the Average Relative Percentage Deviation

(ARPD), and Average Computational CPU Times (ACT) have been computed:

ARPDh =
I∑
i=1

RPDih

I
,∀h = 1, . . . ,H

ACTh =
I∑
i=1

Tih
I
, ∀h = 1, . . . ,H

where H is the number of algorithms under comparison (h ∈ {1, . . . ,H}), and I is the number

of instances (i ∈ {1, . . . , I}). RPDih is defined by:

RPDih = OFih −Besti
Besti

· 100, ∀h = 1, . . . ,H

where OFih is the Cmax obtained by algorithm h in instance i, and Besti is the best value found

in instance i, i.e. min∀hOFih.

In addition, according to Fernandez-Viagas and Framinan (2015a); Fernandez-Viagas et al.

(2017), the computational effort of heuristics should also be evaluated by means of ARPTh to

avoid an over-representation of the largest instances of the indicators. ARPTh is defined as:

ARPTh = 1 +
I∑
i=1

RPTih
I

,∀h = 1, . . . ,H

17

where RPT is the relative percentage computation time, defined by:

RPTih = Tih −ACTi
ACTi

, ∀h = 1, . . . ,H

with

ACTi =
H∑
h=1

Tih
I
,∀i = 1, . . . , I

and where Tih is the CPU time (in seconds) of algorithm h for instance i.

Finally, for the calibration of the Johnson-based heuristics, a slightly different measure of the

quality of the solution is used, denoted as ARPD′ (see e.g. Fernandez-Viagas et al., 2016):

ARPD
′ =

I∑
i=1

(OFi −Basei/Basei
I

where Basei is the solution obtained in instance i by a reference algorithm (NEH).

4.3 Experimental parameter tuning

Two full factorial designs of experiments are performed to find the best values of the parameters

a and b for JbH1, and c and d for JbH2. The following range of values for the parameters have

been chosen in the experimentation:

a = {0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30}

b = {0.50, 0.75, 1.00, 1.25, 1.50, 1.75}

c = {0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30}

d = {0.50, 0.75, 1.00, 1.25, 1.50, 1.75}

Non parametric Kruskal-Wallis tests are carried out using the ARPD′ indicator, and the corre-

sponding p-values obtained are 0.975, 0.846, 0.892, and 0.989 for the a, b, c, and d parameters,

respectively. No statistical significant difference between the values of the parameters has been

found, which show the robustness of the proposals against them. ARPD′ values obtained for

18

the different levels are shown in Table 1. Results show that although there is no statistical

different between the level, the average values between some levels are quite different. The best

combination of the parameters is found for a = 0.1, b = 1.25, c = 0.1, and b = 1.50.

Parameter JbH1 Parameter JbH2

a=0 -0.08 c=0 -0.71

a=0.05 -0.10 c=0.05 -0.78

a=0.1 -0.12 c=0.1 -0.81

a=0.15 -0.12 c=0.15 -0.79

a=0.2 -0.12 c=0.2 -0.76

a=0.25 -0.10 c=0.25 -0.72

a=0.3 -0.04 c=0.3 -0.69

b=0.5 -0.06 d=0.5 -0.73

b=0.75 -0.10 d=0.75 -0.73

b=1 -0.10 d=1 -0.74

b=1.25 -0.11 d=1.25 -0.76

b=1.5 -0.11 d=1.5 -0.76

b=1.75 -0.10 d=1.75 -0.76

Table 1: Experimental parameter tuning

4.4 Implemented heuristics

Following the conclusions obtained in Section 2, the new heuristics proposed (FMCH, MCH,

JbH1, and JbH2) are compared against the most promising heuristics for the problem under

consideration (results are shown in Subsection 4.5), which are enumerated next:

• CDS1 adapted for the problem by Santos et al. (1996).

• DNN adapted for the problem by Santos et al. (1996).

• CDS2 adapted for the problem by Brah and Loo (1999).

• NEH adapted for the problem by Brah and Loo (1999).

• BH proposed by Acero-Dominguez and Paternina-Arboleda (2004); Paternina-Arboleda

et al. (2008).

• SPTB proposed by Pan et al. (2014).

19

• bLPTB proposed by Pan et al. (2014).

• NEHLPT(λ) proposed by Pan et al. (2014).

• bNEH proposed by Pan et al. (2014).

• bNEHSPT(λ) proposed by Pan et al. (2014).

• WT1(x) ∀x ∈ {1, 5, n/m, n} proposed by Kizilay et al. (2015).

• WT2(x) ∀x ∈ {1, 5, n/m, n} proposed by Kizilay et al. (2015).

We also incorporate in the comparison other heuristics by changing the traditional rule (FIFO

rule) to sequence the jobs between the stages in the NEH heuristic:

• NEHSPT: NEH heuristic using the SPT rule when there are more than one job in the

queue, as proposed by Barman (1997), i.e. when a machine becomes free, it take the next

job according to the SPT rule.

• NEHLPT: NEH heuristic using the LPT rule to determine the next job to be taken in the

queue.

• NEHPT+WINQ+AT: NEH heuristic using the PT+WINQ+AT, proposed by Holthaus and

Rajendran (1997).

• NEHrand: NEH heuristic taking the job to be sequenced randomly from the queue.

All these heuristics have been fully coded in C# using Visual Studio in an Intel Core i7-3770

with 3.4 GHz, 16 GB RAM, and with Microsoft Windows 8.1 64 bit, using the same common

functions and libraries.

4.5 Comparison of heuristics

The 20 heuristics presented in Subsection 4.4 have been run on Benchmark β1. The computa-

tional results with respect to the quality of the solutions (ARPD) are shown in Table 2, grouped

by parameters n, m, and s, and the detailed results of ARPD in terms of n×m in Table 3. The

20

average results in terms of ARPD, ACT, and ARPT are shown in Table 4 and graphically in

Figure 5. In view of the results, a number of conclusions can be noted:

1. The JbH1 and JbH2 heuristics show the best solution quality among the fast heuristics in

the literature (as e.g. CDS2, BH, SPTB, and NEHLPT(λ)). To support this conclusion, the

following hypotheses have to be checked, hypotheses H1: JbH1=CDS2, H2: JbH2=CDS2

(see Table 5).

2. The JbH2 heuristic proposed (ARPDJbH2 = 2.19 and ARPTJbH2 = 0.04) improves

the quality of the solutions obtained by the NEH heuristic (ARPDNEH = 3.02 and

ARPTNEH = 0.12) using less computational effort (hypothesis H3: JbH2=NEH).

3. In addition, the FMCH heuristic proposed (ARPDFMCH = 2.78 and ARPTFMCH = 0.12)

also outperforms the NEH heuristic by using a similar computational effort (hypothesis

H4: FMCH=NEH).

4. Among all implemented heuristics, the best results in terms of quality of the solutions

have been obtained by the proposed MCH heuristic, ARPDMCH(12) = 0.67 (hypothesis

H5: MCH(12)=WT1(n)).

5. To summarise, the efficient heuristics for the problem are: JbH1, JbH2, MCH(1), MCH(2),

MCH(4), MCH(6), MCH(8), MCH(10), and MCH(12) (the following hypotheses should

be added to the previous ones: hypothesis H6: MCH(4)=WT1(5); H7: MCH(4)=WT2(5);

H8: JbH2=WT1(1)).

To justify the hypotheses, a Holm’s procedure (Holm, 1979) is performed (see results in

Table 5). In this test, the hypotheses are sorted in non-descending order of p-values, denoted

by βi (i ∈}1, . . . , k}, with k the number of hypotheses). p-values are obtained following a

non-parametric Wilcoxon signed-rank test (see e.g. Fernandez-Viagas et al., 2018 for similar

studies) assuming a 0.95 confidence level, i.e. α = 0.05. Then, each hypothesis i is rejected

if p > α/(k − βi + 1). As it can be seen from Table 5, each hypothesis is rejected with the

exception of hypotheses H5 (i.e. no statistical evidence has been found between ARPDMCH(12)

and ARPDWT1(n)) and H1 (ARPDJbH1 = ARPDCDS2). In the former, although no differences

21

has been found in the ARPD, ARPT and ACT of the heuristics proposed is 1.95, and 5.61

as compared to 9.19 and 57.99 of the WT1(n) heuristic. In the latter, H1 has been rejected

according to the non-parametric Wilcoxon signed-rank test but not using Holm’s procedure.

Heuristic n = 20 n = 50 n = 100 n = 150 m = 5 m = 10 m = 20 s = 0 s = 1 s = 2 All

NEH 4.58 3.68 2.20 1.61 1.71 3.25 4.09 3.18 4.27 1.60 3.02

NEHSPT 6.08 4.80 3.10 2.53 3.04 4.42 4.93 4.77 4.29 3.33 4.13

NEHLPT 8.74 9.25 9.16 8.47 4.93 9.51 12.28 8.30 7.97 10.44 8.90

NEHPT+WINQ+AT 4.92 3.76 2.07 1.59 1.83 3.27 4.16 3.27 4.08 1.92 3.09

NEHrand 6.31 5.68 3.86 3.15 2.84 4.95 6.46 4.52 6.32 3.42 4.75

Palmer 10.35 8.17 5.07 3.78 5.53 7.08 7.91 7.03 7.53 5.96 6.84

BH 17.72 15.17 11.21 9.62 9.00 12.39 18.90 10.07 19.27 10.96 13.43

NEHLPT(λ) 7.00 5.54 3.35 2.42 2.61 4.70 6.41 4.66 6.55 2.52 4.58

bNEH 6.31 3.89 2.36 1.95 3.05 3.62 4.22 3.41 4.97 2.51 3.63

bNEHSPT(λ) 8.58 6.46 4.72 3.87 5.29 5.98 6.45 5.55 7.59 4.58 5.91

SPTB 15.75 12.80 8.88 8.07 10.40 11.42 12.31 9.60 14.97 9.56 11.38

bLPTB 25.68 22.77 18.88 16.21 20.00 21.92 20.74 19.28 25.06 18.32 20.88

FMCH 3.96 3.31 2.27 1.57 1.44 2.79 4.11 2.93 3.97 1.44 2.78

MCH(1) 3.37 2.63 1.34 1.03 1.23 2.13 2.91 2.30 2.82 1.16 2.09

MCH(2) 2.45 1.80 1.13 0.87 0.94 1.50 2.25 1.74 1.82 1.11 1.56

MCH(4) 1.05 1.11 0.90 0.54 0.54 0.91 1.25 1.07 0.99 0.64 0.90

MCH(6) 1.02 0.81 0.61 0.53 0.43 0.88 0.92 0.81 0.87 0.56 0.75

MCH(8) 1.05 0.75 0.60 0.51 0.53 0.76 0.90 0.83 0.89 0.47 0.73

MCH(10) 1.03 0.73 0.59 0.45 0.44 0.83 0.83 0.81 0.76 0.53 0.70

MCH(12) 1.07 0.77 0.47 0.37 0.45 0.72 0.85 0.81 0.69 0.51 0.67

WT1(1) 4.50 3.61 2.12 1.81 1.60 2.92 4.51 3.14 4.19 1.70 3.01

WT1(5) 2.31 2.06 1.18 1.10 0.74 1.61 2.64 1.66 2.42 0.91 1.66

WT1(n/m) 3.48 2.33 1.07 0.85 0.64 1.70 3.46 1.97 2.66 1.17 1.93

WT1(n) 1.23 1.07 0.54 0.39 0.30 0.82 1.29 0.74 1.34 0.34 0.81

WT2(1) 4.85 4.12 2.40 1.74 1.65 3.63 4.55 3.43 4.36 2.04 3.28

WT2(5) 2.42 2.38 1.46 1.06 0.81 1.84 2.84 1.83 2.79 0.87 1.83

WT2(n/m) 3.69 2.64 1.30 0.89 0.72 2.06 3.61 2.24 2.90 1.25 2.13

WT2(n) 1.24 1.06 0.58 0.39 0.28 0.77 1.40 0.72 1.37 0.36 0.82

CDS1 5.36 4.10 2.79 2.56 2.76 3.99 4.36 2.87 5.10 3.14 3.70

CDS2 4.58 3.45 2.34 2.04 2.04 3.42 3.84 2.45 3.76 3.09 3.10

DNN 7.51 5.28 3.68 3.10 2.64 5.15 6.88 4.25 5.60 4.83 4.89

JbH1 4.43 3.29 2.11 1.86 2.07 3.18 3.52 2.64 3.25 2.89 2.92

JbH2 2.93 2.67 1.71 1.45 1.82 2.29 2.45 1.77 2.75 2.04 2.19

Table 2: Detailed values of ARPD grouped by n, m, and s

22

Heuristic 20x5 20x10 20x20 50x5 50x10 50x20 100x5 100x10 100x20 150x5 150x10 150x20 All

NEH 3.77 5.25 4.71 1.76 3.88 5.39 0.92 2.09 3.60 0.38 1.76 2.69 3.02

NEHSPT 6.30 6.39 5.55 3.08 5.13 6.19 1.50 3.58 4.22 1.27 2.57 3.76 4.13

NEHLPT 7.94 9.22 9.06 4.60 10.10 13.05 4.20 9.88 13.40 2.96 8.83 13.62 8.90

NEHPT+WINQ+AT 3.96 5.30 5.51 1.94 4.03 5.30 0.91 2.22 3.09 0.51 1.52 2.75 3.09

NEHrand 5.73 6.99 6.20 2.93 5.79 8.32 1.68 3.76 6.15 1.01 3.26 5.16 4.75

Palmer 10.35 10.60 10.11 6.36 8.46 9.68 3.13 5.13 6.95 2.31 4.11 4.91 6.84

BH 17.71 16.26 19.20 8.30 13.65 23.56 5.43 10.51 17.70 4.58 9.16 15.13 13.43

NEHLPT(λ) 6.41 7.44 7.15 2.46 5.44 8.71 1.14 3.49 5.43 0.44 2.44 4.36 4.58

bNEH 7.37 5.85 5.71 2.68 4.01 4.98 1.26 2.70 3.12 0.90 1.90 3.06 3.63

bNEHSPT(λ) 10.27 8.62 6.85 5.62 6.43 7.34 3.10 4.71 6.33 2.17 4.16 5.27 5.91

SPTB 18.67 14.82 13.76 10.93 12.38 15.09 6.64 9.47 10.54 5.36 9.01 9.85 11.38

bLPTB 30.14 26.67 20.22 21.13 24.01 23.17 16.04 19.25 21.33 12.69 17.73 18.22 20.88

FMCH 3.06 4.31 4.52 1.53 3.14 5.25 0.72 2.25 3.85 0.43 1.47 2.81 2.78

MCH(1) 2.77 3.46 3.90 1.26 2.80 3.83 0.60 1.19 2.22 0.29 1.09 1.70 2.09

MCH(2) 1.99 2.68 2.67 0.97 1.54 2.90 0.44 0.93 2.01 0.34 0.85 1.40 1.56

MCH(4) 0.98 1.06 1.11 0.52 1.17 1.63 0.42 0.80 1.48 0.23 0.61 0.79 0.90

MCH(6) 0.87 1.11 1.08 0.41 1.13 0.89 0.24 0.74 0.86 0.19 0.54 0.87 0.75

MCH(8) 0.95 1.27 0.94 0.50 0.76 0.99 0.46 0.40 0.94 0.21 0.61 0.72 0.73

MCH(10) 0.94 1.21 0.95 0.30 0.95 0.94 0.37 0.61 0.80 0.16 0.54 0.65 0.70

MCH(12) 0.99 1.20 1.01 0.35 0.89 1.08 0.31 0.39 0.72 0.15 0.39 0.58 0.67

WT1(1) 3.57 4.73 5.19 1.67 3.63 5.52 0.79 1.78 3.79 0.39 1.52 3.53 3.01

WT1(5) 1.66 2.69 2.59 0.81 1.88 3.50 0.26 1.00 2.28 0.21 0.86 2.21 1.66

WT1(n/m) 1.74 3.52 5.19 0.61 1.88 4.50 0.15 0.79 2.28 0.08 0.60 1.86 1.93

WT1(n) 0.82 1.40 1.47 0.29 1.00 1.91 0.07 0.50 1.03 0.03 0.38 0.76 0.81

WT2(1) 4.01 5.46 5.08 1.56 4.97 5.84 0.65 2.28 4.25 0.40 1.80 3.03 3.28

WT2(5) 1.94 2.58 2.73 0.72 2.47 3.96 0.38 1.27 2.73 0.19 1.04 1.95 1.83

WT2(n/m) 2.04 3.96 5.08 0.62 2.47 4.83 0.14 1.02 2.73 0.10 0.80 1.79 2.13

WT2(n) 0.78 1.41 1.52 0.26 0.91 2.01 0.06 0.43 1.26 0.03 0.33 0.81 0.82

CDS1 5.51 5.73 4.84 2.54 4.60 5.17 1.69 2.66 4.01 1.31 2.99 3.40 3.70

CDS2 4.36 5.03 4.33 1.99 3.82 4.56 1.00 2.51 3.50 0.80 2.32 2.99 3.10

DNN 5.69 8.07 8.75 2.38 5.55 7.91 1.43 3.80 5.80 1.07 3.16 5.07 4.89

JbH1 4.40 4.74 4.15 2.13 3.59 4.16 0.96 2.34 3.03 0.80 2.05 2.73 2.92

JbH2 3.67 2.76 2.34 1.96 2.85 3.20 0.92 1.82 2.38 0.74 1.75 1.86 2.19

Table 3: Detailed values of ARPD grouped by nxm

23

Heuristic ARPD ACT ARPT Heuristic ARPD ACT ARPT

MCH(12) 0.67 5.61 2.09 NEH 3.02 0.29 0.13

MCH(10) 0.70 4.44 1.79 NEHPT+WINQ+AT 3.09 0.72 0.22

MCH(8) 0.73 3.46 1.46 CDS2 3.10 0.00 0.00

MCH(6) 0.75 2.51 1.07 WT2(1) 3.28 0.42 0.16

WT1(n) 0.81 57.99 9.77 bNEH 3.63 0.32 0.11

WT2(n) 0.82 58.00 9.78 CDS1 3.70 0.00 0.00

MCH(4) 0.90 1.68 0.71 NEHSPT 4.13 0.75 0.22

MCH(2) 1.56 0.94 0.39 NEHLPT(λ) 4.58 0.25 0.08

WT1(5) 1.66 2.13 0.91 NEHrand 4.75 0.51 0.18

WT2(5) 1.83 2.13 0.87 DNN 4.89 0.00 0.00

WT1(n/m) 1.93 4.90 1.07 bNEHSPT(λ) 5.91 0.28 0.09

MCH(1) 2.09 0.61 0.24 Palmer 6.84 0.00 0.00

WT2(n/m) 2.13 4.89 1.01 NEHLPT 8.90 0.90 0.25

JbH2 2.19 0.01 0.04 SPTB 11.38 0.00 0.00

FMCH 2.78 0.30 0.13 BH 13.43 0.00 0.00

JbH1 2.92 0.00 0.00 bLPTB 20.88 0.00 0.00

WT1(1) 3.01 0.43 0.18

Table 4: Summary of computational results. In bold type the efficient heuristics for the
problem are shown

24

Figure 5: ARPD versus ARPT

Hypothesis p-value βi Wilcoxon α/(8− βi + 1) Holm’s procedure

H2: JbH2=CDS2 0.000 1 R 0.006 R

H3: JbH2=NEH 0.000 2 R 0.007 R

H6: MCH(4)=WT1(5) 0.000 3 R 0.008 R

H7: MCH(4)=WT2(5) 0.000 4 R 0.010 R

H8: JbH2=WT1(1) 0.000 5 R 0.013 R

H4: FMCH=NEH 0.018 6 R 0.017 R

H1: JbH1=CDS2 0.030 7 0.025

H5: MCH(12)=WT1(n) 0.069 8 0.050

Table 5: Holm’s Procedure

5 Conclusions

In this paper, we have proposed two memory-based heuristics (FMCH and MCH) and two

Johnson-based constructive heuristics (JbH1 and JbH2) to efficiently solve the hybrid flowshop

with makespan minimisation. The first two heuristics use promising non-selected moves from

past iterations to be repeated in future steps, while the other two construct several reduced

25

two-machine flowshop problems which are optimally solved using Johnson’s algorithm. An ex-

tensive computational evaluation has been carried out comparing the proposals with the existing

heuristics for the problem.

Regarding the computational evaluation of heuristics, the best results in terms of efficiency

have been found by the JbH1, JbH2, and MCH heuristics. On the one hand, excellent fast

solutions are found by the Johnson-based constructive heuristics, i.e. CDS2, JbH1, and JbH2.

Note that, despite of the good performance of CDS2, the use of this heuristic, as seed sequence

or comparison heuristic, is very scarce in the literature on the HFm||Cmax problem since its

proposal by Brah and Loo (1999). On the other hand, the best results in terms of quality of the

solutions are found by the MCH heuristic. In addition, our proposals (JbH1, JbH2, and MCH)

outperform each other heuristic in the literature, representing the new state-of-the-art heuristics

for the problem.

Regarding future research lines, further analysis could be conducted by comparing the effi-

ciency of the new state-of-the-art heuristics when these are embedded in both population and

non-population metaheuristics. In addition, although special effort has been carried out for gen-

erating a complete set of instances, we consider that further research should be addressed by

building an extensive and exhaustive set of instances for the hybrid flowshop, including bottle-

neck considerations in a stage (see Fernandez-Viagas and Framinan, 2017b), and thus generating

instances that are not solved easily.

Acknowledgements

The authors wish to thank the referees for their comments on the earlier versions of the

manuscript. This research has been funded by the Spanish Ministry of Science and Innovation,

under the project “PROMISE” with reference DPI2016-80750-P.

References
Acero-Dominguez, M. and Paternina-Arboleda, C. (2004). Scheduling jobs on a k-stage flexible

flow shop using a toc-based (bottleneck) procedure. 2004 IEEE Systems and Information
Engineering Design Symposium, pages 295–298.

26

Adams, J., Balas, E., and Zawack, D. (1988). Shifting bottleneck procedure for job shop schedul-
ing. Management Science, 34(3):391–401.

Alaykýran, K., Engin, O., and Döyen, A. (2007). Using ant colony optimization to solve hybrid
flow shop scheduling problems. International Journal of Advanced Manufacturing Technology,
35(5-6):541–550.

Barman, S. (1997). Simple priority rule combinations: An approach to improve both flow time
and tardiness. International Journal of Production Research, 35(10):2857–2870.

Brah, S. and Loo, L. (1999). Heuristics for scheduling in a flow shop with multiple processors.
European Journal of Operational Research, 113(1):113–122.

Campbell, H., Dudek, R., and M.L., S. (1970). Heuristic algorithm for the n job, m machine
sequencing problem. Management Science, 16(10):630–637.

Carlier, J. and Néron, E. (2000). An exact method for solving the multi-processor flow-shop.
RAIRO - Operations Research, 34(1):1–25.

Chung, T.-P., Sun, H., and Liao, C.-J. (2017). Two new approaches for a two-stage hybrid flow-
shop problem with a single batch processing machine under waiting time constraint. Computers
and Industrial Engineering, 113:859–870.

Dannenbring, D. G. (1977). An evaluation of flow shop sequencing heuristics. Management
Science, 23(11):1174–1182.

Dios, M., Fernandez-Viagas, V., and Framinan, J. (2018). Efficient heuristics for the hybrid flow
shop scheduling problem with missing operations. Computers and Industrial Engineering,
115:88–99.

Dong, X., Huang, H., and Chen, P. (2008). An improved NEH-based heuristic for the permutation
flowshop problem. Computers & Operations Research, 35(12):3962–3968.

Engin, O. and Döyen, A. (2004). A new approach to solve hybrid flow shop scheduling problems
by artificial immune system. Future Generation Computer Systems, 20(6 SPEC. ISS.):1083–
1095.

Fernandez-Viagas, V. and Framinan, J. (2015a). A new set of high-performing heuristics to
minimise flowtime in permutation flowshops. Computers & Operations Research, 53:68–80.

Fernandez-Viagas, V. and Framinan, J. (2015b). NEH-based heuristics for the permutation
flowshop scheduling problem to minimise total tardiness. Computers & Operations Research,
60:27–36.

Fernandez-Viagas, V. and Framinan, J. (2017a). A beam-search-based constructive heuristic for
the pfsp to minimise total flowtime. Computers and Operations Research, 81:167–177.

Fernandez-Viagas, V. and Framinan, J. (2017b). Reduction of permutation flowshop problems
to single machine problems using machine dominance relations. Computers and Operations
Research, 77:96–110.

Fernandez-Viagas, V. and Framinan, J. M. (2014). On insertion tie-breaking rules in heuristics
for the permutation flowshop scheduling problem. Computers & Operations Research, 45(0):60
– 67.

Fernandez-Viagas, V., Leisten, R., and Framinan, J. (2016). A computational evaluation of
constructive and improvement heuristics for the blocking flow shop to minimise total flowtime.
Expert Systems with Applications, 61:290–301.

27

Fernandez-Viagas, V., Ruiz, R., and Framinan, J. (2017). A new vision of approximate meth-
ods for the permutation flowshop to minimise makespan: State-of-the-art and computational
evaluation. European Journal of Operational Research, 257(3):707–721.

Fernandez-Viagas, V., Valente, J., and Framinan, J. (2018). Iterated-greedy-based algorithms
with beam search initialization for the permutation flowshop to minimise total tardiness.
Expert Systems with Applications, 94:58–69.

Framinan, J., Gupta, J., and Leisten, R. (2004). A review and classification of heuristics for per-
mutation flow-shop scheduling with makespan objective. Journal of the Operational Research
Society, 55(12):1243–1255.

Framinan, J., Leisten, R., and Ruiz-Usano, R. (2005). Comparison of heuristics for flowtime
minimisation in permutation flowshops. Computers & Operations Research, 32(5):1237–1254.

Goldratt, E. and Cox, J. (1992). The Goal. North River Press.
Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979). Optimization

and Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete
Mathematics, 5:287–326.

Gupta, J. (1971). A functional heuristic algorithm for the flowshop scheduling problem. Opera-
tional Research Quarterly, 22(1):39–47.

Gupta, J. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of the Operational
Research Society, 39(4):359–3641.

Ho, J. (1995). Flowshop sequencing with mean flowtime objective. European Journal of Opera-
tional Research, 81(3):571–578.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal
of Statistics, 6:65–70.

Holthaus, O. and Rajendran, C. (1997). Efficient dispatching rules for scheduling in a job shop.
International Journal of Production Economics, 48(1):87–105.

Hundal, T. and Rajgopal, J. (1988). An extension of palmer’s heuristic for the flow shop schedul-
ing problem. International Journal of Production Research, 26(6):1119–1124.

Jayamohan, M. and Rajendran, C. (2000). A comparative analysis of two different approaches
to scheduling in flexible flow shops. Production Planning and Control, 11(6):572–580.

Johnson, S. (1954). Optimal two- and three-stage production schedules with setup times included.
Naval Research Logistics Quarterly, 1(1):61–68.

Kalczynski, P. J. and Kamburowski, J. (2007). On the NEH heuristic for minimizing the
makespan in permutation flow shops. OMEGA, The International Journal of Management
Science, 35(1):53–60.

Kalczynski, P. J. and Kamburowski, J. (2008). An improved NEH heuristic to minimize makespan
in permutation flow shops. Computers & Operations Research, 35(9):3001–3008.

Kalczynski, P. J. and Kamburowski, J. (2009). An empirical analysis of the optimality rate of
flow shop heuristics. European Journal of Operational Research, 198(1):93 – 101.

Kizilay, D., Tasgetiren, M., Pan, Q.-K., and Wang, L. (2015). An iterated greedy algorithm for
the hybrid flowshop problem with makespan criterion. IEEE Symposium Series on Computa-
tional Intelligence - CIPLS 2014, Proceedings, pages 16–23.

Koulamas, C. and Kyparisis, G. (2000). Asymptotically optimal linear time algorithms for two-

28

stage and three-stage flexible flow shops. Naval Research Logistics, 47(3):259–268.
Kouvelis, P. and Vairaktarakis, G. (1998). Flowshops with processing flexibility across production

stages. IIE Transactions (Institute of Industrial Engineers), 30(8):735–746.
Kurz, M. and Askin, R. (2004). Scheduling flexible flow lines with sequence-dependent setup

times. European Journal of Operational Research, 159(1):66–82.
Lee, C.-Y. and Vairaktarakis, G. (1994). Minimizing makespan in hybrid flowshops. Operations

Research Letters, 16(3):149–158.
Liao, C.-J., Tjandradjaja, E., and Chung, T.-P. (2012). An approach using particle swarm

optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Applied
Soft Computing Journal, 12(6):1755–1764.

Naderi, B., Ruiz, R., and Zandieh, M. (2010). Algorithms for a realistic variant of flowshop
scheduling. Computers and Operations Research, 37(2):236–246.

Naderi, B., Zandieh, M., Khaleghi Ghoshe Balagh, A., and Roshanaei, V. (2009). An improved
simulated annealing for hybrid flowshops with sequence-dependent setup and transportation
times to minimize total completion time and total tardiness. Expert Systems with Applications,
36(6):9625–9633.

Nawaz, M., Enscore, J. E. E., and Ham, I. (1983). A Heuristic Algorithm for the m-Machine,
n-Job Flow-shop Sequencing Problem. OMEGA, The International Journal of Management
Science, 11(1):91–95.

Negenman, E. (2001). Local search algorithms for the multiprocessor flow shop scheduling prob-
lem. European Journal of Operational Research, 128(1):147–158.

Niu, Q., Zhou, T., and Ma, S. (2009). A quantum-inspired immune algorithm for hybrid flow
shop with makespan criterion. Journal of Universal Computer Science, 15(4):765–785.

Norman, B. and Bean, J. (1999). A genetic algorithm methodology for complex scheduling
problems. Naval Research Logistics, 46(2):199–211.

Néron, E., Baptiste, P., and Gupta, J. (2001). Solving hybrid flow shop problem using energetic
reasoning and global operations. Omega, 29(6):501–511.

Palmer, D. (1965). Sequencing jobs through a multi-stage process in the minimum total time -
a quick method of obtaining a near optimum. Operational Research Quarterly, 16(1):101–107.
cited By 346.

Pan, Q.-K., Wang, L., Li, J.-Q., and Duan, J.-H. (2014). A novel discrete artificial bee colony
algorithm for the hybrid flowshop scheduling problem with makespan minimisation. Omega
(United Kingdom), 45:42–56.

Park, Y., Pegden, C., and Enscore, E. (1984). A survey and evaluation of static flowshop
scheduling heuristics. International Journal of Production Research, 22(1):127–141.

Paternina-Arboleda, C., Montoya-Torres, J., Acero-Dominguez, M., and Herrera-Hernandez,
M. (2008). Scheduling jobs on a k-stage flexible flow-shop. Annals of Operations Research,
164(1):29–40.

Pinedo, M. and Chao, X. (1999). Operations Scheduling with Applications in Manufacturing and
Services. McGraw-Hill, New York.

Ribas, I., Leisten, R., and Framinan, J. (2010). Review and classification of hybrid flow shop
scheduling problems from a production system and a solutions procedure perspective. Com-

29

puters and Operations Research, 37(8):1439–1454.
Rinnooy Kan, A. H. G. (1976). Machine Scheduling Problems: Classification, Complexity and

Computations. Martinus Nijhoff, The Hague.
Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop

heuristics. European Journal of Operational Research, 165(2):479–494.
Ruiz, R. and Vázquez-Rodríguez, J. (2010). The hybrid flow shop scheduling problem. European

Journal of Operational Research, 205(1):1–18.
Santos, D., Hunsucker, J., and Deal, D. (1996). An evaluation of sequencing heuristics in flow

shops with multiple processors. Computers and Industrial Engineering, 30(4):681–692.
Soewandi, H. and Elmaghraby, S. (2001). Sequencing three-stage flexible flowshops with iden-

tical machines to minimize makespan. IIE Transactions (Institute of Industrial Engineers),
33(11):985–993.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285.

Wang, S.-Y., Wang, L., Liu, M., and Xu, Y. (2013). An enhanced estimation of distribution
algorithm for solving hybrid flow-shop scheduling problem with identical parallel machines.
International Journal of Advanced Manufacturing Technology, 68(9-12):2043–2056.

Ying, K.-C. and Lin, S.-W. (2018). Minimizing makespan for the distributed hybrid flowshop
scheduling problem with multiprocessor tasks. Expert Systems with Applications, 92:132–141.

Zhong, W. and Shi, Y. (2018). Two-stage no-wait hybrid flowshop scheduling with inter-stage
flexibility. Journal of Combinatorial Optimization, 35(1):108–125.

30

View publication statsView publication stats

https://www.researchgate.net/publication/326680884

	Introduction
	Problem description and background
	Proposed constructive heuristics
	Memory-based constructive heuristics
	Johnson-based Constructive Heuristics

	Computational evaluation
	Testbeds
	Performance indicators
	Experimental parameter tuning
	Implemented heuristics
	Comparison of heuristics

	Conclusions

