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Abstract

This paper addresses the problem of scheduling jobs in a permutation �owshop
with the objective of total completion time minimisation. Since this problem is known
to be NP-hard, most research has focused on obtaining procedures �heuristics� able to
provide good, but not necessarily optimal, solutions with a reasonable computational
e�ort. Therefore, a full set of heuristics e�ciently balancing both aspects (quality of
solutions and computational e�ort) has been developed. 12 out of these 14 e�cient
procedures are composite heuristics based on the LR heuristic by Liu and Reeves
(2001), which is of complexity n3m. In our paper, we propose a new heuristic of
complexity n2m for the problem, which turns out to produce better results than LR.
Furthermore, by replacing the heuristic LR by our proposal in the aforementioned
composite heuristics, we obtain a new set of 17 e�cient heuristics for the problem,
with 15 of them incorporating our proposal. Additionally, we also discuss some
issues related to the evaluation of e�cient heuristics for the problem, an propose an
alternative indicator.
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1 Introduction

A �owshop is a common layout in many manufacturing scenarios (see e.g. Vakharia and Wemmerlov,

1990; Krajewski et al., 1987; Storer et al., 1992) where n jobs must be processed on m machines

in the same order. The so-called �owshop scheduling problem consists in �nding a sequence of

jobs for each machine so certain performance measure(s) is(are) minimised. Additionally, it is

customary to assume that the job sequences will be the same on every machine (permutation

�owshops), along with other hypotheses such as e.g. the simultaneous availability of all jobs and

of all machines, deterministic processing times, etc (for a complete list of these assumptions, see

e.g. Dudek and Teuton, 1964).

Among the objectives considered in the �owshop scheduling problem, the minimisation of the

sum of the completion times of the jobs (or equivalently mean completion time) has been consis-

tently pointed out both as relevant and meaningful for today's dynamic production environment

(Liu and Reeves, 2001). Under the assumption of a zero release time for the jobs, the minimiza-

tion of total (average) completion time is equivalent to total (average) �owtime minimisation,

which leads to stable or even use of resources, a rapid turn-around of jobs and the minimisation

of in-process inventory (Rajendran and Ziegler, 1997). The �owshop scheduling problem with

�owtime objective (denoted as F |prmu|
∑

Cj , according to the notation by Graham et al., 1979)

is known to be NP-hard, therefore most of the research on this topic is devoted to developing ap-

proaches yielding good (but not necessarily optimal) solutions in reasonable computation time.

Obviously, in such approximate methods �or heuristics�, one may expect a trade-o� between

quality of solution and computation time so better solutions are obtained by heuristics requir-

ing longer CPU times. Recently, Pan and Ruiz (2013) present an exhaustive evaluation of the

di�erent heuristics proposed for the problem in the literature taking into account the quality

of the solutions (measured as the average relative percentage deviation over the best known so-

lution) and the CPU time (in seconds). Using these two indicators as in a bicriteria decision

problem, they derive a set of non-dominated (i.e. approximation of a Pareto set) heuristics. This

14-heuristics set can thus be used as a benchmark to propose new e�cient heuristics for the

problem.
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A detailed analysis of this Pareto set reveals that 12 out of the 14 heuristics employ a mecha-

nism for constructing the solutions based in the heuristic by Liu and Reeves (2001). In this paper,

we propose a new heuristic that improves the results with respect to that by Liu and Reeves both

in terms of quality of the solutions and in CPU time. By embedding this new heuristic in several

heuristics in the Pareto set, we obtain a completely new e�cient Pareto set. Additionally, since

the indicators used in the Pareto set by Pan and Ruiz (2013) penalise certain type of heuristics,

we propose an alternative way to measure their e�ciency.

The rest of the paper is organised as follows: In Section 2, the formal problem statement

and the state-of-the-art heuristics are given. Section 3 analyses some issues related with the

performance evaluation of the di�erent heuristics for the problem, and propose some alternative

indicators. In Section 4, a new set of heuristic is presented for the problem. The computational

evaluations are carried out in Section 5. Finally, conclusions are discussed in Section 6.

2 Problem statement and state-of-the-art

The problem under consideration can be stated as follows: n jobs have to be scheduled in a

�owshop consisting of m machines. On each machine i, each job j has a processing time denoted

as pij . The completion time of job j on machine i is denoted as Cij , whereas Ci[j] indicates the

completion time on machine i of job scheduled in position j. Cmj represents the completion time

of job j.

As mentioned in the previous section, a great number of heuristics have been proposed for the

problem. For a detailed presentation and evaluation of all these heuristics, we refer the interested

reader to Pan and Ruiz (2013), and we will describe here only a sub-set which are found to be

state-of-the-art and consequently are the ones used in this paper for comparison.

According to Framinan et al. (2005), heuristics can include one or several of the following

phases: index development, solution construction and solution improvement. A heuristic is

deemed composite if it employs another heuristic for one or more of the three above-mentioned

phases. Otherwise, it is regarded as simple.

The heuristics that we will considered in our paper are the following:
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• Heuristic LR(x) (Liu and Reeves, 2001). This heuristic constructs a solution for the prob-

lem by appending, one by one, the unscheduled jobs (jobs in set U in the following) at the

end of a sequence S of already scheduled jobs. To do so, ξjk an indicator of the suitability

for job j (j ∈ U) to be scheduled in last position (position k + 1 where k indicates the

amount of scheduled jobs in each iteration) is calculated according to:

ξjk = (n− k − 2) · ITjk +ATjk

where ITjk estimates the weighted idle time induced when scheduling job j in position

k + 1, i.e.:

ITjk =

m∑
i=2

m ·max{Ci−1,j − Ci,[k], 0}
i+ k · (m− i)/(n− 2)

and ATjk is the so-called arti�cial �owtime and it is de�ned as the sum of the completion

time of job j plus the completion time of job p, an arti�cial job with processing times

equal to the average processing time of the other jobs in U (excluding job j), and can be

computed as follows:

ATjk = Cmj + Cmp

More speci�cally, the LR(x) heuristic operates as follows:

1. Sort all jobs in ascending order of indicator ξj0 (Let us U denote such ordered set).

Ties are broken in favor of jobs with higher ITj0.

2. Use each of the �rst x ranked jobs in U as the �rst job in S, and then constructs a

solution by appending the rest of the jobs one by one using indicator ξjk

3. Out of the x solutions so obtained, select the one with the minimum �owtime.

• Heuristic LR(x) − FPE(y) (Liu and Reeves, 2001). This is a composite heuristic where

a local search method (denoted FPE(y)) is applied to the solution of LR(x). FPE(y)

consists of the following steps: For each job j in a sequence, this job is exchanged with the
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next y jobs in the sequence, and the �owtimes of the so-obtained solutions are evaluated. If

any of the solutions has improved the �owtime, then the local search procedure is repeated.

Otherwise, the local search stops.

• Heuristic NEH (Nawaz et al., 1983). Originally conceived for minimizing the makespan in

a permutation �owshop, this well-known algorithm has been used as a reference method for

many problems in the literature. Its application to the �owtime minimisation problem was

discussed by Framinan et al. (2003), and it was found that the best option is to �rst sort

the jobs in ascending sum of their processing times. Then, a job sequence is constructed

in the following manner: Assuming a sequence already determined for the �rst k − 1 jobs,

k candidate (sub)sequences are obtained by inserting job k in the k possible slots of the

current sequence. Out of these k (sub)sequences, the one yielding the minimum �owtime is

kept as relative (sub)sequence for these �rst k jobs given by phase one. Then, job k+1 from

the �rst phase is considered analogously, and so on until all n jobs have been sequenced.

• Heuristic Raj (Rajendran, 1993): This heuristic can be seen as a version of the NEH,

but here job k is inserted only in slots ⌊k/2⌋ to k, thus reducing the computation time.

Additionally, jobs are initially sorted in ascending order of index Tj as de�ned in equation

(1), breaking ties in favor of the job with the lowest sum of total processing times.

Tj =

m∑
i=1

(m− j + 1) · pij (1)

• Heuristic LR − NEH(x) (Pan and Ruiz, 2013). This is a composite heuristic where the

last n/4 steps of each x sequences obtained applying the LR(x) procedure are carried out

according to the NEH heuristic instead of the normal procedure of the LR(x) algorithm,

i.e., the �rst 3/4n jobs of each sequence are scheduled according to the LR(x) procedure

and the rest according to the NEH procedure.

• Heuristic RZ (Rajendran and Ziegler, 1997). This heuristic consists of two steps: An initial

ordering, and an improvement phase. With respect to the initial ordering, the jobs are

sorted in ascending order of the total processing times. The improvement phase (denoted
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iRZ in the following) consists of inserting each job in the sequence in the rest of positions

updating the sequence when a better solution is found.

• Heuristic RZ − LW (Li and Wu, 2005). This heuristic consists in iteratively performing

iRZ until no further improvement is found.

• Heuristic ICi (Li et al., 2009). This is a family of composite heuristics where an initial

solution is obtained by using LR(1) and then improved by using di�erent local search

methods. If the local search is performed using the iRZ procedure, then the heuristic is

denoted IC1. Heuristic IC2 performs FPE on the solution obtained by IC1. Finally, IC3

consists of running IC1 and then performing a local search denoted as FPE − R, which

is essentially FPE adding a restart from the �rst job every time the current solution is

improved.

• Heuristic PRi(x) (Pan and Ruiz, 2013). These are several composite heuristics: PR1(x)

performs iRZ on each one of the x sequences obtained by heuristic LR−NEH(x). PR2(x)

�rst run the heuristic LR−NEH(x) and then tries to improve this solution using a VNS-

like (Variable Neighborhood Search) local search method. This method was introduced

by Tasgetiren et al. (2007) and consists in an insertion and interchange variant of the

classical V NS where insertion and interchange movements are repeated until no further

improvement is found. PR3(x) performs x times a iRZ and two NEH methods after an

initial solution obtained by heuristic LR − NEH(10). Finally, PR4(x) replaces the iRZ

method of PR3(x) by a V NS local search. In order to bound the computation time of the

heuristics, if the CPU time reaches the value of 0.01 ·n ·m seconds, a last loop is performed

and the procedure terminates.

The heuristics discussed above constitute the (so-far) set of e�cient heuristics for the prob-

lem, as found by Pan and Ruiz (2013) in their exhaustive analysis of all existing heuristics for

the Fm|prmu|
∑

Cj problem with respect to the quality of the solutions and computational re-

quirements. Since there is a clear tradeo� between the solution obtained by one heuristic, and its

computation time, the authors were able to depict a Pareto set to place the e�cient heuristics for

the problem in view of their performance on the well-known Taillard's testbed (see Figure 1). As
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Figure 1: Pareto set using the average computational time (Pan and Ruiz, 2013)

it turns out, this Pareto set is formed by the following heuristics: Raj, LR(1), RZ, LR−NEH(5),

LR − NEH(10), LR − NEH(15), LR − FPE, PR4(5), PR2(5), PR3(5), PR4(10), PR4(15),

PR2(15) and PR1(15).

From the analysis of the Pareto set, some conclusions can be derived:

• As it can be seen in Table 1, all the e�cient heuristics consist on variation/adaptations

of the following �ve main (or primary) procedures: NEH, LR(x), FPE, iRZ and V NS.

More speci�cally, the LR(x) heuristic is present in 12 of the 14 heuristics in the Pareto set.

• Regarding the complexity of the �ve primary procedures, NEH is known to be O(n3 ·m),

the same complexity as LR. It is easy to check that each iteration of iRZ is O(n3 · m).

Hence, the iRZ has a complexity of k · n3 · m with k the number of iterations in which

there is an improvement in the objective function. The complexity of FPE corresponds

to x · k · n2 ·m (for FPE −R, the worst case is O(x · k · n3 ·m)), with k indicating again

the number of iterations with improvement in the objective function. From the complexity

of these �ve procedures, the complexity of the rest of algorithms in the Pareto set can

be easily obtained (this information is summarised in Table 1). As it can be seen, each
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heuristic in the Pareto set has at least a complexity of n3 ·m. Note that the parameter k

cannot be nor bounded neither linked to the problem size. However, in the computational

experience carried out in Taillard's tested (see Section 5), this value is usually larger than

both n and m.

From these conclusions, it can be seen that LR is a key heuristic of complexity O(n3 · m),

playing a role similar to that of the NEH for makespan minimisation. For this latter problem,

Taillard (1990) showed that the complexity of the NEH can be reduced from O(n3m) to O(n2m)

by using an acceleration mechanism, but unfortunately, such mechanism cannot be used to mini-

mize �owtime. The only acceleration proposed is due to Li et al. (2009), who reported savings in

the CPU time around 30-50%. Nevertheless, the complexity of the NEH remains the same and

thus a way to reduce the complexity of e�cient approximate algorithms for �owtime to O(n2m)

has remained elusive.

In this paper (Section 4) we propose a new heuristic to tackle these two issues, as it outper-

forms LR(x) with a complexity of O(n2m). Given the high number of e�cient heuristics based

on LR, we will be able to obtain an improved Pareto set of e�cient heuristics for the problem by

embedding our proposal into existing heuristics. But �rst in Section 3 we discuss in detail some

shortcomings of the current measures of the e�ciency of the heuristics and propose an alternative

indicator.

3 An alternative representation of the e�ciency of the

heuristics

Aside to proposing e�cient heuristics for the problem, the paper by Pan and Ruiz (2013) repre-

sents an important advance in the evaluation of approximate procedure for combinatorial opti-

mization problems. In most of these problems �including the one under consideration here�, there

is a trade-o� between the quality of the solutions and the time required by the heuristic to obtain

them. Therefore, both aspects should be weighted when selecting one heuristic among the set of

heuristics available for the problem. When facing an speci�c scheduling case, di�erent decision
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Algorithm LR NEH iRZ FPE VNS Complexity

Raj X O(n3 ·m)
RZ X O(n3 ·m)

LR(x) X O(x · n3 ·m)
RZ-LW X O(k · n3 ·m)

LR-NEH(x) X X O(x · n3 ·m)
LR(n/m)-FPE(n) X X O(n4)

IC1 X X O(k · n3 ·m)
IC2 X X X O(k · n3 ·m)
IC3 X X X (r) O(k · n3 ·m)

PR1(x) X X X O(x · k · n3 ·m)
PR2(x) X X X O(x · k · n3 ·m)
PR3(x) X X X O(x · k · n3 ·m)
PR4(x) X X X O(x · k · n3 ·m)

Table 1: E�cient heuristics (Pan and Ruiz, 2013) as variation/adaptation of primary
procedures.

intervals may be required, and di�erent quality of the solution can be accepted. Consequently, in

most cases there is no a priori knowledge of the precise trade-o� required by the Decision Maker.

Then, the idea of representing the heuristics along the two important criteria (quality of solutions

and computational requirements) and excluding the dominated heuristics allows providing the

Decision Maker with the set of Pareto-e�cient heuristics so he/she can select the most convenient

for his/her speci�c case.

Note that, for a given heuristic, di�erent measures can be devised both for its quality of the

solutions and for its computational requirements. In the paper by Pan and Ruiz (2013), these are

measured by the Average Relative Percentage Deviation (ARPD) and by the average CPU time

in seconds, respectively. The ARPD of heuristic h (out of a total of H heuristics) is obtained by

averaging RPDih the Relative Percentage Deviation of heuristic h in instance i over all instances

of Taillard's testbed Taillard (1993):

RPDih =
Cih
sum −min1≤h≤H Cih

sum

min1≤h≤H Cih
sum

· 100 (2)

where Cih
sum is the �owtime obtained by heuristic h when applied to instance i. Similarly,

the average CPU time is obtained by averaging the CPU times required by heuristic h for all

instances in Taillard's testbed.
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Despite the aforementioned advance in the determination of e�cient solutions, using these

two measures in the Pareto set presents a number of issues:

• ARPD is an dimensionless indicator that is normalised with respect to the best result

obtained for each instance, therefore the in�uence of the instance (and thus the instance

size) is somewhat smoothed. In contrast, CPU times are heavily instance and instance-size

dependent. Moreover, given the problem sizes of Taillard's testbed, average CPU times of a

heuristic are heavily compromised by the CPU times obtained for the biggest 10 instances

(those of size 500× 20).

To illustrate this shortcoming, let us consider the NEH heuristic. This heuristic is known

to have a complexity of O(n3 · m) for the problem under consideration, therefore for the

smallest problem size of Taillard's testbed (20× 5) its complexity is O(102), whereas it is

O(1.6 · 108) for size 200× 20 and O(2.5 · 109) for size 500× 20. This enormous di�erences

in computation times imply that, using the CPU time data in Pan and Ruiz (2013), the

average CPU time for the last 20 instances of Taillard's testbed is 0.36 seconds, while the

average for all 120 instances is 0.37 seconds. As a consequence, more than 80% of the

testbed (the �rst 100 instances out of a total of 120) contributes with 0.01 seconds (less

than 5%) to the indicator.

• Besides, Taillard's testbed is not orthogonal with respect to the number of machines and

the number of jobs. More speci�cally, n ranges from 20 to 500, and m ranges from 5 to

20. Therefore, the CPU times required for one (hypothetical) heuristic with complexity

O(n3m) would grow in this testbed much faster than that of another (hypothetical) heuris-

tic with complexity O(n2m2). This could compromise the average results, thus masking

the e�ciency �or ine�ciency� of some heuristics.

An extreme case of the above problem can be exempli�ed with heuristics PR4(10) and

PR4(15). According to the data in Table 3 of the paper by Pan and Ruiz (2013), these

heuristics are found to be e�cient when averaged over all the 120 instances of Taillard's

testbed. However, when the results are disaggregated for each problem size, then it turns

out that they are not e�cient for any size of the testbed. Something similar happens for
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heuristics PR2(15) and PR4(5), which are e�cient in terms of the aggregate results, but

are only e�cient for one instance size (instances 100× 10 and 500× 20 respectively), being

this fact explained by the stopping criterion employed in this heuristic (0.01 ·n ·m seconds

at maximum), a criterion only reached for the three biggest sizes (100 x 10, 200 x 20 and

500 x 20) thus reducing heavily the total average computational time of these heuristics.

In order to overcome these shortcomings, we propose an alternative measure to evaluate the

e�ciency of heuristics. More speci�cally, we propose replacing the CPU time as indicator of the

computational requirements of heuristic h by the Average Relative Percentage computation Time

(ARPTh). ARPTh is de�ned as follows:

ARPTh =

I∑
i=1

RPTih

I

where

RPTih =
Tih −ACTi

ACTi

and

ACTi =

H∑
h=1

Tih/H

where RPTih is the relative percentage computation time obtained by heuristic h for instance

i, Tih is the computation time of heuristic h when appplied to instance i, H is the number

heuristics considered, I the number of instances of the testbed, and ACTi is the average (among

all heuristics considered) computational times for the instance i.

We can employ the data from Pan and Ruiz (2013) to calculate the corresponding values of

ARPT for each heuristic. The results are shown in Table 2, and are represented in two axis in

Figure 2. The set of e�cient heuristics according to the proposed approach is: Raj, LR(1), RZ,

RZ−LW , LR−NEH(5), LR−NEH(10), LR−FPE, IC1, IC2, IC3, PR1(5), PR1(10) and

PR1(15).

It can be checked in Table 2 that the alternative representation of e�ciency is more complete

in the sense that ten heuristics of the thirteen heuristics considered e�cient using ARPT are

indeed e�cient for six or more problem sizes, whereas only three heuristics with less than six
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Algorithm ARPD ARPT
#E�cient Size #E�cient Size

Average CPU times ARPT

Raj 5.02 -1.00 7 7

LIT 8.26 -0.96 0 0
SPD1 17.37 -0.97 0 0
SPD2 16.56 -0.97 1 1
RZ 2.65 -0.97 3 3

WY 2.83 -0.67 0 0
LR(1) 3.13 -0.99 7 7

LR(n/m) 2.29 -0.89 2 2
LR(n) 2.09 0.27 0 0
NEH 4.03 -0.99 1 1
FL 1.99 -0.41 0 0

RZ-LW 1.29 -0.82 4 4

FL-LS 1.22 0.11 0 0
LR-NEH(5) 1.84 -0.94 8 8

LR-NEH(10) 1.75 -0.90 6 6

LR-NEH(15) 1.72 -0.78 3 3
LR-FPE 1.14 -0.81 7 7

LR-BPE 1.23 -0.80 5 5
IH7 1.43 -0.25 0 0

IH7-FL 1.30 -0.22 0 0
C1-FL 1.72 -0.35 0 0
C2-FL 0.95 0.26 1 1
IC1 0.81 -0.75 6 6

IC2 0.66 -0.62 8 8

IC3 0.62 -0.26 6 6

PR1(5) 0.50 -0.15 7 7

PR1(10) 0.39 0.79 4 4

PR1(15) 0.33 1.43 6 6

PR2(5) 0.51 0.54 3 3
PR2(10) 0.41 1.90 3 3
PR2(15) 0.36 2.93 1 1
PR3(5) 0.51 0.04 4 4
PR3(10) 0.46 0.91 2 2
PR3(15) 0.45 1.64 1 1
PR4(5) 0.54 0.69 1 1
PR4(10) 0.45 2.00 0 0
PR4(15) 0.41 2.98 0 0

Table 2: Summary of average results of the heuristics implemented in Pan and Ruiz (2013)
using ARPT . Last two columns show the number of problem sizes where each heuristic
is e�cient using both average CPU times and ARPT . In bold it is indicated when the
heuristic is e�cient when averaged for the 120-instances using either CPU time or ARPT .
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e�cient sizes are included. Furthermore, the data in Pan and Ruiz (2013) expressed the CPU

time with two decimals, therefore for some heuristics the CPU time is 0.00 in some problem sizes,

and in this case it is not possible to establish a realistic trade-o� between CPU time and ARPD.

More speci�cally, heuristics RZ and RZ − LW should have several more e�cient sizes due to

the fact that their CPU time is 0.00 for the �rst 3-5 instance sizes (this may also happen with

as IC1 or IC2, among others). It is worth noting that, using CPU time, six heuristics globally

e�cient are e�cient for six or more problem sizes while there are eight heuristics which have less

than six sizes for which they are e�cient. The average number of e�cient sizes for the fourteen

e�cient heuristics using CPU time is only 4.00, as compared to an average of 6.08 using ARPT .

Furthermore, in order to re-assure that no heuristic is excluded by using the proposed in-

dicator, we conduct a series of experiments to extend the comparison between heuristics PR1

and PR2. Note that, according to the results, PR1 seems to outperform PR2, but the latter is

extremely e�cient for the biggest instances (i.e. 100×10, 200×20, and 500×20). In addition, the

improvement phase of V NS used in Pan and Ruiz (2013) (which includes pairwise interchanges

and insertion movements in an single position) is used as the �rst neighborhood. This may a�ect

the performance of the PR2 heuristic, as more exhaustive insertion movements (such as iRZ)

could be also considered as the �rst neighborhood so the performance of this so-obtained heuristic

(labelled PR2A in the following) is improved. Note however, that PR2A would be much slower

than PR1 and PR2.

Thus, these three heuristics (PR1, PR2 and PR2A) are further compared using Taillard's

testbed. To obtain more points in the Pareto approximation, we extend the initial range of the

stopping criteria and that of parameter x for the fastest heuristics (i.e. PR1 and PR2). More

speci�cally, we test the following stopping criteria: 0.01 · n ·m, 0.05 · n ·m, and 0.1 · n ·m for all

three heuristics, and also 0.2 · n · m for PR1. Regarding the values of x, x ∈ {5, 10, 15, 20, 25}

is used for PR1(x) , x ∈ {5, 10, 15, 20} is employed for PR2(x), whereas x ∈ {5, 10, 15} is used

for PR2A(x). A clear dominance of PR1(x) over PR2(x) and PR2A(x) is obtained from these

results (summarised in Figure 3, where the dotted lines represent quadratic polynomial trend

lines for the heuristics). As a result, in the computational experiments in the following sections,

PR2(x) and PR2A(x) will be excluded.
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Figure 2: Pareto set using the ARPT

In view of the discussion and the results in this section, it seems clear that the evaluation

of the performance of heuristics for the problem is not trivial, and that both the quality of the

solutions and the computational e�ort should be taken into account. Building upon the work

by Pan and Ruiz (2013), an indicator for measuring the computational e�ort has been proposed.

This indicator, although not perfect, presents more consistency between the disaggregated (i.e. at

instance size level) and aggregated (overall) results. Nevertheless, since the state-of-art evaluation

of heuristics for �owtime (that of Pan and Ruiz, 2013) was done using CPU time as indicator,

we report the subsequent results in this paper using also their scheme.

4 The proposed heuristic

The proposed heuristic �denoted in the following as FF (x)� uses the idea present in LR of

decreasing number of the evaluations of solutions, beginning with n− 1 evaluations and �nishing

with 0. Thereby, the heuristic is composed of n − 1 step with a maximum of n − 1 evaluations.

However, in contrast to the LR, we focus in the evaluation of each solution trying to reduce the
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Figure 3: Comparison heuristics PR1, PR2 and PR2A

complexity of the algorithm. When introducing a new job at the end of the sequence, there are

three elements to be considered:

• Idle time induced by the newly inserted job. This idle time in�uences the next jobs to be

inserted. Clearly, this in�uence decreases with each step (being 0 in the last step). Its

calculation has a complexity O(m) since only the completion time of the preceding job in

each machine is required. For a given iteration k, this data is known from the previous

iteration (or zero if it is the �rst job).

• Completion time in machine m of the newly inserted job. Its in�uence in the total �owtime

is clear since the completion time of each job in machine m is included in the objective

function. This data can be calculated within O(m) using the completion time on each

machine of the preceding job.

• Completion time in machine m of the arti�cial job. It seems that it in�uences the objective

function in an indirect manner, as it is an indicator of the completion time in machine m

of the yet unscheduled jobs. It is thus convenient to ensure that the unscheduled jobs

will not have a very large completion time in machine m. However, the calculation of this

completion time has a complexity of n ·m.
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As in the LR heuristic, we intend that, once a job is scheduled in a position, it stays in

this position, then choosing the adequate position of a job is critical. The problem thus lies in

weighting the in�uence of the aforementioned elements. To do so, we use two parameters (a and

b), to balance the �rst two elements, i.e. idle time and completion time of the newly inserted

job. In contrast, we leave aside the third element (completion time of the arti�cial job), since its

in�uence in the objective function is not as direct as the other two elements, and its consideration

would increase the complexity of the algorithm to n3 ·m.

More speci�cally, the proposed heuristic is as follows:

1. Sort the jobs according to a non descending order of indicator ξ
′
j0 (see equation 3), breaking

ties in favor of jobs with lower IT
′
j,0 (see equation 4). Let us denote by I the so-obtained

vector

2. Obtain x partial sequences πi (i = 1, . . . , x) of length 1, where the �rst (and only) job of

sequence πi is the job in position i in I. Store in U i the jobs not scheduled in πi.

3. For k = 1 to n− 1:

(a) For each partial sequence πi, remove from U i the job for which the minimum value

of ξ
′
j,k (see equation 3) is found and place it in the last position of πi.

4. Return the (�nal) sequence πi yielding the lowest completion time.

Therefore, the proposed procedure begins with x sequences (πi with i ∈ [1, x]) with only one

job. The �rst job of each sequence πi is the job in position i of a vector sorted in non descending

order of indicator ξ
′
j0 (equation 3) breaking ties in favor of jobs with higher IT

′
j,0 (equation 4)

and each �nal sequence πi is obtained adding one by one jobs to the last position of the vector.

Let us denote by k the size of the vector in each step until the vector reaches the n jobs. To

insert a new job j (j ∈ U i) in each sequence πi, one of the unscheduled jobs of each sequence, U i,

is removed according to an ascending index of a complexity m, ξ
′
j,k. This index is based on IT

′
j,k

the weighted idle time between the job in position k and the new job j to be inserted, and on

the makespan of the sequence when inserting job j, Cm,j . For each job j ∈ U i, ξ
′
j,k is calculated

as follows:
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Notation using LR Notation using FF

LR(1) FF(1)
LR-NEH(5) FF-NEH(5)
LR-NEH(10) FF-NEH(10)

LR(n/m)-FPE(n) FF(n/m)-FPE(n)
IC1 FF-IC1
IC2 FF-IC2
IC3 FF-IC3

PR1(5) FF-PR1(5)
PR1(10) FF-PR1(10)
PR1(15) FF-PR1(15)

Table 3: Notation for the heuristics using the proposed heuristic FF

ξ
′
j,k =

(n− k − 2)

a
· IT ′

j,k +AT
′
j,k (3)

where AT
′
j,k and IT

′
j,k are de�ned as follow:

IT
′
j,k =

m∑
i=2

m ·max{Ci−1,j − Ci,[k], 0}
i− b+ k · (m− i+ b)/(n− 2)

(4)

AT
′
j,k = Cm,j (5)

being a and b the aforementioned parameters to balance the in�uence of idle times and

completion time of the newly inserted job. Note that by avoiding the calculation of the completion

time of the arti�cial job p (Cmp), the complexity of the algorithm decreases from n3 ·m to n2 ·m,

a complexity n times lower than the fastest heuristics in the e�cient set by Pan and Ruiz (2013).

As explained in Section 3, 10 of the 13 e�cient heuristics using ARPT are based on LR. All

of these 10 heuristics can be reimplemented using FF instead of LR. The notation for this set

of heuristics is shown in Table 3. Additionally, due to the decrease in complexity, FF (x) can be

implemented for larger values of x. Note that LR(n/m)−FPE(n) has a greater complexity than

LR(n/m), i.e. O(n4). Once LR is replaced by FF , FF (n/m)−FPE(n) has a lower complexity

and it can be interesting to perform the heuristic FF (x) − FPE(y) for more values of both x

and y since e.g. now FF (1)− FPE(1) is also O(n2 ·m).
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Source Sum of Squares Df Mean Square F-Ratio p-Value

Main E�ects
n 52.169 4 13.042 20.755 0.000
m 26.724 2 13.362 21.264 0.000
a 7.711 3 2.570 4.090 0.007
b 10.763 2 5.381 8.564 0.000

Interaction
a ∗ b 0.114 6 0.019 0.030 1.000
m ∗ a 6.087 6 1.015 1.614 0.139
n ∗ a 6.063 12 0.505 0.801 0.647
m ∗ b 5.548 4 1.387 2.207 0.066
n ∗ b 13.679 8 1.710 2.721 0.006
n ∗m 110.808 8 13.851 22.042 0.000

Residual 1095.905 1744
Total (corrected) 1335.571 1799

Table 4: ANOVA for the parameters n,m, a, b

Prior to conducting these experiments, the best values for parameters a and b have to be found.

To do so we carry out some computational experiments where di�erent values are tried. After a

�rst screening where di�erent ranges of values were discarded, a multi-factor Analysis of Variance

(ANOVA) was performed with four factors (n, m, a and b) where a ∈ {1, 2, 3, 4}, b ∈ {0, 0.5, 1}.

Factors n andm are those in the testbed by Taillard (Taillard, 1993), which is employed to perform

the analysis. More speci�cally, n ∈ {20, 50, 100, 200, 500} and m ∈ {5, 10, 20}. The results in

Table 4 show that all parameters n, m, a and b are statistically signi�cant. To determine the best

level for each parameter, a Least Signi�cant Di�erence (LSD) interval for each one is carried out

(see Figure 4). Although from this �gure it may seem that there is a monotonic trend for both

a and b, further tests with a > 4 and b > 1 did not produce better results. Therefore, a = 4 and

b = 1 were used for the new set of heuristics FF, FF−FPE,FF−NEH,FF−ICx, FF−PR1(x)

in the next section.

5 Computational experience

In order to compare the performance of the heuristics proposed, the e�cient heuristics described

in Section 3 are implemented and their results on the benchmark set of Taillard (1993) with

120 instances are collected. As mentioned before, Li et al. (2009) showed that heuristics for the
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Figure 4: LSD intervals of the RPD for each level of the parameters a and b.

Fm|prmu|
∑

Cj with insertion and pair-wise exchanges (i.e. all e�cient heuristic but LR) can

be implemented reducing around 30-50% computational times. Thus, in order to conduct a fair

comparison, this acceleration has been implemented in our codi�cation of each insertion method

of all heuristics.

Comparing the CPU time required by each heuristic with those in the paper by Pan and Ruiz

(2013), we found that the former were larger by a factor of 3.38 times on average. This can be

explained due to the di�erent programming languages used to implement the heuristics, to the

di�erent ways of coding the routines and to the di�erent computer employed for the implemen-

tation. However, since the stopping criterion of some heuristics in Pan and Ruiz (2013) was set

to 0.01 · n ·m seconds, applying the same criterion in our slower procedures would penalise the

performance of these heuristics, as they now require more time per iteration and thus will perform

less iterations. Therefore, in order to conduct a fair comparison, we change the stopping criterion

to 0.0338 · n ·m so to have a similar number of iterations to that of Pan and Ruiz (2013).

The overall results of the experiments are summarised in Table 5, where the average results of

each heuristic over all 120 instances are shown. The e�ect of replacing LR by FF is speci�cally

highlighted in Table 6, showing the e�ciency of the proposed heuristics. For instance, the average

computational time of FF (1) is just 0.02s while the average computational time for LR(1) is

0.76s. Not only the complexity of the algorithm has been reduced from n3 ·m to n2 ·m, but the

ARPD of FF (1) is also lower as compared to the ARPD of LR(1).

19



Heuristic ARPD ARPT Average CPU times

LR(1) 3.01 -0.98 0.76
LR(n/m)-FPE(n) 1.02 -0.47 33.07

IC1 0.64 -0.29 41.93
IC2 0.54 -0.08 55.33
IC3 0.53 1.26 330.92

LR-NEH(5) 1.52 -0.75 6.69
LR-NEH(10) 1.44 -0.52 13.37

Raj 4.86 -0.99 0.29
RZ 2.32 -0.90 2.97

RZ-LW 1.13 -0.42 32.69
PR1(5) 0.37 1.93 58.87
PR1(10) 0.26 4.60 67.38
PR1(15) 0.21 7.06 68.54
FF(1) 2.76 -1.00 0.02
FF(2) 2.34 -0.99 0.05

FF(n/10) 1.95 -0.98 0.99
FF(n/m) 2.05 -0.98 0.54
FF(n) 1.83 -0.69 10.12

FF(1)-FPE(1) 2.36 -0.99 0.15
FF(1)-FPE(n/10) 1.81 -0.94 2.89
FF(1)-FPE(n) 1.23 -0.64 21.39
FF(2)-FPE(1) 1.97 -0.97 0.17

FF(2)-FPE(n/10) 1.55 -0.94 3.05
FF(2)-FPE(n) 1.07 -0.63 19.78
FF(15)-FPE(1) 1.58 -0.88 0.44

FF(15)-FPE(n/10) 1.29 -0.86 2.90
FF(15)-FPE(n) 0.96 -0.62 16.89
FF(n/10)-FPE(1) 1.63 -0.96 1.12

FF(n/10)-FPE(n/10) 1.33 -0.92 3.51
FF(n/10)-FPE(n) 0.94 -0.63 18.79
FF(n/m)-FPE(1) 1.70 -0.96 0.64

FF(n/m)-FPE(n/10) 1.37 -0.92 3.11
FF(n/m)-FPE(n) 1.01 -0.64 18.05
FF(n)-FPE(1) 1.53 -0.65 10.27

FF(n)-FPE(n/10) 1.25 -0.62 12.68
FF(n)-FPE(n) 0.94 -0.35 28.00

FF-IC1 0.62 -0.48 25.33
FF-IC2 0.56 -0.26 36.47
FF-IC3 0.55 1.13 300.93

FF-NEH(5) 1.40 -0.86 3.18
FF-NEH(10) 1.34 -0.72 6.33
FF-PR1(5) 0.34 1.37 48.60
FF-PR1(10) 0.24 3.68 58.48
FF-PR1(15) 0.19 5.45 63.03

Table 5: Summary of results of heuristics
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Heuristic ARPD Avg. Time ARPT Heuristic ARPD Avg. Time ARPT

LR(1) 3.01 0.76 -0.98 → FF(1) 2.76 0.02 -1.00
LR(n/m)-FPE(n) 1.02 33.07 -0.47 → FF(n/m)-FPE(n) 1.01 18.05 -0.64

IC1 0.64 41.93 -0.29 → FF-IC1 0.62 25.33 -0.48
IC2 0.54 55.33 -0.08 → FF-IC2 0.56 36.47 -0.26
IC3 0.53 330.92 1.26 → FF-IC3 0.55 300.93 1.13

LR-NEH(5) 1.52 6.69 -0.75 → FF-NEH(5) 1.40 3.18 -0.86
LR-NEH(10) 1.44 13.37 -0.52 → FF-NEH(10) 1.34 6.33 -0.72

Raj 4.86 0.29 -0.99 � � � �
RZ 2.32 2.97 -0.90 � � � �

RZ-LW 1.13 32.69 -0.42 � � � �
PR1(5) 0.37 58.87 1.93 → FF-PR1(5) 0.34 48.60 1.37
PR1(10) 0.26 67.38 4.60 → FF-PR1(10) 0.24 58.48 3.68
PR1(15) 0.21 68.54 7.06 → FF-PR1(15) 0.19 63.03 5.45

Table 6: Comparisons between composite heuristics which include LR and FF heuristics

Regarding the detailed results, those obtained by the heuristics Raj, LR(1), RZ, RZ −LW ,

LR−NEH(5), LR−NEH(10), LR−FPE, IC1, IC2 and IC3 are shown in Table 7 while the

CPU times are shown in Table 10.
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Di�erent values of parameters x and y of the heuristic FF (x)−FPE(y) have been analysed

according to the literature (see e.g. Liu and Reeves, 2001; Pan and Ruiz, 2013). More speci�cally,

x ∈ {1, 2, 15, n/10, n/m, n} and y ∈ {1, n/10, n} have been employed. Regarding the parameters

of the heuristics FF −NEH(x) and PR1(a), the same values than in Pan and Ruiz (2013) (i.e.

x ∈ {5, 10} and a ∈ {5, 10, 15}) are chosen since the analysis of these parameters was already

performed by these authors. Detailed ARPD results are shown in Tables 7, 8 and 9, while

computational results are shown in Tables 10, 11 and 12.

Graphically, the new e�cient set of heuristics using the average computational time is shown

in Figure 5 while new e�cient heuristics using ARPT as time reference are shown in Figure 6.

For the former, the Pareto set is formed by the following heuristics: FF (1), FF (2), FF (2) −

FPE(1), FF (15)− FPE(1), FF (15)− FPE(n/10), FF (15)− FPE(n), FF (n/10)− FPE(n),

FF (n)−FPE(n), FF −IC1, FF −IC2, FF −PR1(5), FF −PR1(10) and FF −PR1(15). For

the latter, the e�cient frontier is: FF (1), FF (2), FF (n/10), FF (n/m), FF (2) − FPE(n/10),

FF (15) − FPE(n/10), FF (n/10) − FPE(1), FF (n/10) − FPE(n/10), FF (n/10) − FPE(n),

FF (n/m) − FPE(n), FF − IC1, FF − IC2, IC2, IC3, FF − PR1(5), FF − PR1(10) and

FF − PR1(15). It represent a total of 17 heuristics in the new Pareto set. 15 of these heuristics

correspond to the new set of heuristics presented in this paper.

Seven paired samples t-test were carried out in order to compare the new set of e�cient

heuristic to the old one. Comparisons were always performed between algorithms with higher

ARPT, i.e.: Raj vs FF (1), LR(1) vs FF (2); LR(n/m)−FPE(n) vs FF − IC1; LR−NEH(5)

vs FF (15)− FPE(n/10); RZ vs FF (n/10)− FPE(n/10); RZ − LW vs FF − IC1 and LR −

NEH(10) vs FF (n/10)−FPE(n). The results of the analysis are shown in Table 13. Statistically

signi�cant di�erences were found for each comparison being 0.000 the maximum p-value found

in the analysis. The Least Signi�cant Di�erence (LSD) intervals for each heuristics are shown in

Figure 7.
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Figure 5: ARPD versus average computational times. X-axis (Average computational
time) is shown in logarithmic scale. Noted that only the e�cient heuristics of the new set

of heuristics are named.

Figure 6: ARPD versus ARPT .
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Heuristics Mean SEM IC - Lower IC - Upper t Signi�cance

Raj vs FF(1) 2.096 1.798 1.770 2.421 12.767 0.000
LR(1) vs FF(2) 0.668 1.507 0.396 0.941 4.857 0.000

LR(n/m)-FPE(n) vs FF-IC1 0.404 0.667 0.283 0.524 6.628 0.000
LR-NEH(5) vs FF(15)-FPE(n/10) 0.233 0.709 0.105 0.361 3.598 0.000

RZ vs FF(n/10)-FPE(n/10) 0.989 1.156 0.780 1.198 9.374 0.000
RZ-LW vs FF-IC1 0.510 0.830 0.360 0.660 6.738 0.000

LR-NEH(10) vs FF(n/10)-FPE(n) 0.500 0.711 0.371 0.628 7.699 0.000

Table 13: Paired samples t-test using Taillard's benchmark.

Figure 7: LSD intervals of the RPD for each analysed heuristics.
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6 Conclusions

In this paper, we have presented a new constructive heuristic denoted by FF (x) for the per-

mutation �owshop scheduling problem to minimise �owtime. This heuristic constructs the �nal

sequence adding jobs, one by one, at the end of the sequence based in the machine idle times and

in the makespan of the inserted job. The complexity of the proposed algorithm is x ·n2 ·m being

lower than the complexity of the heuristics in the actual Pareto set.Since most e�cient heuristics

use the algorithm LR in some of their phases, the latter can be replaced by the new algorithm

FF in each of these heuristics, so a new set of e�cient heuristics is obtained as a benchmark for

new e�cient heuristics for the problem.

Additionally, certain issues have been identi�ed in the evaluation of e�cient heuristics in

the literature. When analysing the trade-o� between the quality of the solutions and the time

required by the heuristic to obtain them, an dimensionless (and relative) variable (ARPD) was

used to represent the former while a dimensional and absolute variable (average computational

time of the heuristic) was used to represent the latter. As discussed earlier in this paper, some

heuristics are deemed as e�cient whereas they are not e�cient for many problem sizes.

The intended contribution of the paper can be summarised as follow:

• FF , a new heuristic of complexity O(n2 ·m) has been presented. This heuristic achieves

better results in terms of both CPU time and ARPD than those obtained by the fastest

e�cient heuristic (with complexity O(n3 ·m)) so far.

• A new set of 17 e�cient heuristics for the problem has been identi�ed. 15 out of these 17

incorporate FF .

• An alternative representation of the e�ciency of heuristics is proposed by introducing the

indicator ARPT for evaluating the computational time of the heuristics resulting in a more

robust Pareto set.
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