
E�cient non-population-based algorithms for the

permutation �owshop scheduling problem with

makespan minimisation subject to a maximum

tardiness

Victor Fernandez-Viagas1∗, Jose M. Framinan1

†

1 Industrial Management, School of Engineering, University of Seville,

Ave. Descubrimientos s/n, E41092 Seville, Spain, {vfernandezviagas,framinan}@us.es

July 19, 2015

Abstract

This paper focuses on the problem of scheduling jobs in a permutation �owshop
with the objective of makespan minimisation subject to a maximum allowed tardiness
for the jobs, a problem that combines two desirable manufacturing objectives related
to machine utilisation and to customer satisfaction. Although several approximate
algorithms have been proposed for this NP-hard problem, none of them can use the
excellent speed-up method by Taillard (1990) for makespan minimisation due to the
special structure of the problem under consideration. In this paper, several properties
of the problem are de�ned in order to be able to partly apply Taillard's acceleration.
This mechanism, together with a novel feasible tabu local search method, allows us
to further exploit the structure of solutions of the problem, and are incorporated
in two proposed algorithms: a bounded-insertion-based constructive heuristic and
an advanced non-population-based algorithm. These algorithms are compared with
state-of-the-art algorithms under the same computer conditions. The results show
that both algorithms improve existing ones and therefore, constitute the new state-
of-art approximate solution procedures for the problem.
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1 Introduction

A permutation �ow shop is a manufacturing layout in which a set of machines are arranged to be

visited by a number of jobs in the same order, assuming that the sequence of the jobs remains the

same for all machines. Usual additional hypotheses include the simultaneous availability of all jobs

and all machines and deterministic processing times, among others (see e.g. Framinan et al., 2014

for a complete list of assumptions). Several criteria can be established to measure the performance

of the di�erent schedules (see e.g. Sun et al., 2011). Among them, the maximum completion

time of a sequence or makespan is related to resource usage (see e.g. Ruiz and Maroto, 2005 and

Fernandez-Viagas and Framinan, 2014b), while tardiness refers to the delay of the completion

time of a job with respect to its committed due date (see e.g. Fernandez-Viagas and Framinan,

2015a and Framinan and Leisten, 2008). Since these are key aspects in manufacturing companies'

competitiveness, it seems appropriate to consider both objectives together. Regarding tardiness

minimisation, customer due dates may be regarded as `hard' constraints (i.e. deadlines) in some

manufacturing scenarios, while in others some �exibility is allowed by the customer as long as

the deviation from the completion times of the jobs is limited. In contrast, makespan is an intra-

company criteria that is related to maximising machine utilisation, which in turns minimises �xed

unit costs. Therefore, one option to balance both objectives is to seek the minimisation of the

makespan while allowing only a given deviation from the committed due dates, expressed as the

maximum tardiness allowed. Note that this problem includes the special case where no deviation

from the jobs' due dates is allowed, thus forcing the ful�lment of the committed due dates.

According to the notation by T'Kindt and Billaut (2006), the problem described in the pre-

vious paragraph can be denoted as Fm|prmu|ϵ(Cmax/Tmax). This problem belongs to the class

of ϵ-constrained multi-criteria scheduling problems, and it has been the subject of several re-

search contributions in the last decades. Since the minimisation of any of the individual cri-

teria (either makespan or maximum tardiness) in a �ow shop is NP-hard, the research e�ort

has focused on approximate procedures providing good �but not necessarily optimal� solutions

in a relative short period of time. In this regard, the works by Daniels and Chambers (1990),

Chakravarthy and Rajendran (1999), Framinan and Leisten (2006), and Ruiz and Allahverdi (2009)
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develop di�erent heuristics either for the problem, or for general cases of the problem. In this

paper, we propose a constructive heuristic and a metaheuristic that exploits the speci�c struc-

ture of solutions of the problem to reduce the search space and to accelerate the evaluation of

solutions. Both algorithms improve existing ones by a larger degree and constitute therefore the

new state-of-art approximate solution procedures for the problem.

The remainder of the paper is structured as follows: Section 2 describes the problem under

consideration and its state-of-the-art. In Section 3, some de�nitions and properties of the problem

are de�ned. Section 4 is devoted to propose two algorithms (a constructive heuristic and a

metaheuristic) which use the properties discussed previously. The algorithms are compared with

the (up to now) state-of-the-art algorithms in Section 4 and, �nally, conclusions are discussed in

Section 5.

2 Problem Statement and State of the Art

In the Fm|prmu|ϵ(Cmax/Tmax) problem under study, n jobs have to be scheduled in a �owshop

composed of m one-machine stage. The processing time of job l on machine i is de�ned as pil.

Following this notation, given a sequence of jobs Π := (π1, . . . , πn), the processing time of job in

position j, πj , is denoted as piπj .

Analogously, Ciπj (Π) denotes the completion time of job πj on machine i according to the

schedule given by Π. The makespan of the sequence Π is given by the completion time of last job

in last machine, Cm,πn(Π), which is denoted as Cmax(Π). Whenever it does not lead to confusion,

the sequence Π is omitted in the notation of the completion times and makespan.

In a similar manner, if dπj is the due date of job πj , its tardiness is de�ned as Tπj (Π) =

max{Cmπj (Π)−dπj , 0} and the maximum tardiness of the sequenceΠ as Tmax(Π) = maxj=1,...,n{Tπj (Π)}.

As with the makespan, Π is omitted when it is clear from the context. The goal of the problem

is to �nd a schedule Π for which the makespan is minimum subject to Tmax(Π) ≤ ϵ.

As mentioned in Section 1, the problem is NP-hard since the minimisation of each individual

criterion is already an NP-hard problem for the permutation �owshop (see e.g. T'Kindt and Billaut,

2006 for a detailed proof). Consequently, the interest lies in �nding e�cient approximate methods
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or heuristics. Given the clear connection between our problem and that of makespan minimisa-

tion, most of the algorithms to solve the problem are based on the best heuristic for makespan

minimisation: i.e. the NEH heuristic by Nawaz et al. (1983). It is then useful to recall the main

steps in the NEH heuristic, which can be described as follows:

1. Jobs are ordered according to non-increasing sum of processing times.

2. A partial sequence is constructed only with �rst job of the previous phase.

3. Each remaining job of initial phase is iteratively inserted in all positions of the partial

sequence. The makespan of all these sequences is evaluated, and the partial schedule for

which the lowest makespan is reached is selected for the next iteration.

4. The procedure is repeated until no more jobs are available.

The above steps make clear that the computational burden of the NEH lies on the evaluation

of all possible insertions in Step 3. In Taillard (1990), a mechanism �named in the following

Taillard's acceleration� is proposed so the computational complexity of evaluating all insertions

is equivalent to that of evaluating one sequence. In order to explain Taillard's acceleration, let us

�rst de�ne three variables (for a more detailed description of the variables, see Taillard, 1990):

• ei,πj : Earliest completion time of job in position j in machine i.

• qi,πj . Once a sequence of jobs has been de�ned (and therefore the makespan of this sequence

is obtained), qi,πj is the di�erence between the makespan and the latest starting time of

job in position j in machine i.

• fi,πj . Earliest completion time of the new job σ when it is inserted before job in position

j in machine i. These are computed using ei,πj and the processing times of σ.

By means of these variables, the partial makespan Cj
max when introducing job σ before job

in position j can be determined using the following expression:

Cj
max = max

i
(fi,πj + qi,πj ) (1)
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As the job σ is inserted in the position with minimum makespan, the makespan of the sequence

is de�ned by:

Cmax = min
j

(Cj
max) (2)

As it can be seen, although the cost of evaluating the insertion slot with lowest makespan is

greatly reduced by Taillard's acceleration, the completion time of each job cannot be obtained

using this mechanism, and therefore its tardiness cannot be computed. As a consequence, none

of the heuristics proposed up-to-now in the literature for the problem under consideration use

this mechanism.

Among the contributions on the Fm|prmu|ϵ(Cmax/Tmax) problem, Daniels and Chambers

(1990) were the �rst in proposing a constructive heuristic. In their heuristic, assuming a partial

sequence Π formed by already scheduled jobs, a (partial) sequence is constructed for each non-

scheduled job uk by placing it as the �rst job, and then scheduling the jobs in Π after uk according

to the NEH algorithm. Out of these so-obtained sequences, the one with the lowest makespan is

chosen for the next iterations (consequently, uk is removed from the non-scheduled jobs set for

the next iteration).

Chakravarthy and Rajendran (1999) propose a simulated annealing algorithm to solve the

Fm|prmu|ϵ(Z/Tmax) where Z = λ · Cmax + (1 − λ) · Tmax, λ ∈ [0, 1]. Clearly, our problem is a

special case of their problem when λ = 1. Their algorithm begins with the best sequence among

the solutions found by the NEH heuristic, the earliest due date rule and the least slack rule

(jobs ordered according to ascending order of dj −
∑m

i=1 pij). The procedure iteratively samples

neighbour solutions (using an adjacent pairwise interchange neighbourhood) until the stopping

criterion is ful�lled.

Framinan and Leisten (2006) propose a constructive heuristic, denoted in the following as FL,

based on the NEH algorithm to solve the Fm|prmu|ϵ(Cmax/Tmax) problem. The heuristic tries

to improve the makespan without worsening the tardiness by using a property of the problem. The

heuristic is compared with those of Daniels and Chambers (1990) and Chakravarthy and Rajendran

(1999) for small and big instances. The results show that the FL outperforms the other ones in
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terms of both the quality of the solutions and the number of the feasible solutions obtained.

Finally, Ruiz and Allahverdi (2009) propose an iterated optimization algorithm to solve the

Fm|prmu|ϵ(Z/Tmax) problem. More speci�cally, they proposed a high-performance Genetic Al-

gorithm (GA in the following) where the selection procedure is based on n-tournament (see

Ruiz and Allahverdi, 2007). The �tness values of the individuals are calculated depending on

whether all individuals are feasible; feasible and infeasible; or only infeasible. The algorithm out-

performs the FL for the Fm|prmu|ϵ(Z/Tmax) problem in an extended benchmark. Nevertheless,

GA and FL were not compared for the speci�c Fm|prmu|ϵ(Cmax/Tmax) problem.

To summarise the state of the art regarding the problem under consideration, there are

some e�cient heuristics for the problem, but their performance is not completely clear, as the

comparison between the most e�cient contributions (i.e. GA and FL) has been only partially

conducted. In addition, both mechanisms made extensive use of insertion neighbourhoods, so it

could be extremely interesting to devise a mechanism similar to that by Taillard to reduce the

computational burden. Finally, it is also to note that all existing procedures make little use (or

no use at all) of the knowledge on the problem domain.

3 Problem Properties

As mentioned in Section 2, Taillard's acceleration does not compute the completion times of each

job and therefore, it cannot be used to compute the maximum tardiness of the sequence. Indeed,

our problem is complicated by the fact that, when inserting a new job σ in position r of an

existing partial sequence, an infeasible solution can be obtained due to either the increase in the

completion times of the jobs after σ, or due to the completion time of job σ itself. In order to

further classify these two possibilities, let us introduce the following de�nitions:

De�nition 3.1 (First Feasible Position). Given a feasible (partial) sequence Π := (π1, . . . , πk),

and a non scheduled job σ, let Π
′
r := (π1, . . . , πr−1, σ, πr, . . . , πk) be the (partial) sequence obtained

by the insertion of σ in position r of Π. Then, the First Feasible Position (FFP ) is de�ned as

follows:

FFP (Π, σ) := argmin
1≤r≤k+1

{Tπj (Π
′
r) ≤ ϵ ∀j = r, . . . , k}
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As it can be seen from the de�nition, FFP is the lowest position where a new job can be

inserted in an existing sequence without causing infeasible due dates in any of the jobs resulting

in positions later than the insertion point. It is clear that, in a given instance of the problem and

a partial sequence Π, it is not possible to obtain feasible schedules by inserting a non scheduled

job σ into a position j < FFP (Π, σ).

Note also that obtaining FFP for a tuple Π and σ does not guarantee that Π
′
j is feasible for

j ≥ FFP , since the computation of FFP does not take into account the potential infeasibility

caused by job σ.

De�nition 3.2 (Last Feasible Position). Given a feasible (partial) sequence Π := (π1, . . . , πk),

and a non scheduled job σ, let Π
′
r := (π1, . . . , πr−1, σ, πr, . . . , πk) be the (partial) sequence obtained

by the insertion of σ in position r of Π. Then, the Last Feasible Position (LFP ) is de�ned as

follows:

LFP (Π, σ) := argmax
1≤r≤k+1

{Tσ(Π
′
r) ≤ ϵ}

In this manner LFP is the highest position r where job πr can be inserted without making

its completion time infeasible. Note that the feasibility of the jobs in positions r + 1, r + 2, . . . is

not considered when computing LFP .

The calculation of both limits is of interest due to some straightforward observations which

follow from both de�nitions:

1. If FFP (Π, σ) > LFP (Π, σ) for a given tuple Π and σ, then no feasible sequence can be

obtained by inserting σ into Π.

2. If FFP (Π, σ) ≤ LFP (Π, σ) for a given tuple Π and σ, then the sequence obtained by

inserting σ in position FFP of Π is feasible.

3. If FFP (Π, σ) ≤ LFP (Π, σ) for a given tuple Π and σ, then at least one feasible sequence

can be obtained by inserting σ in positions between FFP and LFP , inclusive.

4. For a given tuple Π and σ with FFP (Π, σ) ≤ LFP (Π, σ), the set of feasible sequences

obtained by inserting σ in positions between FFP and LFP represent all feasible sequences
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that can be obtained by inserting σ into Π.

Once FFP and LFP are obtained, the sequence with the lowest makespan can be computed

by using Taillard's acceleration between both bounds, i.e.:

Cmax = min
j

(Cj
max) j = FFP, . . . , LFP (3)

where Cmax is obtained using Expressions (1) and (2). Note that the so-found sequence is

not necessarily feasible. The advantage of this mechanism lies in speeding up the computations.

In view of the above expressions, the challenge now is to compute both FFP and LFP in an

e�cient manner. To do so, we introduce the following properties:

Property 3.1. Given an instance of the Fm|prmu|ϵ(Cmax/Tmax) problem, and given a tuple Π

and σ of a partial sequence and a non-scheduled job respectively, then

FFP (Π, σ) := 1 + argmax
j

{Cmπj + min
1≤i≤m

piσ − dπj > ϵ}

is a lower bound for FFP (Π, σ). Furthermore, FFP can be computed in O(n ·m)

Proof. Recall that the completion times of the jobs in Π placed after the insertion of a job

σ must increase at least mini (pi,σ) , i ∈ [1, · · · ,m] (see also Fernandez-Viagas and Framinan,

2014a). Therefore, Cmπj +min1≤i≤m piσ is a lower bound of completion time of job in position j

after the insertion of σ in position r < j. As a consequence, if Cmπj + min1≤i≤m piσ − dπj > ϵ,

then the due date of job in position j is always infeasible, so FFP is a lower bound of FFP .

FFP can be computed in two steps: First M = min1≤i≤m piσ is computed in O(m). Next,

the expression Ej = Cm,πj +M −dπj is computed in O(n ·m) for j = 1, 2, . . . until it veri�es that

Ej > ϵ. It is thus clear that the computation of FFP is O(n ·m).

Property 3.2. Given an instance of the Fm|prmu|ϵ(Cmax/Tmax) problem, and given a tuple Π

and σ of a partial sequence and a non-scheduled job respectively, then LFP can be computed in

O(n ·m).

Proof. First ei,πj the earliest completion times of the jobs before σ are computed in O(n ·m) (see

Section 2). Then, for a position k where σ can be inserted, the completion time of σ is computed
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in O(m) by adding the processing times of σ to ei,πj , and the result is compared to ϵ. Since this

comparison is performed for all positions prior to the candidate position where the new jobs is

to be inserted, it is clear that LFP can be computed in O(n ·m). The detailed pseudo code is

presented in Figure 2.

Equipped with these problem properties, in Section 4 we propose e�cient approximate pro-

cedures based on the insertion of jobs into existing partial schedules. More speci�cally, in Section

4.1 we present a constructive heuristic for the problem whereas in Section 4.2 we present a non-

population based metaheuristic.

4 Proposed Algorithms

In this section, we propose two new approximate algorithms to solve the Fm|prmu|ϵ(Cmax/Tmax)

problem. The �rst one is a constructive heuristic based on a so-called bounded insertion using

some properties of the problem, while the second one is a generic non-population-based algorithm

searching for feasible solutions in each iteration that uses the proposed constructive heuristic as

starting solution. In this manner, we attempt to provide e�cient approximate solutions for a

wide range of decision time intervals. To speed up the computation times, both algorithms use

the problem properties presented in Section 3.

4.1 Bounded-Insertion-Based Constructive Heuristic, BICH

In this Section, we present a constructive heuristic based on a bounded insertion (BICH) that

also repairs infeasibility by means of a tabu local search in each iteration (see pseudo code in

Figure 1).

More speci�cally, the algorithm obtains a sequence Π := (π1, . . . , πn) in the following manner:

Initially, jobs are sorted in non ascending order of the sum of their processing times, so a sorted

sequence α := (α1, . . . , αn) is obtained. The �rst job in the sorted sequence is also the �rst job

in Π, i.e. π1 = α1. Then, the remaining jobs in α are inserted in Π one by one in the following

manner: in iteration k (k ∈ [2, n]), job αk is removed from α and the following steps are carried

out:
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• Compute eiπj , qiπj and fiπj . In this step, the variables required to apply Taillard's

acceleration are calculated here according to the expressions described in Section 2. These

computations can be implemented in O(n ·m).

• Compute FFP . In this step, FFP (Π, αk) is obtained according to Property 3.1.

• Compute LFP . In this step, LFP (Π, αk) is obtained according to Property 3.2.

• Obtaining the best makespan between FFP and LFP inclusive. If FFP ≤ LFP ,

a set of schedules can be obtained when inserting αk between these two indices. To select

the position of insertion in Π, Taillard's acceleration is employed as described in Section 3.

If FFP > LFP , αk is inserted in position LFP . Note that this does not necessarily mean

that the so-obtained partial sequence is infeasible, as FFP is a lower bound for FFP .

• Repairing infeasible solutions. If the resulting partial sequence Π is infeasible, a Fea-

sible Tabu Search (FTS) procedure is performed to try to get to a feasible solution. The

FTS is an iterative procedure which maintains the idea of insertion between FFP and

LFP . First, for each iteration, infeasible jobs are removed from the partial sequence Π and

are randomly ordered. Then, they are successively inserted one by one between the FFP

and LFP indices (inclusive), but in this case the feasibility of each so-obtained sequence is

checked, so Taillard's acceleration cannot be used. Furthermore, a simple tabu procedure

is introduced to avoid cycles: Each job has a tabu list of positions previously chosen. Once

an infeasible job is inserted in a position, this position is added to the tabu list of such job.

Thereby, when a job is to be inserted in the actual sequence, only positions that are not in

its tabu list can be chosen. The tabu lists of all jobs are set to zero if the infeasible jobs of

the current iteration are di�erent from the previous infeasible jobs. Only in this case jobs

from the tabu list can be removed from the lists. The procedure �nishes when either there

are no more infeasible jobs, or when more than x iterations have been run and the number

of infeasible jobs has not decreased during the last iteration. The length of the tabu list

is su�ciently long to allow storing each possible position (here the maximum number of

iterations of the search method i.e. x). Furthermore, when the output sequence of this

procedure is infeasible, the FTS is not further implemented in the rest of iterations of the
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Procedure BICH(x)
α := Jobs ordered by descending sums of processing times where α = {α1, α2, . . . , αn};
Π := {α1};
flag := true;
for k = 2 to n do

Calculate eiπj1
, qiπj1

and fiπj2
for i = 1 . . .m, j1 = 1 . . . k and j2 = 1 . . . k + 1;

for j = 1 to k do

if em,πj
+mini=1...m(piαk

)− dπj
>ε then

FFP = j + 1;
end

end

LFP := CalculateExactlyLFP (Π, αk, k, {eiπj1
});

Test job αk between the positions FFP and LFP of Π;
Π := permutation obtained by inserting αk in the position j ∈ [FFP ,LFP ] of Π
with lowest makespan using Taillard's Acceleration (note that infeasible permuta-
tions are allowed here as feasibility is not checked);
if flag = true then

Π := FeasibleTabuSearch(Π, x);
if Π is infeasible then

flag := false;
end

end

end

end

Figure 1: BICH

BICH heuristic.

The pseudo code of the FTS procedure is shown in Figure 3.

4.2 Advanced Non-Population-Based Algorithm, ANPA

In this Section, an Advanced Non-Population-based Algorithm (ANPA) is proposed as an exten-

sion of the ideas presented in the constructive heuristic BICH. The algorithm tries to improve

the solution by iteratively performing greedy methods and local search methods. The global

procedure of the algorithm is shown in Figure 4.

ANPA starts with the sequence obtained by the heuristic BICH and tries to improve it by

means of a bounded relative local search (denoted as BRLS) explained below in more detail.

Then, the following phases are repeated until the stopping criterion is reached:
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Function CalculateExactlyLFP(π,NewJob, k, {eiπj
})

flag := false;
LFP := 0;
C0 := 0;
for i = 1 to m do

C0 = C0 + pi,NewJob;
end

if C0 − dNewJob > ε then
flag := true;

end

j := 1
while j < k and flag = false do

Cj := 0;
for i = 1 to m do

Cj = max
(
Cj, ei,πj

)
+ pi,NewJob

end

if Cj − dNewJob > ε then
flag := true;

else

LFP ++
end

j ++;
end

return LFP ;
end

Figure 2: Procedure CalculateExactlyLFP
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Procedure FeasibleTabuSearch(π, x)
γ := Infeasible jobs of Π;
nγ := Number of infeasible jobs in Π, |γ|;
nold
γ := nγ + 1

#Iterations = 1;
while nγ !=0 and (nγ < nold

γ or #Iterations <= x) do
Π := Extract jobs γ of Π;
γ := Randomly order infeasible jobs γ;
if Infeasible jobs are di�erent from last iteration then

Empty tabu list;
end

for k = nγ to 1 do

for j = 1 to k do

if eM,πj
+mini(piγk)− dπj

>ε then
FFP = j + 1;

end

end

LFP := CalculateExactlyLFP (Π, γk, k, eiΠj
);

Test job γk in the feasible and non-tabu positions between FFP and LFP of
Π and denote bj the position with the lowest makespan;
Π := permutation obtained by inserting γk in bj;
Add position bj to the tabu list of job γk;

end

nold
γ := nγ

γ := Infeasible jobs of Π;
nγ = |γ|;
#Iterations++;

end

end

Figure 3: Procedure FeasibleTabuSearch

Procedure ANPA(d, x, T )
(Π, Cmax) = BICH(x);
Π = BRLS(Π, Cmax);
while stopping criterion is not reach do

Π1 = Π;
Π1 := randomly remove d jobs from Π1 and insert it in ΠD;
(Π2, Cmax) := ConstructionPhase(ΠD,Π1);
Π2 := BRLS(Π2, Cmax);
Π2 := FeasibleTabuSearch(Π2, x);
Π := SimulatedAnnealingCriterion(Π2, T );

end

end

Figure 4: ANPA
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Procedure ConstructionPhase(ΠD,Π)
for k = n− d+ 1 to n do

Calculate eiπj1
, qiπj1

and fiπj2
for i = 1 . . .m, j1 = 1 . . . k and j2 = 1 . . . k + 1;

for j = 1 to k do

if em,πj
+mini(piπD[k−(n−d)])− dπj

>ε then
FFP = j + 1;

end

end

LFP := CalculateExactlyLFP (π, πD
k−(n−d), k, {eiπj1

});
Test job πD

k−(n−d) between the positions FFP and LFP of Π;

Π := permutation obtained by inserting πD
k−(n−d) in the position j ∈ [FFP ,LFP ]

of Π with the lowest makespan using Taillard's Acceleration (note that infeasible
permutations are allowed here as feasibility is not checked);

end

end

Figure 5: ConstructionPhase

• Jobs Determination Phase. In this phase, d jobs are randomly chosen to be removed

from the sequence. The set of removed jobs is denoted ΠD.

• Construction Phase. Jobs in ΠD are re-inserted one by one in the sequence following

a similar procedure as in the BICH heuristic, but without applying the FTS procedure

after each insertion. This phase is explained in detail in Figure 5.

• Bounded RLS (BRLS). The solution of the previous phase is improved by a relative

local search method. One by one, jobs are removed from the sequence, tried to be inserted

in each position j ∈ [1, n] and �nally, placed in the position with the lowest makespan using

Taillard's acceleration between FFP and LFP inclusive. This procedure �nishes when n

jobs are tried without improving the current best makespan. The pseudo code of this local

search method is shown in Figure 6, which is similar to those in Pan et al. (2008) and in

Fernandez-Viagas and Framinan (2014a).

• Feasible Tabu Search. After the ConstructionPhase and the BRLS procedures, FTS is

implemented in order to try to reach feasibility when the solution is infeasible.

• Simulated Annealing-like Acceptance Criterion. To add diversi�cation to the algo-

rithm, solutions are kept according to a simple simulated annealing procedure. When a
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Procedure BRLS(Π, Cmax)
h = 1;
i = 1;
Πb := Π;
while i <= n do

k := h mod n;
Π0 := remove job πk from Π;
Calculate eiπj1

, qiπj1
and fiπj2

for i = 1 . . .m, j1 = 1 . . . k and j2 = 1 . . . k + 1;

for j = 1 to k do

if em,πj
+mini(piπk

)− dπj
>ε then

FFP = j + 1;
end

end

LFP := CalculateExactlyLFP (Π0, πk, n− 1, {eiπj1
});

Test job πk between the positions FFP and LFP of Π0;
Π := permutation obtained by inserting πk in the position j ∈ [FFP ,LFP ] of
Π with lowest makespan, C

′
max, using Taillard's Acceleration (note that infeasible

permutations are allowed here as feasibility is not checked);
if C

′
max < Cmax then

Cmax = C
′
max;

i = 1;
Πb := Π;

else

i++;
end

h++;
end

return Πb;
end

Figure 6: Bounded Relative Local Search, BRLS
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solution, Π2, is worse than the local search optimum, Π, it is maintained only if:

random ≤ exp

{
−(Cmax(Π

2)− Cmax(Π))

Temperature

}

where random is a random number between 0 and 1 and the Temperature is a function

that depends on parameter T :

Temperature = T ·
∑

∀i
∑

∀j pi,j

n ·m · 10

The temperature parameter has been generated following the suggestions by Osman and Potts

(1989) (see e.g. Fernandez-Viagas and Framinan, 2014a, Pan et al., 2008 and Ruiz and Stützle,

2007 for similar approaches).

4.3 Experimental Parameter Tuning

The proposed algorithms use three parameters: T , d, and x. Therefore, it is interesting to

investigate the values of these parameters for which the algorithms reach the best performance.

Parameter x is used in both BICH and ANPA, while the other two parameters are included

only in ANPA. In order to simplify the experimentation, the three parameters have been tested

only for ANPA, and the value obtained for parameter x was also chosen for the constructive

heuristic BICH. The level of parameters tested are:

• T ∈ [0.1, 0.2, 0.3, 0.4]

• d ∈ [4, 5, 6, 7]

• x ∈ [10, 20, 30]

ANPA is tested following the same calibration test as in Vallada and Ruiz (2010), which in

turn is based in Vallada et al. (2008). This calibration benchmark can be summarized as follows.

The number of jobs and machines is set to n = {50, 150, 250, 350}, m = {10, 30, 50} and due dates

are generated according to the procedure employed by Gelders and Sambandam (1978) using an

uniform distribution between P ·(1−T−R/2) and P ·(1−T+R/2). Parameters T and P take the
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following values in the test: T = {0.2, 0.4, 0.6} and R = {0.2, 0.6, 1.0}. Additionally, processing

times are generated according to a uniform distribution between 1 and 99. For each combination

of parameters n, m, T and R, two instances are generated summing 216 instances. The stopping

criterion adopted is to halt the procedure when the CPU time in milliseconds reaches the value

n · (m/2) · 20.

To establish statistically signi�cant di�erences between parameters T, d and x, a non-parametric

Kruskal-Wallis test is performed, since the normality and homoscedasticity assumptions required

for an analysis of variance were not satis�ed. As a result of the test, statistically signi�cant

di�erences between the levels of the parameters x and T were found, but not for d since the

signi�cance values were 0.011, 0.000 and 0.870 respectively. The best combination of parameters

was found for d = 5, T = 0.4 and x = 30, so these were used in the computational experience

carried out in the next section.

5 Computational Results

In this Section, the performance of the proposed algorithms BICH and ANPA is compared with

the best algorithms so far for the problem, i.e. the GA by Ruiz and Allahverdi (2009) and the

constructive heuristic FL by Framinan and Leisten (2006). Additionally, two e�cient heuristics

for makespan minimisation (i.e. the NEH heuristic, and the iterated greedy algorithm, IGRS_LS)

are included in the comparison as they are two of the most e�cient constructive heuristic and

iterative improvement algorithm, respectively. The adaptations of these heuristic to our problem

are denoted A_NEH and A_IGA, respectively. When adapting both methods to the proposed

problem, the following assumptions are adopted:

• The objective function remains the original of these algorithms, i.e. the minimisation of

makespan.

• In the insertion phases of the algorithms, only feasible sequences are considered, i.e. the

jobs to be inserted are placed in the feasible position with the lowest makespan.

• Taillard's acceleration is removed from both algorithms since the calculation of the tardiness
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for each job does not allow its use.

To be able to determine the most e�cient algorithms for the problem, all methods have

been coded under the same programming language, C#, and under the same computer (an

Intel Core i7-3770 with 3.4 GHz and 16GB RAM). The algorithms are tested using the set of

instances of the benchmark of Vallada et al. (2008), which includes n = {50, 150, 250, 350} jobs

and m = {10, 30, 50} machines. Processing times are generated following an uniform distribution

[1, 99] as well as the due dates are generated according to Gelders and Sambandam (1978) as

explained in Section 4.3 with T = {0.2, 0.4, 0.6} and R = {0.2, 0.6, 1.0}. 5 instances are obtained

for each combination of n, m, T and R forming a total of 540 instances. Furthermore, in order

to increase the accuracy of the iterated improvement algorithms, �ve runs have been performed

per instance and the average values are recorded for the makespan and for the CPU times.

The same stopping criteria as in Ruiz and Allahverdi (2009) are applied for the iterative

improvement algorithms. These stopping criteria depend on the size of the instance (i.e. the

number of jobs and machines) following the expression t · n ·m · /2 milliseconds where the values

2, 5, 20 and 60 are tested for the parameter t. The FL and BICH constructive heuristics stop

naturally when their �nal sequences are constructed.

Due to the fact that the problem under consideration is subject to maximum tardiness, the

evaluation of the quality of both constructive and iterative algorithms is not trivial. Usually, the

decision maker would �rst look for the feasibility of the solutions (i.e. tardiness of each job lower

than the maximum tardiness) and, once it is achieved, he/she would look for a low value in the

makespan. Finally, the quality of the sequences obtained by each algorithm has to be balanced

against the time interval required to obtain the sequences, as the high CPU time requirements

posed by some of the algorithms may not be acceptable for some scenarios. Therefore, there is a

trade-o� among these goals that increases the di�culty of a direct comparison of the algorithms.

To make an exhaustive analysis of all these aspects, three indicators have been chosen to determine

the quality of the solutions obtained by the algorithms, as well as the CPU time required to obtain

the solutions. The indicators are:

• Number of feasible solutions obtained by each procedure.
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• Makespan value of the solution (in terms of Average Relative Percentage Deviation) ob-

tained by each procedure.

• Number of instances with the best solution obtained by each procedure.

These indicators are discussed in the next subsections.

5.1 Number of Feasible Solutions

The average number of feasible solutions obtained by the algorithms are shown in Table 1. For

494 instances out of the 540 instances in the benchmark it was possible to �nd a feasible solution

by one/several algorithms. Among them, 492 feasible solutions were found by ANPA for the

stopping criterion t = 60, being the best algorithm in terms of the number of feasible solutions

obtained. Next is the ANPA heuristic with 491 feasible for the stopping criteria t = 2, t = 5

and t = 20, 490 for the BICH heuristic. 457 feasible solutions were found by GA with t = 60

followed by the FL heuristic with 448 feasible solutions. The worst results were obtained for

A_NEH and A_IGA algorithms.

It is worth to note that both BICH and ANPA found more feasible solutions within lesser

CPU time than the rest of the procedures, a remarkable result specially as BICH had very small

CPU requirements. As it can be seen in the Table 1 and in Figure 7, the e�cient algorithms

following this criterion would be: BICH, ANPA(t = 2) and ANPA(t = 60).

5.2 Average Relative Percentage Deviation

The makespan of the solutions obtained by each algorithm can be evaluated by means of the

Relative Percentage Deviation (RPD), which can be de�ned as follows:

RPDi =
Cmax,i −Best

Best
· 100

where Cmax,i is the makespan of algorithm i while Best is the best known value of the

makespan (the lowest among the implemented heuristics). It has to be noted that RPD is
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Figure 7: Number of feasible solutions vs Average CPU times for each algorithm. X-Axis
is shown in logarithmic scale.
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Table 1: Values of the three quality indicators and the average CPU time of each algorithm

Algorithm #Feasible Solutions # Best Instances ARPD Average CPU Time (s.)
A_NEH 277 9 2.83 1.27
BICH 490 14 3.24 0.43
FL 448 1 6.96 15.22

ANPA(t = 2) 491 69 0.76 6
A_IGA(t = 2) 303 26 1.32 6

GA(t = 2) 435 18 2.73 6
ANPA(t = 5) 491 80 0.52 15
A_IGA(t = 5) 314 28 1.13 15

GA(t = 5) 439 26 2.23 15
ANPA(t = 20) 491 112 0.20 60
A_IGA(t = 20) 333 43 0.80 60

GA(t = 20) 446 39 1.63 60
ANPA(t = 60) 492 491 0.00 180
A_IGA(t = 60) 342 68 0.56 180

GA(t = 60) 457 47 1.37 180

computed only if a feasible solution is found by the algorithm, otherwise the results would be

greatly biased.

The average RPD (denoted as ARPD) is shown in Table 1. Since certain algorithms do

not �nd feasible solutions for some instances for which others do, the ARPD is calculated with

di�erent sample sizes depending on the algorithm, e.g. 333 instances for A_IGA(t = 20) and

instances 491 by ANPA(t = 20). This fact might cause that algorithms with lesser feasible

solutions than other ones could have less ARPD, as it is the case with A_IGA(t = 20) and

A_IGA(t = 60) as compared to GA(t = 60). Nevertheless, we also include it in the analysis

since it is the usual way in which this analysis is carried out (see e.g. Framinan and Leisten, 2006;

Ruiz and Allahverdi, 2009). As it can be seen in Figure 8, the e�cient heuristics with ARPD

as indicator would be A_NEH, BICH, ANPA(t = 2), ANPA(t = 5), ANPA(t = 20) and

ANPA(t = 60). In order to statistically justify this statement, we use Holm's procedure (Holm,

1979) with the following hypotheses:

• H1: ANPA(t = 2) = GA(t = 2)

• H2: ANPA(t = 2) = A_IGA(t = 2)
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Figure 8: ARPD vs Average CPU times for each algorithm. X-Axis is shown in logarithmic
scale.

22



Table 2: Holm's procedure for multiple hypotheses. R indicate that hypothesis is reject
by Mann-Whitney and/or Holm's procedure

i Hi p-value Mann-Whitney α/(k − i+ 1) Holm's Procedure
1 ANPA(t = 2) = GA(t = 2) 0.000 R 0.0056 R
2 ANPA(t = 2) = A_IGA(t = 2) 0.000 R 0.0063 R
3 ANPA(t = 5) = GA(t = 5) 0.000 R 0.0071 R
4 ANPA(t = 5) = A_IGA(t = 5) 0.000 R 0.0083 R
5 ANPA(t = 5) = FL 0.000 R 0.0100 R
6 ANPA(t = 20) = GA(t = 20) 0.000 R 0.0125 R
7 ANPA(t = 20) = A_IGA(t = 20) 0.000 R 0.0167 R
8 ANPA(t = 60) = GA(t = 60) 0.000 R 0.0250 R
9 ANPA(t = 60) = A_IGA(t = 60) 0.000 R 0.0500 R

• H3: ANPA(t = 5) = GA(t = 5)

• H4: ANPA(t = 5) = A_IGA(t = 5)

• H5: ANPA(t = 5) = FL

• H6: ANPA(t = 20) = GA(t = 20)

• H7: ANPA(t = 20) = A_IGA(t = 20)

• H8: ANPA(t = 60) = GA(t = 60)

• H9: ANPA(t = 60) = A_IGA(t = 60)

The p-value of each hypothesis is calculated using a non-parametric Mann-Whitney test (see

Pan et al., 2008). Then, Holm's procedure orders the hypotheses according to these p-values in

non-decreasing order. The procedure rejects hypothesis i if its p-value is lower than α/(k− i+1)

where k is the number of hypotheses. The results of this statistical analysis are shown in Table

2. As the p-values are always lower than α/(k − i+ 1), each hypothesis is rejected justifying the

statement regarding the e�cient algorithms in terms of their ARPD. In fact, each p-value of the

non-parametric Mann-Whitney analysis is 0.000.
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5.3 Number of instances with the best makespan

The third indicator used in this paper is the number of instances where each algorithm �nds the

best solution. This indicator is related to both the feasibility and the makespan in each instance

of the algorithm. Results are shown in Table 1 for each algorithm. On the one hand, regarding the

constructive heuristics, the BICH algorithm �nds the best solution in 14 instances as compared

to the 9 and 1 of the A_NEH and FL heuristics respectively. On the other hand, the ANPA

algorithm is clearly the best with 69, 80, 112 and 491 instances for the stopping criteria t =

2, 5, 20 and 60 respectively. Regarding the other two iterative improvement algorithms (A_IGA

and GA), A_IGA slightly improves GA for each stopping criterion. Taking into account this

indicator, the e�cient algorithms would be BICH, ANPA(t = 2), ANPA(t = 5), ANPA(t =

20) and ANPA(t = 60), as shown in Figure 9.

5.4 Summary

Although the determination of the best algorithms for the problem under study is not trivial due

to the existence of infeasible solutions, the proposed algorithms BICH and ANPA have been

found to be the most e�cient algorithms for each one of the three indicators analysed. With

respect to the rest of the algorithms, it is not clear whether A_IGA outperforms GA or vice

versa, since the latter A_IGA is better for the last two indicators, but �nds less feasible solutions.

The same happens when comparing FL and A_NEH.

Regarding the computational time requirements, note that the average CPU time is both

instance- and instance-size- dependent indicator (see Fernandez-Viagas and Framinan, 2015b).

However, similar results are also found when using a dimensionless time indicator. Particularly,

the average relative percentage computation time described in Fernandez-Viagas and Framinan

(2015b) has been tested with similar results. In order not to excessively increase the extension of

the paper, these �ndings are not detailed.
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Figure 9: Amount of best solutions vs Average CPU times for each algorithm. X-Axis and
Y-Axis are shown in logarithmic scale.
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5.5 Di�erent Distributions for the Processing Times

The above analyses have been performed with processing times following a uniform distribution,

as it is usual in the literature for the PFSP (see e.g. the benchmarks of Taillard, 1993 and

Demirkol et al., 1998). In this Section, three additional benchmarks have been generated using

di�erent distributions for the processing times in order to evaluate the robustness of the results.

The procedure to generate the three benchmarks is the same as in Vallada et al. (2008), with

the exception of the distribution of the processing times, which follow Exponential (positive and

negative) and Normal distributions, respectively. Hence a total of 540 instances are generated

per benchmark representing a total of 1620 instances. In order to have homogeneous results, the

same mean (i.e. 50.5) is chosen for those distribution. In the case of the normal distribution,

the standard deviation is chosen to achieve a moderate variation of the processing times which

means, according to Hopp and Spearman (2000), a coe�cient of variation between 0.75 and 1.33.

Therefore, a value of 1 is used for the coe�cient of variation. Additionally, the distributions

are truncated and the lower bound and upper bounds are set to 1 and 100, the same as in

the uniform distribution. A summary of the results is shown in Table 3 for the aforementioned

three indicators. The results are very similar to that found using the uniform distribution (see

Table 1). Additionally, the excellent behaviour and the e�ciency of the two proposed algorithms

(for the three indicators) are also con�rmed in these benchmarks being e.g. the ARPD of the

ANPA(t = 60) algorithms less than 0.01.

6 Conclusions

This paper addresses the permutation �ow-shop scheduling problem to minimise the makespan

subject to that the tardiness of jobs does not exceed a given maximum tardiness. After analysing

the problem and deriving some properties, a constructive heuristic BICH and a non-population

based algorithm ANPA are proposed. The performance of both algorithms has been evaluated

against the FL and GA algorithms which are the (up to now) state-of-the-art algorithms for the

problem under study on an extensive benchmark of 540 instances. Additionally, two of the most

e�cient algorithms for the Fm|prmu|Cmax problem are also included in the comparison. The
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Table 3: Values of the three quality indicators and the average CPU time of each algorithm
considering di�erent distributions of the processing times. The exponential distribution
(positive and negative) are denoted by EP and EN respectively, as well as the normal

distribution is denoted by N.

Algorithm
#Feasible Solutions # Best Instances ARPD Average CPU Time (s.)
EP EN N EP EN N EP EN N EP EN N

A_NEH 354 253 316 3 17 8 2.63 2.90 2.82 1.34 1.34 1.23
BICH 537 458 495 3 15 9 2.73 3.57 3.10 0.58 0.75 0.36
FL 490 420 443 0 3 2 6.19 9.47 6.96 14.18 17.53 13.90

ANPA(t = 2) 537 458 495 34 84 55 0.63 0.88 0.73 6 6 6
A_IGA(t = 2) 392 270 343 8 27 25 1.24 1.48 1.38 6 6 6

GA(t = 2) 511 416 433 5 19 18 2.10 3.54 2.57 6 6 6
ANPA(t = 5) 538 459 495 47 96 69 0.43 0.59 0.49 15 15 15
A_IGA(t = 5) 403 281 352 9 38 28 1.07 1.26 1.17 15 15 15

GA(t = 5) 515 426 445 8 36 21 1.74 2.88 2.13 15 15 15
ANPA(t = 20) 538 459 495 77 122 98 0.17 0.23 0.19 60 60 60
A_IGA(t = 20) 421 292 364 19 55 40 0.77 0.90 0.84 60 60 60

GA(t = 20) 522 442 454 20 51 34 1.26 2.08 1.53 60 60 60
ANPA(t = 60) 538 459 495 535 455 490 0.00 0.01 0.00 180 180 180
A_IGA(t = 60) 432 304 370 35 84 57 0.55 0.63 0.59 180 180 180

GA(t = 60) 526 444 457 29 65 43 1.04 1.69 1.26 180 180 180

e�ciency of the two algorithms proposed has been shown according to three di�erent measures of

the quality of the solutions: number of feasible solutions, average relative percentage deviation,

and number of instances with the best solution. Among the 494 feasible instances found in the

benchmark, ANPA(t = 60) �nds the best solution for 491 instances with an ARPD equal to

0.00. The performance of BICH is also noteworthy, as it improves several iterative improvement

algorithms using much lesser CPU time. These results are also con�rmed in other three di�erent

benchmarks (of 540 instances each one) generated using three di�erent distributions for the

processing times of the jobs.
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