
E�cient constructive and composite heuristics for the

Permutation Flowshop to minimise total earliness and

tardiness∗

Victor Fernandez-Viagas1, Manuel Dios1, Jose M. Framinan1†

1 Industrial Management, School of Engineering, University of Seville,

Camino de los Descubrimientos s/n, 41092 Seville, Spain, {vfernandezviagas,mdios,framinan}@us.es

May 19, 2016

Abstract

In this paper we address the problem of scheduling jobs in a permutation �owshop
with a just-in-time objective, i.e. the minimization of the sum of total tardiness
and total earliness. Since the problem is NP-hard, there are several approximate
procedures available for the problem, although their performance largely depends
on the due dates of the speci�c instance to be solved. After an in-depth analysis
of the problem, di�erent cases or sub-problems are identi�ed and, by incorporating
this knowledge, four heuristics are proposed: a fast constructive heuristic, and three
di�erent local search procedures that use the proposed constructive heuristic as initial
solution.

The proposed heuristics have been compared on an extensive set of instances
with the best-so-far heuristic for the problem, as well as with adaptations of e�cient
heuristics for similar scheduling problems. The computational results show the ex-
cellent performance of the proposed algorithms. Finally, the positive impact of the
e�cient heuristics is evaluated by including them as seed sequences for one of the
best metaheuristic for the problem.

Keywords: Scheduling, Flowshop, Heuristics, PFSP, earliness, tardiness

∗Preprint submitted to Computers & Operations Research. http://dx.doi.org/10.1016/j.cor.2016.05.006
†Corresponding author. Tel.: +34-954487214; fax: +34-954487329.

1



1 Introduction

The �owshop is a common manufacturing layout of a shop (Storer et al., 1992) in which a set

of machines are visited by a number of jobs following each one the same route. The �owshop

scheduling problem deals with establishing the sequence of jobs before each machine in the shop.

If the sequence of jobs before each machine is di�erent, extensive use of manpower or advance

machines would be needed to reorder the jobs between each pair of machines. To avoid this, the

most common simpli�cation of the problem is the so-called Permutation Flowshop Scheduling

Problem (denoted as PFSP) where the sequence of jobs is the same for all machines. The PFSP

is one of the most studied Operations Research problems in the literature (see e.g. reviews in

Reza Hejazi and Sagha�an, 2005, Framinan et al., 2004 and Ruiz and Maroto, 2005). Among the

goals usually employed for this optimisation problem, the most commonly used are the minimisa-

tion of makespan (see e.g. Pan et al., 2008, Nawaz et al., 1983 and Fernandez-Viagas and Framinan,

2014), the minimisation of total completion time (see e.g. Pan and Ruiz, 2013, Fernandez-Viagas and Framinan,

2015c and Dong et al., 2013) and the minimisation of total tardiness (see e.g. Vallada et al., 2008,

Framinan and Leisten, 2008 and Fernandez-Viagas and Framinan, 2015d). The �rst two objec-

tives are related to both a balanced use of the machines and the fast processing of the jobs,

whereas total tardiness focuses on customers' satisfaction. None of them �ts into a just-in-time

philosophy where both the excess of inventory in the shop and the delays on the due dates should

be avoided, due to the fact that just-in-time approaches aim to reduce the following aspects

(Vollman et al., 1997):

• the complexity of detailed material planning,

• the need for shop-�oor control,

• the work-in-process and �nal inventories, and

• the transactions associated with shop-�oor and purchasing systems.

Given the acceptance of just-in-time systems in practice, there is a growing interest in

the last decades in analysing scheduling problems where both earliness and tardiness are pe-

nalised (see e.g. reviews Baker and Scudder, 1990, Lau� and Werner, 2004, Józefowska, 2007

2



and Shabtay and Steiner, 2012). This type of problems is collectively known as E/T problems.

More speci�cally, the problem under consideration is the PFSP to minimise total earliness and

tardiness, which is denoted as Fm|prmu|
∑

Ej +
∑

Tj according to the notation in e.g. Pinedo,

1995. Furthermore, insertion of idle time is not allowed, which represents a common assump-

tion in the literature due to its undesirable e�ects in certain production environments (see e.g.

Józefowska, 2007 and Schaller and Valente, 2013).

Some exact approaches and approximate algorithms have been proposed in the literature

for the problem under study. However, both the NP-hard nature of the problem (see M'Hallah,

2014) and the huge computation times required by the optimal approaches even for small instances

(not more than 20 jobs) justify the need to develop fast approximate algorithms. Thereby, several

algorithms have been proposed for the problem, such as those by Zegordi et al. (1995) and by

M'Hallah (2014). In this paper, four new e�cient heuristics (one constructive heuristic and three

composite heuristics) are proposed. These heuristics incorporate several properties and a speed

up procedure in order to reduce and accelerate the search space of the heuristics. The subsequent

computational experience shows that the proposed heuristics outperform the best-so-far heuristics

for the problem, as well as adaptations of other state-of-the-art heuristics for related problems.

The rest of the paper is organised as follows. The background of the problem is discussed in

Section 2. In Section 3, the problem under study is described and some properties are established.

The proposed algorithms are explained in Section 4. A speed up procedure for the insertion phase

of the heuristics as well as a complete comparison among the implemented heuristics is performed

in Section 5. Additionally, the in�uence of using the heuristics as seed sequences in the best so-far

metaheuristic (ILS) is discussed. Finally, in Section 6, conclusions are presented.

2 Literature Review

As explained in Section 1, there are several contributions to our problem. Since the heuristics

proposed in Section 4 use a speed-up procedure and are based on particular properties of the

instance depending on the its due dates, the literature review is divided in the following items:

• Procedures for E/T problems on a permutation �owshop where idle time cannot be inserted.

3



• Identi�cation of similar instances of the scheduling problem depending on their due dates.

• Speed-up procedures for related PFSP.

Regarding �owshop scheduling problems with E/T objective without insertion of idle times,

Moslehi et al. (2009) propose an optimal algorithm for the PFSP with two machines to minimise

the sum of maximum earliness and tardiness. Di�erent branch-and-bound algorithms are devel-

oped by Madhushini et al. (2009) for several multi-objective functions including total earliness

and tardiness. Zegordi et al. (1995) was �rst in proposing an approximate algorithm (a simulated

annealing algorithm) to solve the PFSP to minimise the sum of weighted earliness and tardiness.

Schaller and Valente (2013) propose a genetic algorithm (GA) that outperforms several meta-

heuristics for related problems, also yielding favourable results regarding the CPU times when

compared to the algorithm proposed by Zegordi et al. (1995). Finally, M'Hallah (2014) proposes

an Iterated Local Search (ILS) where a variable neighborhood descent is iteratively repeated after

a perturbation mechanism. This algorithm is shown to yield better results than the GA.

It is worth noting that both the GA and the ILS algorithms use the NEHedd (originally pro-

posed for the Fm|prmu|
∑

Tj by Kim, 1993) and the Earliest Due Date or EDD rule respectively,

which are either very simple seed sequences or simple adaptations from another research prob-

lems. The NEHedd is an adaptation of the NEH heuristic, originally proposed by Nawaz et al.

(1983) for the PFSP to minimise makespan. The main steps of the NEH are:

1. An initial order vector, ΠIO := (πIO
1 , . . . πIO

n ), is formed by sorting the jobs according to

a given order. In the original formulation for makespan minimisation, jobs are sorted in

non-increasing order of the sum of their processing times. If jobs are ordered according to

di�erent criteria �such as the EDD rule, or in ascending order of the sum of their processing

times�, the algorithm is denoted NEHedd or NEH-�owtime, respectively.

2. A partial sequence, Π1, is constructed with the �rst job of the initial order, i.e. Π1 =

(π1
1) = (πIO

1 ).

3. For k = 2 to k = n the following procedure is repeated: Job πIO
k is inserted in each position

of Πk−1 (k positions are tested) and the corresponding objective function value is evaluated.

4



Then, the πIO
k job is inserted in the partial sequence Πk−1 in the position with the lowest

objective function value, denoted as l, Πk = (πk−1
1 , . . . πk−1

l−1 , π
IO
k , πk−1

l , . . . πk−1
k−1).

Regarding the characterization of the problem depending on the due dates of the instance,

Bagchi et al. (1986) have divided the single-machine E/T problem with common due date in two

di�erent single-machine problems depending on the common due date. Chandra et al. (2009) have

extended the argumentation for the PFSP with common due dates and classify the problem into

three di�erent cases. Fernandez-Viagas and Framinan (2015b) have divided the Fm|prmu|
∑

Tj

with di�erent due dates for each job in four areas depending on the means and variances of the

due dates, each area representing a di�erent optimization problem.

Finally, due to the NP-hard nature of PFSP, researchers have substantially improved their re-

sults by using speed-up procedures. The most well-known of these procedures is the speed-up algo-

rithm for the NEH developed by Taillard (1990), employed for the FPSP with makespan objective.

Using this speed-up procedure, the complexity of the insertion step decreases an order of n (i.e.

from n2 ·m to n·m) and therefore, the complexity of the NEH decreases from O(n3m) to O(n2m).

This speed-up procedure has been successfully adapted to similar scheduling problems involving

makespan minimisation (see e.g. Naderi and Ruiz, 2010, Fernandez-Viagas and Framinan, 2015a,

Rios-Mercado and Bard, 1998 and Fernandez-Viagas and Framinan, 2015b), although it cannot

be directly applied for other objectives in the PFSP since it computes the completion time of the

last job in the last machine (i.e. makespan), but not the completion time of each job. Never-

theless, Li et al. (2009) take advantages of the invariance of the completion times of jobs prior

to the insertion position for the PFSP to minimise �owtime,so saving between 30-50% of CPU

time are achieved. A similar procedure is also proposed by Vallada and Ruiz (2010) for the

Fm|prmu|
∑

Tj . This procedure can be directly applied for the problem under consideration

and therefore is introduced in each insertion mechanism of the algorithms implemented in this

paper.

5



3 Analysis of the problem

The problem under consideration can be stated as follows: n jobs have to be scheduled in a

�owshop composed of m machines. Each job j has a processing time on each machine denoted

as tij , and a due date dj . Given a sequence of jobs Π := (π1, . . . πn), let us denote Cij(Π) the

completion time of job j on machine i according to sequence Π. The completion time of the last

job on the last machine, Cm,πn(Π) = Cmax(Π), is denoted as makespan or maximum completion

time of the sequence. Note that Cij(Π) can be recursively calculated as follows:

Cij(Π) = max{Ci−1,j(Π), Ci,j−1(Π)}+ tij

The tardiness and earliness of job j in sequence Π are de�ned as Tj(Π) = max{Cmj(Π)−dj , 0}

and Ej(Π) = max{dj −Cmj(Π), 0} respectively. Finally, the total tardiness (earliness) is de�ned

as
∑

Tj(Π) =
∑

∀j max{Cmj(Π)− dj , 0} (
∑

Ej(Π) =
∑

∀j max{dj − Cmj(Π), 0}).

It is clear that extremely tight or loose due dates in one instance may lead to a di�erent

problems. For the problem under study (Fm|prmu|
∑

Ej +
∑

Tj), this fact is evident according

to the following two properties:

Property 3.1. Let I be an instance of the Fm|prmu|
∑

Ej +
∑

Tj problem, and WM the worst

(maximum) makespan for the instance. If dj ≥ WM ∀j, an optimal solution for I is obtained by

solving the corresponding Fm|prmu| −
∑

Cj problem for I.

Proof. Since each due date is greater or equal than the worst makespan WM , then each due date

dj is greater or equal than its completion time, Cmj(Π) (i.e. dj ≥ WM ≥ Cm,j(Π), ∀j,Π). Hence,

minimising
∑

∀j max{Cm,j(Π) − dj , 0} +
∑

∀j max{dj − Cm,j(Π), 0} = 0 +
∑

∀j dj − Cm,j(Π) =∑
∀j dj −

∑
∀j Cm,j(Π) = const−

∑
∀j Cm,j(Π).

Property 3.2. Let I be an instance of the Fm|prmu|
∑

Ej +
∑

Tj problem verifying that dj ≤∑m
i=1 tij ∀j. Then, an optimal solution for I can be obtained by solving the corresponding

Fm|prmu|
∑

Cj problem for I.

Proof. Considering dj ≤ tj ∀j, each completion time Cm,j(Π) (∀ Π) is greater or equal than its

due date, dj , since tj is a lower bound of the makespan of the job j. Hence
∑

∀j max{Cm,j(Π)−

6



dj , 0} +
∑

∀j max{dj − Cm,j(Π), 0} =
∑

∀j(Cm,j(Π) − dj) + 0 =
∑

∀j Cm,j(Π) −
∑

∀j dj =∑
∀j Cm,j(Π) + const.

From these properties, it is clear that extremely loose due dates transform the problem into a

PFSP with the objetive of �owtime maximization. Extremely tight due dates lead to a problem

similar to the PFSP with �owtime minimisation. Both bounds represent opposite objective

functions and therefore, algorithms speci�cally focused on yielding good solutions for instances

with loose due dates would necessarily perform bad for tight due dates. Thereby, depending on

the due dates, three di�erent scheduling problems can be solved: the Fm|prmu|
∑

Cj problem in

case of tight due dates, the Fm|prmu|−
∑

Cj problem in case of loose due dates and the original

Fm|prmu|
∑

Ej +
∑

Tj problem in the rest of the cases. This fact speaks for the di�culties to

�nd constructive heuristics that perform well for the problem, which in our opinion is re�ected

by the fact that the NEH �an algorithm not designed for this speci�c problem� is the only

constructive heuristic proposed so far.

Typically, the good performance of a constructive heuristic is due to the fact that the objective

computed in the iterations of the algorithm is similar to the objective function of the problem.

Thereby, when minimising e.g. total �owtime in the PFSP, the choice of a partial sequence

ful�lling the minimisation of total �owtime clearly seems to have a good performance when the

sequence is completed. This is a consequence of having a regular measure as objective. Since this

is not the case for our problem, the algorithm may not work well. In fact, the aforementioned

properties con�rm this fact and show how the objective of the constructive heuristics in their

iterations could be distorted: A partial sequence could have loose due dates but, once completed,

these due dates would become tight and thus, the algorithm would solve a completely di�erent

objective during its iterations than the objective function. This fact could also explain the

good performance of composite heuristics as compared to constructive heuristics (as discussed in

Section 5.5).

In order to overcome the aforementioned problems, e�cient heuristics for the problem under

consideration should be designed according to the following ideas:

• They should be very fast in order to work as soon as possible with complete sequences. In

7



this manner, it is easier to identify whether the instance has loose due dates, or tight ones.

• They should incorporate an analysis of both sequenced and non-sequenced jobs in each

iteration.

• They should avoid the use of local search procedures operating with non-complete se-

quences.

Based on these ideas and on the properties discussed before, a number of algorithms are

proposed. These are discussed in the next section.

4 Proposed Algorithms

Following the recommendations in the previous section regarding very fast heuristics and complete

local search methods, four heuristics are proposed for the Fm|prmu|
∑

Ej +
∑

Tj problem:

• an adaptive constructive heuristic (see Section 4.1), denoted as ACH1,

• a composite heuristic (see Section 4.2), denoted as ACH2, composed by ACH1 plus a

bounded local search procedure labelled BLS,

• a composite heuristic (see Section 4.2), denoted as ACH3, formed by ACH1 plus an iterative

bounded relative local search method, iBRLS,

• a composite heuristic (see Section 4.2), denoted as ACH4, formed by ACH1 and an iterative

local search method, iLS.

Additionally, a speed-up procedure is described in Section 4.3 to accelerate the insertion phases

of all implemented algorithms.

4.1 Proposed Constructive Heuristic

ACH1 tries to �nd a good solution using very short computational times so it can embedded

in more sophisticated constructive and composite heuristics such as the ones proposed in the

next subsections. The procedure of this heuristic is relatively simple: Beginning with a partial

8



sequence with a single job, the procedure constructs a �nal sequence appending one by one jobs at

the end of the partial sequence according to an index ξujk
(Π). Let us denote by Πk := (π1, ..., πk)

the partial sequence in iteration k and by Uk the set of unsequenced jobs of that sequence (ujk

the jth unsequenced job with j ∈ [1, n− k]). Additionally, let NTk be the number of tardy jobs

in iteration k in Uk. The algorithm chooses the job from Uk with the lowest value of ξujk
(Πk) and

places it at the end of sequence Πk, i.e. in position k+1, forming the sequence Πk+1 of the next

iteration. This procedure has been shown to be very e�cient for other decision problems, being

the appropriate choice of the index the critical issue for the e�ciency of the algorithm (see e.g.

Fernandez-Viagas and Framinan, 2015c). This di�culty increases in our case due to the strong

dependence of the best solutions on the due dates of the jobs. The index must be adapted to solve

di�erent problems depending on the due dates (loose due dates, tight ones, or neither of them).

In Section 3, three di�erent situations have been identi�ed: tight due dates (Fm|prmu|
∑

Cj

decision problem), loose due dates (Fm|prmu| −
∑

Cj decision problem) and normal due dates

(Fm|prmu|
∑

Ej +
∑

Tj). Therefore, at each iteration, the algorithm would check whether the

sequence is within one of these cases:

• Case 1: Tight due dates (i.e., the problem is similar to the Fm|prmu|
∑

Cj). There

are hundred of heuristics solving the Fm|prmu|
∑

Cj in the literature. Particularly,

Fernandez-Viagas and Framinan (2015c) designed an e�cient constructive heuristic fol-

lowing a similar procedure of insertion in last position of the partial sequence. There, jobs

are chosen according to the ξ1ujk
(Πk) index, Equation (1), which considers the minimiza-

tion of the completion time and the weighted idle time of the candidates jobs (i.e. uik with

j ∈ [1, n− k]) to be inserted:

ξujk
(Πk) = ξ1ujk

(Πk) =
(n− k − 2)

4
· ITujk

(Πk) + Cm,ujk
(Πk) (1)

where ITj(Π
k) are:

ITujk
(Πk) =

m∑
i=2

m ·max{Ci−1,ujk
(Πk)− Ci,πk

(Πk), 0}
i− 1 + k · (m− i+ 1)/(n− 2)

(2)

9



In this paper, this index is directly incorporated into the ACH1 heuristic when due dates

of jobs are tight, assuming that this is the case if, in iteration k, the fraction of tardy jobs

in the partial sequence is equal to or greater than a. More speci�cally, the index is used

if a · 100% (NTk/(n − k) ≥ a) and there are at least four tardy jobs. Note that a is a

parameter of the algorithm which is introduced in order to determine when the algorithm

is adapted to solve Fm|prmu|
∑

Cj . The suitable values for a are discussed later.

• Case 2: Loose due dates (the problem is similar to Fm|prmu| −
∑

Cj). We divide this

case in two cases depending on how loose the due dates are. The idea behind these two

subcases is to separate the case where all due dates are extremely high (the earliness can

be omitted and the problem is similar to the Fm|prmu| −
∑

Cj) and where only some of

the due dates are extremely high (earliness should be also considered). To the best of our

knowledge, there are no algorithms for the PFSP to maximise total �owtime as it is not a

common objective to be followed by companies. Therefore, we consider the inverse index

for the �rst subcase, ξujk
(Πk) = −ξ1ujk

(Πk). The conditions to apply this index are ful�lled

when there are at least four candidates (n − k > 3), all candidates in iteration k are in

earliness (i.e. Cm,ujk
(Πk) < dujk

∀j), and NEk = n− k where NEk is the number of jobs

in Uk whose earliness is higher than (n− k) · c. On the other hand, when due dates are not

so loose (this fact is measured by the condition b · (n− k) ≤ NEk < n− k) we consider the

index ξ2 which adds the earliness of job Eujk
(Πk) to the index −ξ1:

ξujk
(Πk) = ξ2ujk

(Πk) = −(n− k − 2)

4
· ITujk

(Πk)− Cm,ujk
(Πk) + Eujk

(Πk) (3)

Note that b and c are parameters of the proposed algorithm.

• Case 3: Neither loose nor tight due dates, i.e. the instance is a pure Fm|prmu|
∑

Ej+
∑

Tj

problem. When a job is inserted at the end of the sequence, the algorithm should focus in

the minimization of total earliness and tardiness. Then, we try to place each candidate at

the end of the partial sequence and, in order to select the job to be inserted, we focus on

the minimisation of earliness by using the index in Equation (4):

10



Case Condition ξujk (Π
k) index

Tight due dates
NTk/(n− k) ≥ a

ξ1ujk
(Πk)

NTk > 3

Loose due dates (Subcase 1)
Cm,ujk (Π

k) < dujk , ∀j
−ξ1ujk

(Πk)n− k > 3
NEk = n− k

Loose due dates (Subcase 2)
Cm,ujk (Π

k) < dujk , ∀j
ξ2ujk

(Πk)n− k > 3
b · (n− k) ≤ NEk < n− k

Neither loose nor tight due dates Otherwise ξ3ujk
(Πk)

Table 1: Summary of cases in the ACH

ξujk
(Πk) = ξ3ujk

(Πk) = Eujk
(Πk) (4)

Note that the minimisation of earliness implicitly takes into account also tardy jobs as their

earliness is equal to zero and then, they would be the �rst to be chosen.

The di�erent values adopted by ξujk
(Πk) are summarized in Table 1 together with the corre-

sponding conditions. Once the index has been identi�ed, we choose the job with the lowest value

and place it at the end of the current partial sequence. Ties are broken according to the weighted

idle time of the candidate jobs (ITujk
(Πk)) for all cases.

Finally, note that, when inserting a job at the end of the sequence, the completion time of

previous last job remains the same and hence, only the completion times of the inserted job on

each machine has to be computed, which can be easily done in O(m). Analogously, earliness time

and/or weighted idle time of each candidate job can be computed with complexity m. Thereby,

the proposed ACH1 constructive heuristic has the same order of complexity than the NEH.

However, the heuristic heavily decreases the CPU time due to the complexity of each evaluation,

which is simply m. Therefore, the complexity of the proposed heuristic is (n+1)·n
2 ·m ∼ O(n2 ·m).

The pseudo code of the ACH1 heuristic is shown in Figure 1.

4.2 Proposed Composite heuristics

Once a sequence has been obtained by the fast ACH1 constructive heuristic, it can be improved by

three di�erent insertion-based local search methods, leading to composite heuristics. The �rst two

local search methods try to reduce the computational e�ort required in each iteration by avoiding

11



Procedure ACH1
Determination of each ITj,0, CTj,0 and Ej,0

π1 := Job with least value of Ej,0 breaking ties in favor of the job with the lowest ITj,0;
Π1 = (π1)
for k = 1 to n− 1 do

Determination of each ITujk
(Πk), Cm,ujk

(Πk), NTk, NEk, and Eujk
(Πk), ∀j ∈ [1, n−

k];
if NTk/(n− k) ≥ a & NTk > 3 then

for j = 1 to k − n do

ξujk
(Πk) = ξ1ujk

(Πk) = (n−k−2)
4

· ITujk
(Πk) + Cm,ujk

(Πk)

end

else if AllEarliness & n− k > 3 & NEk = n− k then

for j = 1 to k − n do

ξujk
(Πk) = −ξ1ujk

(Πk) = − (n−k−2)
4

· ITujk
(Πk)− Cm,ujk

(Πk)

end

end

else if AllEarliness & n− k > 3 & b · (n− k) ≤ NEk < n− k then

for j = 1 to k − n do

ξujk
(Πk) = ξ2ujk

(Πk) = − (n−k−2)
4

· ITujk
(Πk)− Cm,ujk

(Πk) + Eujk
(Πk)

end

end

else

for j = 1 to k − n do

ξujk
(Πk) = ξ3ujk

(Πk) = Eujk
(Πk)

end

end

α:= Job with the lowest value of ξujk
(Πk) in iteration k, breaking ties in favor of

the job with the lowest ITujk
(Πk).

Πk+1:= Permutation obtained by inserting job α at the end of sequence Πk.
end

end

Figure 1: ACH1

12



Procedure ACH2()
(Π,

∑
Ej +

∑
Tj) = ACH1();

(Π,
∑

Ej +
∑

Tj) = BLS(Π,
∑

Ej +
∑

Tj);
end

Figure 2: ACH2

the insertion of a job far from its optimal position in order to accelerate the intensi�cation of the

procedures. The idea is to bound the positions where the jobs are inserted between P1 and P2,

which are de�ned in Equations (5) and (6).

P1 = min{PAS , Pedd} (5)

P2 = max{PAS , Pedd} (6)

where Pedd is the position in the EDD rule of πj , and PAS is the position that πj should have

in the actual sequence in order to get a minimum value of Eπj and Tπj .

Recently, bounded local search methods have been successfully applied to scheduling problems

(see e.g. Fernandez-Viagas and Framinan, 2015a and Fernandez-Viagas and Framinan, 2015b).

The key of this success comes from the reduction of the search space in each iteration of the local

search methods in order to avoid sequences that are far from the optimum, therefore decreasing

the computational e�ort of the algorithms. More speci�cally, the proposed composite heuristics

are:

• ACH2. It performs a bounded local search (denoted BLS) after the ACH1 heuristic. The

BLS tries to insert each πj in each position between P1 and P2. Pseudo code of both

ACH2 and BLS methods are shown in Figures 2 and 3 respectively.

• ACH3. It performs an iterative bounded local search method, denoted as iBRLS after the

ACH1 heuristic. Similarly to the BLS method, the iBRLS tries to iteratively insert each

job πj between P1 and P2 until there is no improvement after trying n consecutive jobs.

Pseudo code of ACH3 and iBRLS are detailed in Figure 4 and 5 respectively.

• ACH4. This heuristic carries out a iterative local search method (iLS) after the ACH1

13



Procedure BLS(Π, OF )
OFb = OF
for j = 1 to n do

Π0 := remove job πj from Π;
Calculate P1 and P2;
Test job πj between the positions P1 and P2 of Π0;
Π := permutation obtained by inserting πj in the position j ∈ [P1, P2] of Π0 with
less total earliness and tardiness, OF

′
;

if OF
′
< OFb then

OFb = OF
′
;

Πb := Π;
end

end

return Πb and OFb;
end

Figure 3: Bounded Local Search, BLS

Procedure ACH3()
(Π,

∑
Ej +

∑
Tj) = ACH1();

(Π,
∑

Ej +
∑

Tj) = iBRLS(Π,
∑

Ej +
∑

Tj);
end

Figure 4: ACH3

14



Procedure iBRLS(Π, OF )
OFb = OF
h = 1;
i = 1;
Πb := Π;
while i <= n do

j := h mod n;
Π0 := remove job πj from Π;
Calculate P1 and P2;
Test job πj between the positions P1 and P2 of Π0;
Π := permutation obtained by inserting πj in the position j ∈ [P1, P2] of Π0 with
less total earliness and tardiness, OF

′
;

if OF
′
< OFb then

OFb = OF
′
;

i = 1;
Πb := Π;

else

i++;
end

h++;
end

return Πb and OFb;
end

Figure 5: Iterative Bounded Relative Local Search, iBRLS

15



Procedure ACH4()
(Π,

∑
Ej +

∑
Tj) = ACH1();

(Π,
∑

Ej +
∑

Tj) = iLS(Π,
∑

Ej +
∑

Tj);
end

Figure 6: ACH4

Procedure iLS(Π, OF )
OFb = OF
flag := false;
while flag = false do

flag := false;
for j = 1 to n do

Π0 := remove job πj from Π;
Test job πj in each position of Π0;
Π := permutation obtained by inserting πj in the position j of Π0 with less
total earliness and tardiness, OF

′
;

if OF
′
< OFb then

OFb = OF
′
;

Πb := Π;
flag := true;

end

end

end

return Πb and OFb;
end

Figure 7: Iterative Local Search, iLS

heuristic. This local search method simply tries to place each job πj in the rest of po-

sitions of the current sequence and has been extensively used in the literature (see e.g.

Ruiz and Stützle, 2007, Li and Wu, 2005 and Pan and Wang, 2012). The procedure is re-

peated until there are no more improvements. Pseudo codes for ACH4 and iLS methods

are shown in Figures 6 and 7.

4.3 Speed Up Procedure

In this Section, a simple speed-up procedure to accelerate the insertion phases of the algorithms

for the Fm|prmu|
∑

Ej +
∑

Tj problem is described. Let Πk be a partial sequence with k jobs

and l the job which is to be inserted in position j ∈ [1, k+1]. Similarly to the speed up methods

proposed by Li et al. (2009) and Vallada and Ruiz (2010), this method stores the completion

16



time of each job on each machine of the partial sequence Πk. When the job l is inserted in each

position j of the partial sequence, the completion times of the jobs prior to this position j are

already known and do not have to be recomputed. According to several studies, this procedure

reduces the CPU times between 30% and 50% and is therefore introduced in each insertion phase

of all algorithms implemented in this paper.

5 Computational Experience

In this paper, the proposed algorithms are compared against the most e�cient heuristics in the

literature. The procedure adopted to evaluate the algorithms is the following: First, we introduce

the set of instances used for both the experimental parameter tuning and the comparison among

heuristics. In Section 5.2, a full factorial design of experiments is carried out to �nd the best

values of the parameters of the algorithms proposed. The algorithms under comparison are listed

in Section 5.3. The indicators to de�ne the e�cient heuristics are introduced in Section 5.4. Using

these indicators, constructive and composite heuristics are compared in Section 5.5, leading to the

identi�cation of the set of e�cient heuristics for the problem. Finally, in Section 5.6, the e�cient

heuristics are compared as seed sequences of one of the best metaheuristic for the problem.

5.1 Benchmark

In this Section, the following two di�erent sets of instances are presented to evaluate the algo-

rithms. Note that di�erent sets of instances are used in order to avoid an over calibration of the

proposed heuristics when the parameters a, b and c are de�ned. These sets are:

• Benchmark B1 for the calibration of the proposed heuristics. This benchmark is composed

of a set of 1,080 instances generated according to the procedure by Vallada and Ruiz (2010).

The benchmark is formed by 10 instances for each combination of n = {50, 150, 250, 350},

m = {10, 30, 50}, T = {0.2, 0.4, 0.6} and R = {0.2, 0.6, 1.0}, where T and R are parameters

related to the mean and standard deviation of the due dates respectively. These due dates

are generated using the procedure described by Potts and Van Wassenhove (1982), i.e.

following a uniform distribution between P · (1 − T − R/2) and P · (1− T + R/2), where

17



P is a lower bound for the makespan. Processing times are generated using a uniform

distribution [1, 99].

• Benchmark B2 for comparison among the implemented heuristics. This benchmark is com-

posed of a set of 540 instances of Vallada et al. (2008) (available in http://soa.iti.es) and

is the most extended benchmark for the PFSP with due dates. This benchmark con-

sists of �ve instances for each combination of n = {50, 150, 250, 350}, m = {10, 30, 50},

T = {0.2, 0.4, 0.6} and R = {0.2, 0.6, 1.0}. Processing times are generated using a [1,99]

uniform distribution.

5.2 Experimental Parameter Tuning

The proposed heuristic ACH1 uses three parameters: a, b and c. In this section, a full factorial

design of experiments is carried out to determine their best values on the set of instances B1.

The following values are chosen for the experiments:

• a = {0.8, 0.85, 0.9, 0.95, 1},

• b = {0.4, 0.45, 0.5, 0.55, 0.6},

• c = {25, 30, 35, 40, 45, 50, 55}

In each instance, the ACH1 heuristic is evaluated according to Equation (7):

RPD1 =
OF −Base

Base
· 100 (7)

where OF and Base are the solutions obtained by the ACH1 heuristic and a reference algorithm

(NEHedd) respectively.

Since normality and homoscedasticity assumptions are not ful�lled, a non-parametric Kruskal-

Wallis test is carried out. The p-values are 0.267, 0.865 and 0.000 for parameters a, b and c

respectively. Results show that there is statistically signi�cant di�erences only between the levels

of parameter c. Additionally, among the 175 combinations of a, b and c, the best results are

found for a = 0.90, b = 0.55 and c = 30. These values are subsequently used in each heuristic

which incorporates the ACH1, i.e. ACH2, ACH3 and ACH4.

18



5.3 Implemented algorithms

The performance of the proposed heuristics is tested against the most e�cient heuristics for the

problem, as well as for some of the most e�cient heuristics for similar scheduling problems. More

speci�cally, due to their excellent performance (see computational evaluations by Pan and Ruiz,

2013 and Rad et al., 2009), the following heuristics are considered:

• NEHeddor: NEHeddor is the NEHedd heuristic proposed by Kim (1993) for Fm|prmu|
∑

Tj .

The speed up procedure described in Section 4.3 is not applied to maintain its original ver-

sion.

• NEHeddet: Heuristic NEHeddor using the speed up procedure in Section 4.3. Additionally,

the evaluation of total tardiness in each iteration is replaced by the evaluation of the sum

of total earliness and tardiness.

• Raj: Adaptation of the Raj heuristic by Rajendran (1993), originally proposed for the

Fm|prmu|
∑

Cj problem. To adapt the heuristic to our problem, the speed up procedure

in Section 4.3 is applied, and the original evaluation of total �owtime is replaced by the

evaluation of total earliness and tardiness. Additionally, the original initial order is replaced

by the EDD rule.

• RZ: Adaptation of the RZ heuristic by Rajendran and Ziegler (1997) proposed for the

Fm|prmu|
∑

Cj problem, with the initial order replaced by the EDD rule. The speed up

procedure is applied, and the evaluation of total �owtime is replaced by the evaluation of

total earliness and tardiness.

• RZ_LW: Adaptation of the RZ_LW heuristic by Rajendran and Ziegler (1997), originally

proposed for the Fm|prmu|
∑

Cj problem. The speed up procedure is applied and the

evaluation of total �owtime is replaced by the evaluation of total earliness and tardiness.

Furthermore, the EDD rule is used as initial order.

• FRB4k: Adaptation of the FRB4k heuristic by Rad et al. (2009), originally proposed for the

Fm|prmu|Cmax problem. The evaluation of the makespan is replaced by the evaluation of

19



the total earliness and tardiness, and the speed up procedure by Taillard (1990) is replaced

by the proposed one. As in the NEHeddet, the original order is replaced by the EDD rule.

All heuristics are fully recoded for the Fm|prmu|
∑

Ej +
∑

Tj problem under the same

computer conditions, which means:

• Under the same computer (an Intel Core i7-3770 with 3.4 GHz and 16 GB RAM).

• Using the same programming language (algorithms have been coded in C#).

• Using the same libraries and common functions.

5.4 Indicators to evaluate the heuristics

Since each heuristic requires di�erent CPU time, their comparison is not straightforward, as there

is a trade-o� between the quality of the solutions (usually measured by means of the Average

Relative Percentage Deviation ARPD) and the computational e�ort required (usually measured

using the Average Computational E�ort ACT ). These indicators are de�ned as follows:

ACTi =

∑
∀j Ti,j

J
(8)

ARPDi =

∑
∀j RPD2i,j

J
(9)

with Ti,j the average computational time (in seconds) required by heuristic i in instance j

among 5 independent runs, J is the number of instances, and ARPDi is the average RPD2i,j of

heuristic i over all instances, which is de�ned by Expression (10):

RPD2i,j =
OFi,j −BestConstj

BestConstj
· 100 (10)

with OFi,j the total earliness and tardiness for heuristic i in instance j and BestConstj is the

best value found among the implemented constructive heuristics (see bounds in online materials).

The use of both indicators to compare heuristics is very extended in the literature. However, a

direct comparison between both indicators presents several problems related to the weight of each

problem size, as shown by Fernandez-Viagas and Framinan (2015c). To avoid them, in addition

20



to report the results in terms of ACT , we also use the average relative percentage time, ARPTi

indicator of heuristic i, de�ned by (11) (note that 1 is added to the quotient to avoid negative

numbers).

ARPTi =

∑
∀j RPTi,j

J
+ 1 (11)

with RPTi,j the relative percentage time of heuristic i in instance j, de�ned by Equation

(12).

RPTi,j =
Ti,j −ACTj

ACTj
(12)

In the following, we assume that one heuristic outperforms another in an instance if both their

RPD and RPT are lower. A heuristic e is thus denoted e�cient for an instance if it outperforms

the rest of heuristics in this instance. Similarly, one heuristic is labelled e�cient is there is no

other heuristic with lower values of both ARPD and ARPT measured over a full testbed. The

set of e�cient heuristics is denoted as A.

5.5 E�cient set of heuristics

In this section, all implemented heuristics are compared using benchmark B2. Average results

in terms of ARPD are shown in Table 2 for each combination of n and m, and in Table 4 for

each value of the parameters. The CPU time required by each heuristic is shown in Table 3 for

each n and m. The last two rows show the ACT and the ARPT of each heuristic. A summary

of the results is graphically shown in Figure 8 using ACT to evaluate the computational e�ort,

while ARPT is used as indicator in Figure 9. In view of the results, the NEHeddet heuristic

clearly outperforms the NEHeddor in terms of quality of the solution and computational e�ort.

The best ARPDs are clearly found by the proposed heuristic ACH4 (1.19), and by the RZ_LW

heuristic (2.40). Regarding heuristics adapted from other problems, the best results are found

by Raj, RZ and RZ_LW, which are either very fast heuristics, or local search methods (using

dispatching rules as seed sequences). The good performance achieved by the composite heuristics

RZ, RZ_LW, ACH2, ACH3, and ACH4 con�rms the conclusions obtained after the analysis of

the problem in Section 3 which advocated for fast heuristics employing as soon as possible local

21



search methods of full sequences. This fact is also con�rmed by the performance of the family of

heuristics FRB4k. Each of these heuristics is outperformed in terms of quality of the solutions

and computational e�ort by RZ and ACH3. According to Figure 9, the e�cient heuristics (set A)

are: ACH1, Raj, NEHeddet, ACH2, RZ, ACH3 and ACH4. To statistically justify this statement,

we perform a Holm's procedure (Holm, 1979) with the following hypotheses:

• H1: ACH2 = NEHeddor.

• H2: RZ = FRB42.

• H3: RZ = FRB44.

• H4: RZ = FRB46.

• H5: ACH3 = FRB48.

• H6: ACH3 = FRB410.

• H7: ACH3 = FRB412.

• H8: ACH4 = RZ_LW.

Results are shown in Table 5, where the p-values have been calculated using a non-parametric

Mann-Whitney test since the normality and homoscedasticity assumptions were not con�rmed

(see e.g. Pan et al., 2008). Assuming a con�dence of 0.95, only two hypotheses (H2 and H3) are

not rejected and the proposed heuristics (ACH2, ACH3 and ACH4) can be therefore considered

as statistically e�cient. The heuristics of the sets A are shown in Figure 9.

22



In
st
a
n
ce

R
a
j

N
E
H
ed
d
e
t
N
E
H
ed
d
o
r

R
Z

F
R
B
4
2

F
R
B
4
4

F
R
B
4
6

F
R
B
4
8

F
R
B
4
1
0

F
R
B
4
1
2

R
Z
_
L
W

A
C
H
1

A
C
H
2

A
C
H
3

A
C
H
4

5
0
x
1
0

2
6
.5
2

2
2
.3
8

4
4
.2
3

1
3
.5
3

1
4
.1
6

1
1
.6
2

1
0
.0
0

9
.9
1

8
.7
9

8
.0
7

2
.5
3

3
0
.1
5

1
3
.6
5

8
.7
4

1
.4
1

5
0
x
3
0

2
0
.6
1

1
4
.2
0

1
2
.2
7

1
0
.5
5

7
.8
6

6
.2
2

5
.3
9

4
.5
6

4
.4
1

4
.1
4

2
.5
9

1
8
.3
3

9
.3
1

6
.1
1

1
.8
1

5
0
x
5
0

1
5
.0
6

7
.9
4

6
.8
9

8
.0
3

4
.5
4

3
.6
8

2
.8
5

2
.8
4

1
.7
6

1
.6
0

2
.1
1

1
1
.4
9

5
.9
5

4
.0
0

1
.4
0

1
5
0
x
1
0

4
1
.3
6

3
7
.5
6

6
6
.7
2

1
4
.3
9

2
5
.5
6

2
4
.1
3

2
3
.1
9

2
1
.8
8

2
1
.5
9

1
9
.3
3

1
.6
9

4
6
.1
2

1
8
.0
6

9
.8
3

1
.6
5

1
5
0
x
3
0

3
1
.1
6

2
5
.0
9

3
9
.5
0

1
4
.7
6

1
5
.8
9

1
5
.0
7

1
4
.1
5

1
3
.0
7

1
1
.4
9

1
1
.0
4

2
.5
3

3
7
.4
7

1
5
.8
8

7
.4
0

1
.1
9

1
5
0
x
5
0

3
0
.6
1

2
4
.4
0

2
5
.8
6

1
4
.9
3

1
8
.9
2

1
7
.1
1

1
6
.3
6

1
4
.7
3

1
4
.0
2

1
3
.1
0

3
.1
8

3
3
.1
4

1
4
.3
3

5
.2
3

0
.4
4

2
5
0
x
1
0

3
6
.0
4

2
9
.1
3

7
6
.5
5

1
3
.9
4

2
2
.6
3

2
0
.6
2

1
9
.4
2

1
8
.6
9

1
7
.6
1

1
7
.2
5

2
.3
1

5
0
.2
0

1
3
.8
8

7
.8
5

1
.0
9

2
5
0
x
3
0

4
0
.8
4

3
5
.9
5

5
7
.4
9

1
5
.9
5

2
4
.0
8

2
3
.1
6

2
1
.6
2

2
1
.0
4

2
0
.1
3

1
8
.9
4

2
.5
0

4
5
.2
8

1
9
.5
6

8
.9
6

1
.1
4

2
5
0
x
5
0

3
2
.3
7

2
6
.6
5

3
9
.1
2

1
5
.2
9

1
7
.5
4

1
6
.2
3

1
5
.3
4

1
5
.1
3

1
3
.2
8

1
1
.8
7

2
.6
9

3
7
.3
5

1
6
.4
4

5
.9
9

1
.2
9

3
5
0
x
1
0

3
8
.5
7

3
0
.7
5

7
7
.8
9

1
3
.3
7

2
3
.7
0

2
3
.0
5

2
2
.4
6

2
0
.9
4

2
0
.7
1

2
0
.0
9

1
.4
1

5
6
.4
6

1
4
.8
3

8
.7
6

0
.8
2

3
5
0
x
3
0

4
8
.7
1

4
1
.8
3

6
6
.2
4

1
8
.7
2

3
2
.4
0

2
9
.6
6

2
8
.6
0

2
7
.4
3

2
6
.1
0

2
6
.6
6

2
.8
3

5
1
.3
3

2
2
.3
4

9
.0
5

1
.0
2

3
5
0
x
5
0

3
2
.5
6

2
6
.1
8

4
7
.9
1

1
3
.4
9

1
8
.9
4

1
6
.4
5

1
6
.3
4

1
5
.1
7

1
5
.5
1

1
3
.0
8

2
.4
4

3
9
.6
4

1
7
.2
5

7
.4
4

0
.9
8

A
v
er
a
g
e

3
2
.8
7

2
6
.8
4

4
6
.7
2

1
3
.9
1

1
8
.8
5

1
7
.2
5

1
6
.3
1

1
5
.4
5

1
4
.6
1

1
3
.7
6

2
.4
0

3
8
.0
8

1
5
.1
2

7
.4
5

1
.1
9

T
ab

le
2:

R
el
at
iv
e
P
er
ce
n
ta
ge

D
ev
ia
ti
on

(R
P
D
)
fo
r
th
e
im

p
le
m
en
te
d
h
eu
ri
st
ic
s
u
n
d
er

th
e
se
t
of

in
st
an

ce
s
of

V
al
la
d
a
et

al
.
(2
00
8)

In
st
a
n
ce

R
a
j
N
E
H
ed
d
e
t
N
E
H
ed
d
o
r

R
Z

F
R
B
4
2

F
R
B
4
4

F
R
B
4
6

F
R
B
4
8

F
R
B
4
1
0

F
R
B
4
1
2

R
Z
_
L
W

A
C
H
1

A
C
H
2

A
C
H
3

A
C
H
4

5
0
x
1
0

0
.0
0

0
.0
0

0
.0
0

0
.0
1

0
.0
2

0
.0
2

0
.0
2

0
.0
3

0
.0
3

0
.0
4

0
.0
3

0
.0
0

0
.0
0

0
.0
2

0
.0
3

5
0
x
3
0

0
.0
0

0
.0
1

0
.0
1

0
.0
2

0
.0
4

0
.0
5

0
.0
7

0
.0
9

0
.1
0

0
.1
1

0
.0
9

0
.0
0

0
.0
1

0
.0
6

0
.0
8

5
0
x
5
0

0
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
6

0
.0
9

0
.1
1

0
.1
4

0
.1
6

0
.1
9

0
.1
7

0
.0
0

0
.0
2

0
.0
8

0
.1
3

1
5
0
x
1
0

0
.0
1

0
.0
6

0
.1
0

0
.1
3

0
.2
6

0
.4
1

0
.5
5

0
.6
8

0
.8
0

0
.9
1

0
.9
8

0
.0
0

0
.0
9

0
.5
6

0
.9
5

1
5
0
x
3
0

0
.0
4

0
.1
6

0
.3
5

0
.4
1

0
.8
2

1
.3
0

1
.7
5

2
.1
7

2
.5
6

2
.9
2

3
.4
2

0
.0
1

0
.2
8

1
.7
4

3
.2
0

1
5
0
x
5
0

0
.0
7

0
.2
6

0
.6
1

0
.7
2

1
.4
4

2
.3
1

3
.1
2

3
.8
9

4
.5
8

5
.2
6

5
.8
4

0
.0
2

0
.4
9

2
.6
4

5
.2
7

2
5
0
x
1
0

0
.0
6

0
.2
1

0
.4
6

0
.5
6

1
.1
2

1
.8
1

2
.4
7

3
.0
9

3
.6
8

4
.2
4

4
.9
3

0
.0
1

0
.3
8

2
.8
4

4
.7
3

2
5
0
x
3
0

0
.1
8

0
.6
4

1
.6
0

1
.8
2

3
.6
7

5
.9
2

8
.0
0

9
.9
3

1
1
.8
0

1
3
.5
8

1
9
.3
3

0
.0
3

1
.2
5

1
0
.2
4

1
8
.8
8

2
5
0
x
5
0

0
.3
1

1
.1
3

2
.8
0

3
.2
4

6
.5
0

1
0
.5
0

1
4
.2
2

1
7
.7
4

2
1
.0
6

2
4
.3
0

3
3
.0
0

0
.0
6

2
.2
1

1
8
.6
4

3
2
.8
0

3
5
0
x
1
0

0
.1
5

0
.5
3

1
.2
4

1
.5
2

3
.0
2

4
.9
1

6
.7
2

8
.4
6

1
0
.1
2

1
1
.7
3

1
4
.7
4

0
.0
2

1
.0
3

8
.8
8

1
4
.3
3

3
5
0
x
3
0

0
.4
6

1
.6
9

4
.3
0

4
.8
8

9
.9
0

1
6
.1
5

2
1
.9
6

2
7
.5
1

3
2
.7
0

3
7
.9
1

5
5
.9
0

0
.0
6

3
.3
3

3
1
.8
5

6
1
.2
3

3
5
0
x
5
0

0
.8
1

2
.9
8

7
.5
4

8
.6
0

1
7
.3
7

2
8
.0
2

3
8
.1
7

4
7
.6
5

5
7
.0
7

6
5
.6
6

9
5
.5
1

0
.0
9

5
.8
8

5
5
.5
6

9
6
.8
4

A
C
T

0
.1
7

0
.6
4

1
.5
9

1
.8
3

3
.6
8

5
.9
6

8
.1
0

1
0
.1
2

1
2
.0
6

1
3
.9
0

1
9
.4
9

0
.0
3

1
.2
5

1
1
.0
9

1
9
.8
7

A
R
P
T

0
.0
3

0
.1
1

0
.2
4

0
.3
0

0
.6
1

0
.9
6

1
.2
7

1
.5
7

1
.8
5

2
.1
2

2
.4
3

0
.0
1

0
.2
1

1
.3
3

2
.3
2

T
ab

le
3:

A
ve
ra
ge

C
om

p
u
ta
ti
on

al
E
�
or
t
(A

C
T
)
(i
n
se
co
n
d
s)

an
d
A
ve
ra
ge

R
el
at
iv
e
P
er
ce
n
ta
ge

T
im

e
(A

R
P
T
)
of

th
e
im

p
le
m
en
te
d

h
eu
ri
st
ic
s
u
n
d
er

th
e
se
t
of

in
st
an

ce
s
of

V
al
la
d
a
et

al
.
(2
00
8)

23



P
a
ra
m
et
er

R
a
j

N
E
H
ed
d
e
t
N
E
H
ed
d
o
r

R
Z

F
R
B
4
2

F
R
B
4
4

F
R
B
4
6

F
R
B
4
8

F
R
B
4
1
0

F
R
B
4
1
2

R
Z
_
L
W

A
C
H
1

A
C
H
2

A
C
H
3

A
C
H
4

T
0
.2

4
9
.7
1

3
8
.6
2

9
2
.8
3

1
6
.4
5

2
8
.6
0

2
6
.0
5

2
4
.7
1

2
3
.5
9

2
1
.9
2

1
9
.9
0

1
.6
0

6
5
.7
6

2
5
.0
9

1
3
.0
1

2
.4
9

T
0
.4

3
1
.6
1

2
9
.4
4

3
6
.7
1

1
5
.9
3

2
0
.6
1

1
9
.1
5

1
8
.1
0

1
7
.1
8

1
6
.7
6

1
6
.4
0

2
.7
2

3
6
.0
4

1
4
.3
0

6
.1
5

0
.7
1

T
0
.6

1
7
.2
8

1
2
.4
6

1
0
.6
3

9
.3
6

7
.3
4

6
.5
5

6
.1
2

5
.5
8

5
.1
6

5
.0
0

2
.8
8

1
2
.4
4

5
.9
8

3
.1
9

0
.3
6

R
0
.2

1
8
.4
0

1
6
.2
5

2
1
.3
9

9
.3
5

1
1
.1
4

1
0
.0
6

9
.6
0

9
.3
1

8
.9
5

8
.8
3

2
.3
1

2
2
.2
1

8
.9
3

5
.0
5

0
.4
3

R
0
.6

2
4
.8
5

1
8
.3
1

3
5
.6
7

1
2
.5
0

1
2
.0
1

1
1
.0
5

1
0
.2
7

1
0
.0
2

9
.6
3

9
.2
6

2
.5
9

2
8
.5
0

1
1
.5
2

6
.6
2

0
.8
6

R
1

5
5
.3
5

4
5
.9
5

8
3
.1
1

1
9
.8
9

3
3
.4
0

3
0
.6
4

2
9
.0
7

2
7
.0
2

2
5
.2
7

2
3
.2
0

2
.3
0

6
3
.5
3

2
4
.9
2

1
0
.6
8

2
.2
7

n
5
0

2
0
.7
3

1
4
.8
4

2
1
.1
3

1
0
.7
0

8
.8
5

7
.1
7

6
.0
8

5
.7
7

4
.9
8

4
.6
0

2
.4
1

1
9
.9
9

9
.6
4

6
.2
8

1
.5
4

n
1
5
0

3
4
.3
8

2
9
.0
2

4
4
.0
3

1
4
.6
9

2
0
.1
2

1
8
.7
7

1
7
.9
0

1
6
.5
6

1
5
.7
0

1
4
.4
9

2
.4
7

3
8
.9
1

1
6
.0
9

7
.4
9

1
.0
9

n
2
5
0

3
6
.4
2

3
0
.5
7

5
7
.7
2

1
5
.0
6

2
1
.4
2

2
0
.0
0

1
8
.7
9

1
8
.2
9

1
7
.0
0

1
6
.0
2

2
.5
0

4
4
.2
8

1
6
.6
3

7
.6
0

1
.1
7

n
3
5
0

3
9
.9
5

3
2
.9
2

6
4
.0
1

1
5
.1
9

2
5
.0
1

2
3
.0
5

2
2
.4
7

2
1
.1
8

2
0
.7
7

1
9
.9
4

2
.2
3

4
9
.1
4

1
8
.1
4

8
.4
2

0
.9
4

m
1
0

3
5
.6
2

2
9
.9
5

6
6
.3
4

1
3
.8
1

2
1
.5
1

1
9
.8
5

1
8
.7
7

1
7
.8
5

1
7
.1
7

1
6
.1
9

1
.9
9

4
5
.7
3

1
5
.1
1

8
.8
0

1
.2
4

m
3
0

3
5
.3
3

2
9
.2
6

4
3
.8
8

1
5
.0
0

2
0
.0
6

1
8
.5
3

1
7
.4
4

1
6
.5
2

1
5
.5
3

1
5
.2
0

2
.6
1

3
8
.1
0

1
6
.7
7

7
.8
8

1
.2
9

m
5
0

2
7
.6
5

2
1
.2
9

2
9
.9
5

1
2
.9
3

1
4
.9
9

1
3
.3
7

1
2
.7
2

1
1
.9
7

1
1
.1
4

9
.9
1

2
.6
0

3
0
.4
0

1
3
.4
9

5
.6
7

1
.0
3

T
ab

le
4:

A
ve
ra
ge

re
la
ti
ve

p
er
ce
n
ta
ge

d
ev
ia
ti
on

(A
R
P
D
)
fo
r
ea
ch

h
eu
ri
st
ic

gr
ou

p
ed

b
y
th
e
va
lu
es

of
th
e
p
ar
am

et
er
s

24



Figure 8: ARPD vs ACT of implemented heuristics. X-axis (ACT in seconds) is shown
logarithmic scale.

5.6 Comparison among e�cient heuristics

As there is a trade-o� between quality of the solution and computational e�ort, heuristics in set

A cannot be directly compared in terms of ARPD due to their di�erent computational e�orts.

In this Section, they are included as initial solution for one of the best metaheuristic for this

problem, i.e. the ILS by M'Hallah (2014), replacing the original seed sequence of the metaheuristic

(EDD rule). Thus, the metaheuristic is run using eight di�erent initial sequences (EDD rule and

each heuristic in set A) where the EDD rule is included in the comparison as it is the original

seed sequence of the metaheuristic. Each variation of the metaheuristic is run under the same

computational conditions described in Section 5.3 using the benchmark in Section 5.1. In this

case, �ve runs are performed per instance and the average values are recorded. The variations

of the ILS are stopped depending on the size of the problem according to expression n ·m · t/2

(milliseconds) where t = 5, 10, 15, 20, 25, 30 (see e.g. Ruiz and Stützle, 2007 for a similar stopping

criterion). Obviously, the CPU time required by each heuristic is included in the CPU time of the

metaheuristic, i.e. the clock starts before applying the heuristic. Results of the ILS metaheuristic

using di�erent heuristics as initial solution are shown in terms of ARPD in Table 6. Note that

25



Figure 9: ARPD vs ARPT of implemented heuristics. X-axis (ACT in seconds) is shown
logarithmic scale.

i Hi p-value Mann-Whitney α/(k − i+ 1) Holm's Procedure

1 ACH2 = NEHeddor 0.000 R 0.0063 R
2 ACH3 = FRB48 0.000 R 0.0071 R
3 ACH3 = FRB410 0.000 R 0.0083 R
4 ACH3 = FRB412 0.000 R 0.0100 R
5 ACH4 = RZ_LW 0.000 R 0.0125 R
6 RZ = FRB42 0.001 R 0.0167 R
7 RZ = FRB44 0.069 0.0250
8 RZ = FRB46 0.690 0.0500

Table 5: Holm's procedure.

26



Parameter t EDD rule Raj NEHeddet RZ ACH1 ACH2 ACH3 ACH4
5 3.26 4.58 4.77 3.60 2.97 2.72 1.90 1.39
10 2.20 2.91 3.09 2.43 1.87 1.94 1.56 1.32
15 2.11 2.80 2.96 2.33 1.82 1.85 1.46 1.22
20 2.03 2.69 2.84 2.24 1.76 1.75 1.41 1.16
25 1.95 2.60 2.75 2.17 1.70 1.69 1.34 1.11
30 1.94 2.58 2.71 2.14 1.67 1.67 1.31 1.08

Table 6: Average relative percentage deviation (ARPD) of the metaheuristic ILS using
di�erent heuristics as initial solution

using the original seed sequence (EDD rule) in the metaheuristic outperforms several other initial

sequences (Raj, NEHeddet and RZ). However, the best ARPDs are found when embedding the

proposed heuristics (ACH1, ACH2, ACH3 and ACH4) in the ILS metaheuristic being e.g. 1.87,

1.94, 1.56 and 1.32 respectively the ARPD of these heuristics for t = 10, as compared to 2.20

obtained by the EDD rule. The best value is found using ACH4 as initial solution regardless

the stopping criteria, being 1.08 the lowest ARPD found for t = 30. Additionally, in order to

con�rm the excellent results found by the ILS using the ACH4 heuristic as seed sequence, a

Holm's procedure is carried out comparing the ILS both with the ACH4 heuristic and with the

EDD rule. More speci�cally, the hypotheses tested are:

• H1: For t = 5, ILS(ACH4) = ILS(EDD rule).

• H2: For t = 10, ILS(ACH4) = ILS(EDD rule).

• H3: For t = 15, ILS(ACH4) = ILS(EDD rule).

• H4: For t = 20, ILS(ACH4) = ILS(EDD rule).

• H5: For t = 25, ILS(ACH4) = ILS(EDD rule).

• H6: For t = 30, ILS(ACH4) = ILS(EDD rule).

Results of the Holm's procedure are shown in Table 7. Each p-value is equal to 0.000 and

therefore, each hypothesis is rejected statistically, con�rming the previous results.

27



i Hi p-value Mann-Whitney α/(k − i+ 1) Holm's Procedure
1 ILS(ACH4) = ILS(EDD rule) (for t = 5) 0.000 R 0.0083 R
2 ILS(ACH4) = ILS(EDD rule) (for t = 10) 0.000 R 0.0100 R
3 ILS(ACH4) = ILS(EDD rule) (for t = 15) 0.000 R 0.0125 R
4 ILS(ACH4) = ILS(EDD rule) (for t = 20) 0.000 R 0.0167 R
5 ILS(ACH4) = ILS(EDD rule) (for t = 25) 0.000 R 0.0250 R
6 ILS(ACH4) = ILS(EDD rule) (for t = 30) 0.000 R 0.0500 R

Table 7: Holm's procedure for comparisons with metaheuristics.

6 Conclusions

In this paper, we have addressed the PFSP with a just-in-time objective. The problem has been

analysed in detail and several properties have been established for extreme values of the due

dates. Particularly, extremely tight due dates lead to a problem similar to Fm|prmu|
∑

Cj while

extremely loose due dates lead to the opposite problem, i.e. Fm|prmu|
∑

−Cj . By incorporating

this knowledge, we propose four di�erent heuristics. Firstly, a fast constructive heuristic, ACH1,

inserts the jobs one by one at the end of the partial sequence based on an dynamic index. This

index is automatically calculated in each iteration depending on the idle times, completion times,

earliness and tardiness of the jobs. Then, three composite heuristics ACH2, ACH3 and ACH4

are proposed by incorporating three di�erent local search procedures after ACH1.

The proposed heuristics have been compared under a complete set of instances with the best

heuristic for the problem as well as with adaptations of e�cient heuristics for similar scheduling

problems. The computational results show the excellent performance of the proposed algorithms.

In fact, the heuristics ACH1, Raj, NEHeddet, ACH2, RZ, ACH3 and ACH4 are established as

e�cient, being the ACH4 the heuristic with the lowest ARPD (1.19).

Finally, the impact of the e�cient heuristics is evaluated including them as seed sequences for

one of the best metaheuristic for the problem, and for six di�erent stopping criteria. As a result,

the four proposed heuristics statistically outperform every other heuristic, thus establishing a

new state-of-the-art of approximate solutions for the problem.

References

Bagchi, U., Sullivan, R. S., and Chang, Y. (1986). Minimizing mean absolute deviation of
completion times about a common due date. Naval research logistics quarterly, 33(2):227�240.

28



Baker, K. R. and Scudder, G. D. (1990). Sequencing with earliness and tardiness penalties. a
review. Operations Research, 38(1):22�36.

Chandra, P., Mehta, P., and Tirupati, D. (2009). Permutation �ow shop scheduling with earliness
and tardiness penalties. International Journal of Production Research, 47(20):5591�5610.

Dong, X., Chen, P., Huang, H., and Nowak, M. (2013). A multi-restart iterated local search
algorithm for the permutation �ow shop problem minimizing total �ow time. Computers &

Operations Research, 40(2):627�632.

Fernandez-Viagas, V. and Framinan, J. (2015a). A bounded-search iterated greedy algorithm for
the distributed permutation �owshop scheduling problem. International Journal of Production
Research, 53(4):1111�1123.

Fernandez-Viagas, V. and Framinan, J. (2015b). E�cient non-population-based algorithms for the
permutation �owshop scheduling problem with makespan minimisation subject to a maximum
tardiness. Computers & Operations Research, 64(0):86 � 96.

Fernandez-Viagas, V. and Framinan, J. (2015c). A new set of high-performing heuristics to
minimise �owtime in permutation �owshops. Computers & Operations Research, 53:68�80.

Fernandez-Viagas, V. and Framinan, J. (2015d). NEH-based heuristics for the permutation
�owshop scheduling problem to minimise total tardiness. Computers & Operations Research,
60:27�36.

Fernandez-Viagas, V. and Framinan, J. M. (2014). On insertion tie-breaking rules in heuristics
for the permutation �owshop scheduling problem. Computers & Operations Research, 45(0):60
� 67.

Framinan, J., Gupta, J., and Leisten, R. (2004). A review and classi�cation of heuristics for per-
mutation �ow-shop scheduling with makespan objective. Journal of the Operational Research

Society, 55(12):1243�1255.

Framinan, J. and Leisten, R. (2008). Total tardiness minimization in permutation �ow shops:
A simple approach based on a variable greedy algorithm. International Journal of Production
Research, 46(22):6479�6498.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal

of Statistics, 6:65�70.

Józefowska, J. (2007). Just-in-time Scheduling. Springer, New York.

Kim, Y.-D. (1993). Heuristics for �owshop scheduling problems minimizing mean tardiness.
Journal of the Operational Research Society, 44(1):19�28.

Lau�, V. and Werner, F. (2004). Scheduling with common due date, earliness and tardiness
penalties for multimachine problems: A survey. Mathematical and Computer Modelling, 40(5-
6):637�655.

Li, X., Wang, Q., and Wu, C. (2009). E�cient composite heuristics for total �owtime minimiza-
tion in permutation �ow shops. OMEGA, The International Journal of Management Science,
37(1):155�164.

Li, X. and Wu, C. (2005). An e�cient constructive heuristic for permutation �ow shops to
minimize total �owtime. Chinese Journal of Electronics, 14(2):203�208.

Madhushini, N., Rajendran, C., and Deepa, Y. (2009). Branch-and-bound algorithms for schedul-
ing in permutation �owshops to minimize the sum of weighted �owtime/sum of weighted tar-
diness/sum of weighted �owtime and weighted tardiness/sum of weighted �owtime, weighted

29



tardiness and weighted earliness of jobs. Journal of the Operational Research Society, 60(7):991�
1004.

M'Hallah, R. (2014). An iterated local search variable neighborhood descent hybrid heuristic
for the total earliness tardiness permutation �ow shop. International Journal of Production

Research, 52(13):3802�3819.

Moslehi, G., Mirzaee, M., Vasei, M., Modarres, M., and Azaron, A. (2009). Two-machine �ow
shop scheduling to minimize the sum of maximum earliness and tardiness. International Journal
of Production Economics, 122(2):763�773.

Naderi, B. and Ruiz, R. (2010). The distributed permutation �owshop scheduling problem.
Computers & Operations Research, 37(4):754�768.

Nawaz, M., Enscore Jr., E., and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job
�ow-shop sequencing problem. OMEGA, The International Journal of Management Science,
11(1):91�95.

Pan, Q.-K. and Ruiz, R. (2013). A comprehensive review and evaluation of permutation �owshop
heuristics to minimize �owtime. Computers & Operations Research, 40(1):117�128.

Pan, Q.-K., Tasgetiren, M., and Liang, Y.-C. (2008). A discrete di�erential evolution algorithm
for the permutation �owshop scheduling problem. Computers and Industrial Engineering,
55(4):795�816.

Pan, Q.-K. and Wang, L. (2012). E�ective heuristics for the blocking �owshop scheduling problem
with makespan minimization. OMEGA, The International Journal of Management Science,
40(2):218�229.

Pinedo, M. (1995). Scheduling: Theory, Algorithms and Systems. Prentice Hall.

Potts, C. and Van Wassenhove, L. (1982). A decomposition algorithm for the single machine
total tardiness problem. Operations Research Letters, 1(5):177�181.

Rad, S. F., Ruiz, R., and Boroojerdian, N. (2009). New high performing heuristics for minimizing
makespan in permutation �owshops. OMEGA, The International Journal of Management

Science, 37(2):331�345.

Rajendran, C. (1993). Heuristic algorithm for scheduling in a �owshop to minimize total �owtime.
International Journal of Production Economics, 29(1):65�73.

Rajendran, C. and Ziegler, H. (1997). An e�cient heuristic for scheduling in a �owshop to
minimize total weighted �owtime of jobs. European Journal of Operational Research, 103:129�
138.

Reza Hejazi, S. and Sagha�an, S. (2005). Flowshop-scheduling problems with makespan criterion:
A review. International Journal of Production Research, 43(14):2895�2929.

Rios-Mercado, R. and Bard, J. (1998). Heuristics for the �ow line problem with setup costs.
European Journal of Operational Research, 110(1):76�98.

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation �owshop
heuristics. European Journal of Operational Research, 165(2):479�494.

Ruiz, R. and Stützle, T. (2007). A simple and e�ective iterated greedy algorithm for the permu-
tation �owshop scheduling problem. European Journal of Operational Research, 177(3):2033�
2049.

Schaller, J. and Valente, J. (2013). A comparison of metaheuristic procedures to schedule jobs

30



in a permutation �ow shop to minimise total earliness and tardiness. International Journal of
Production Research, 51(3):772�779.

Shabtay, D. and Steiner, G. (2012). Scheduling to maximize the number of just-in-time jobs: A
survey. In Rios-Mercado, R. Z. and Rios-Solis, Y. A., editors, Just-in-Time Systems, Springer
Optimization and Its Applications, pages 3�20. Springer New York.

Storer, R., Wu, S., and Vaccari, R. (1992). New search spaces for sequencing problems with
application to job shop scheduling. Management Science, 38:1495�1509.

Taillard, E. (1990). Some e�cient heuristic methods for the �ow shop sequencing problem.
European Journal of Operational Research, 47(1):65�74.

Vallada, E. and Ruiz, R. (2010). Genetic algorithms with path relinking for the minimum tardiness
permutation �owshop problem. OMEGA, The International Journal of Management Science,
38(1-2):57�67.

Vallada, E., Ruiz, R., and Minella, G. (2008). Minimising total tardiness in the m-machine
�owshop problem: A review and evaluation of heuristics and metaheuristics. Computers &

Operations Research, 35(4):1350�1373.

Vollman, T. E., Berry, W. L., and Wybark, D. C. (1997). Manufacturing Planning and Control

Systems. McGraw-Hill, New York.

Zegordi, S., Itoh, K., and Enkawa, T. (1995). A knowledgeable simulated annealing scheme for
the early/tardy �ow shop scheduling problem. International Journal of Production Research,
33(5):1449�1466.

31

View publication statsView publication stats

https://www.researchgate.net/publication/303187630

