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Abstract

In this paper we present a beam-search-based constructive heuristic to solve the
permutation flowshop scheduling problem with total flowtime minimisation as objec-
tive. This well-known problem is NP-hard, and several heuristics have been developed
in the literature. The proposed algorithm is inspired in the logic of the beam search,
although it remains a fast constructive heuristic.

The results obtained by the proposed algorithm outperform those obtained by
other constructive heuristics in the literature for the problem, thus modifying sub-
stantially the state-of-the-art of efficient approximate procedures for the problem. In
addition, the proposed algorithm even outperforms two of the best metaheuristics for
many instances of the problem, using much lesser computation effort. The excellent
performance of the proposal is also proved by the fact that the new heuristic found
new best upper bounds for 35 of the 120 instances in Taillard’s benchmark.
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1 Introduction

The permutation flowshop scheduling problem, denoted as PFSP, is one of the most studied

optimization problems in the literature. In this problem, n jobs must be processed on a shop

of m machines following the same order. Since the sequence of jobs must be the same for

all machines, the goal of the problem is to find a sequence of jobs optimizing one or several

objectives. Traditionally, the most common criteria are: minimisation of makespan (see e.g.

Fernandez-Viagas and Framinan, 2014; Ruiz and Stützle, 2007; Nawaz et al., 1983; Dong et al.,

2008), minimisation of total flowtime (see e.g. Allahverdi and Aldowaisan, 2002; Framinan et al.,

2005; Dong et al., 2013; Rajendran, 1993), and minimisation of total tardiness (see e.g. Vallada et al.,

2008; Armentano and Ronconi, 1999; Framinan and Leisten, 2008; Fernandez-Viagas and Framinan,

2015a). Among these, PFSP with makespan minimisation as objective was initially proposed

by Johnson (1954), and has been employed in many works since (see e.g. the reviews by

Framinan et al., 2004; Ruiz and Maroto, 2005; Reza Hejazi and Saghafian, 2005). Here we fo-

cus on total flowtime minimisation, which is considered to be among the most relevant and

meaningful for today’s dynamic production environments (Liu and Reeves, 2001).

The PFSP to minimise total flowtime is denoted as Fm|prmu|
∑

Cj according to the standard

notation for scheduling problems (see e.g. Framinan et al., 2014). Since this problem was shown

to be strongly NP-hard for two or more machines by Garey et al. (1976), numerous heuristics and

metaheuristics have been proposed in the literature trying to achieve good solutions in reasonable

CPU times. In an exhaustive analysis, Pan and Ruiz (2013) evaluate the existing algorithms for

the problem in order to obtain a so-called efficient set of heuristics assuming as criteria the quality

of solutions obtained by each heuristic, and its computational requirements. This efficient set was

later improved by Fernandez-Viagas and Framinan (2015b) by means of a constructive heuristic

of complexity O(n2 ·m) that can be used as initial solution in composite heuristics.

The goal of this paper is to substantially improve the existing efficient set of heuristics for

the Fm|prmu|
∑

Cj problem by proposing a new beam-search-based constructive heuristic. The

proposed heuristic is inspired by the beam search which was first used in artificial intelligence

problems by Lowerre (1976). The beam search is a derivation of the branch-and-bound method
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where only a subset of the most promising nodes are kept in each iteration and has been success-

fully adapted to several scheduling problems in the literature (see e.g. Della Croce and T’kindt,

2002; Valente and Alves, 2005; Valente and Alves, 2008; Valente, 2010). Its performance is highly

scalable with the decision interval, thus serving to obtain fast solutions in very short times, or to

yield very good-quality solutions if longer CPU times are allowed.

The remainder of the paper is organised as follows: the problem under consideration is de-

scribed and the state-of-the-art is presented in Section 2. In Section 3, the proposed heuristic

is explained in detail and compared with the state-of-the-art heuristics in Section 4. Finally,

conclusions are discussed in Section 5.

2 Problem Statement and State of the Art

The problem under study can be stated as follows: n jobs have to be scheduled in a flowshop

with m machines. A job j has a processing time pij on machine i. The completion time of job j

on machine i is denoted as Cij , whereas Ci[j] indicates the completion time of the job scheduled

in position j on machine i. Cmj represents the completion time of job j.

As mentioned in Section 1, many heuristics have been proposed for the problem, and an

excellent review on these heuristics is provided by Pan and Ruiz (2013). In the following, we just

outline the basic aspects of the main heuristics and refer the interested reader to the paper by

Pan and Ruiz (2013) for a more detailed description of all existing heuristics.

Among the so-found efficient heuristics, the fastest one is the Raj heuristic by Rajendran

(1993), where a sequence is constructed by iteratively trying to insert a non-scheduled job in

several positions of an existing partial sequence. More specifically, given a partial sequence of

k jobs, positions from ⌈k2⌉ to k + 1 are tried. The list of non-scheduled jobs is arranged in non

descending order of indicator Tj (1):

Tj =
m∑
i=1

(m− j + 1) · pij (1)

A different approach is adopted by the LR(x) heuristic by Liu and Reeves (2001) where x final

sequences are constructed by iteratively adding jobs one by one at the end of x partial sequences.
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The job to be inserted in iteration k is chosen so its value of indicator ξjk –see Equation (2)– is the

minimum among the unscheduled jobs. The first job of the i final sequence (with i ∈ {1, . . . , x})

is the job with ith minimal indicator ξj0.

ξjk = (n− k − 2) · ITjk +ATjk (2)

In Equation (2), ITjk estimates the weighted idle time induced if job j is scheduled in the

last position of the partial sequence (i.e. k+ 1). ATjk is the artificial flowtime, which is the sum

of the completion time of job j plus the completion time of an artificial job p whose processing

time on machine i equal to the average processing time of the unscheduled jobs on that machine

(excluding job j). More specifically, ITjk and ATjk are defined as:

ITjk =
m∑
i=2

m ·max{Ci−1,j − Ci,[k], 0}
i+ k · (m− i)/(n− 2)

(3)

ATjk = Cmj + Cmp

The NEH heuristic was originally proposed by Nawaz et al. (1983) for the Fm|prmu|Cmax

problem and lately adapted for the Fm|prmu|
∑

Cj problem by Framinan et al. (2002). In the

NEH, jobs are initially sorted according to a non-descending sum of their processing times.

Using this order, each unscheduled job is inserted in the partial sequence in the position that

minimises its total flowtime.

In view of the good performance of both LR(x) and NEH, Pan and Ruiz (2013) propose the

composite LR−NEH(x) heuristic which schedules the first 3 ·n/4 jobs of x sequences according

to a LR(x) procedure, and the remaining jobs according to the NEH.

The rest of the efficient heuristics in the set identified by Pan and Ruiz (2013) include a local

search method after the construction of the initial solution. More specifically, regarding local

search methods based on job insertion, the RZ heuristic by Rajendran and Ziegler (1997) uses

the ascending order of total processing times as the initial sequence and improves that sequence

by inserting each job of the sequence in the rest of positions and updating the sequence if better

solution is found (this improvement phase is denoted in the following as RZ). The IC1 heuristic
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by Li et al. (2009) implements the RZ local search method after the LR heuristic until no further

improvement (denoted as iRZ) is found.

Regarding local search methods based on the exchange of positions among jobs, Liu and Reeves

(2001) propose the heuristic LR(x)− FPE(y), in which x sequences are generated according to

the LR(x) procedure and then, the solutions are improved by employing a Forward Pairwise

Exchange (FPE) procedure, i.e. each job in position k in the sequence is exchanged with each

one of the y jobs in positions k+1, k+2, . . . , k+ y. The procedure is repeated until there are no

more improvements in a complete iteration. The IC2 and IC3 heuristics, proposed by Li et al.

(2009), are similar to IC1, but at the end of each iteration the FPE and FPE − R procedures

are performed, being FPE−R a variant of FPE where the insertion procedure is restarted after

an improvement of the solution. Finally, regarding the combination of insertion and exchange

movements, Pan and Ruiz (2013) propose two variants –denoted as PR2(x) and PR4(x)– of a

V ND local search method where the resulting solutions are embedded in LR−NEH procedures

until x iterations are reached, or the CPU time exceeds a given value. Other variations, such as

the PR1 heuristic, which performs the iRZ procedure instead of the V ND method to improve

each sequence obtained by the LR − NEH procedure were not found to be efficient. Recently,

Abedinnia et al. (2016) present a new simple heuristic which outperforms the simple heuristic of

Laha and Sarin (2009). However, their results in term of quality of solution and computational

effort are still far from this set of efficient heuristics.

All aforementioned heuristics have at least a complexity of O(n3 ·m), and most of them use the

LR heuristic to generate a seed solution. Using a similar procedure to that of the LR heuristic,

Fernandez-Viagas and Framinan (2015b) propose a fast constructive heuristic –denoted FF in

the following– inserting, step by step, jobs at the end of the sequence according to the index ξ
′
jk

(see Equation 4) in order to reduce the complexity to O(n2 ·m):

ξ
′
jk =

(n− k − 2)

4
· IT ′

jk + Cmj (4)

where IT
′
jk is defined by (5):
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IT
′
jk =

m∑
i=2

m ·max{Ci−1,j − Ci,[k], 0}
i− 1 + k · (m− i+ 1)/(n− 2)

(5)

By means of this new FF heuristic, it is possible to obtain a completely new set of efficient

heuristics by replacing LR by FF in the rest of heuristics. More specifically, the new set includes

the FF , FF −FPE, FF − IC1, FF − IC2, IC2, IC3 and PR1 heuristics obtained by replacing

LR by FF in the corresponding heuristics. In the next section, we propose a new heuristic which

can substantially improve the above described set of efficient heuristics.

3 Proposed Heuristic

In this section, we propose a Beam-Search-based Constructive Heuristic –denoted BSCH–, for

the PFSP to minimise total flowtime. BSCH works with several candidate nodes in parallel in

each iteration. The number of selected nodes is controlled by the parameter x (beam width). The

heuristic operates performing n−1 iterations. At iteration k, each selected node l (l ∈ {1, . . . , x})

is formed by a set, S l
k, of k scheduled jobs (sljk denotes the job placed in position j of selected

node l in iteration k). Consequently, for each selected node l in iteration k there is a set U l
k of

n− k unscheduled jobs. Let us denote uljk the jth unscheduled job of selected node l in iteration

k.

For each iteration k ∈ {1, . . . , n−1}, |U l
k| candidate nodes can be obtained from each selected

node l by inserting each one of the jobs in U l
k in position k + 1 of S l

k. In total, (n − k) · x

candidate nodes can be obtained. The idea is to retain the most promising x candidate nodes for

the next iteration (selected nodes). The rest of the nodes are discarded for the next iterations.

However, comparing candidate nodes may be or may be not straightforward depending on the

specific situation:

• If the candidate nodes to be compared have been obtained by appending different jobs

in U l
k to a same node l, then their corresponding partial sequences are identical with the

exception of the last job. Therefore, they can be compared in terms of the completion time

of the added job, or of the new idle time induced by the added job.
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• If the candidate nodes to be compared have been obtained from different nodes –e.g. one

candidate node is the subsequence (1, 2), and other candidate node is subsequence (2, 3)–,

both the scheduled and the unscheduled jobs are different for each candidate node. In such

case, it is useless to perform a straightforward comparison among candidate nodes taking

into account either the job to be inserted, or just the scheduled jobs.

Clearly, the key to select the best x candidate nodes is to be able to compare partial sequences

composed of different jobs. Since in iteration k, a candidate node is formed by partial sequence

S l
k of selected node l plus a job inserted in position k + 1, both l and the inserted job would

contribute to the value of the flowtime of a final sequence obtained from this candidate.

Regarding the contribution of the inserted job, there are two elements that largely influence

the value of the sum of completion times in the complete sequence (Fernandez-Viagas and Framinan,

2015b), i.e.: the weighted idle time induced by the new job uljk inserted, and the completion time

of the new job uljk. Note that the evaluation of these elements can be done in O(m).

Regarding the contribution of each selected node l in iteration k to the flowtime of the final

sequence –denoted Fkl or forecast index in the following–, it is clear that such contribution is

related to both scheduled and unscheduled jobs. On the one hand, the contribution due to the

scheduled jobs can be computed by means of a function of the idle times and completion times of

the previous jobs. On the other hand, an ‘artificial’ completion time, denoted as CTλkl, can be

used to identify the contribution of the unscheduled jobs. The computation of Fkl is developed

in Section 3.5.

Hence, steps of the constructive heuristic can be summarised as follows:

• Obtain a set of nodes

• During n iterations:

– Generate candidate nodes

– Evaluate candidate nodes

– Select the best x candidate nodes

– Update forecast index
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These steps are elaborated in the next subsections.

3.1 Generation of the Initial Nodes

Jobs are initially sorted in non descending order of indicator ξ
′
j,0 (see Section 2) breaking ties in

favor of jobs with lower IT
′
j,0. Let us denoted by αi (α := (α1, ..., αi, ..., αn)) the component i

of that sorted list. Hence, to obtain the first x nodes (consisting of one job), job in position l

of the sorted list is placed in the first position of the partial sequence sl1,1 of the selected node l

(sl1,1 = αl). The rest of the jobs forms the unscheduled jobs of this selected node l, i.e. ulj,1 with

j ∈ {1, . . . , n− 1}.

3.2 Candidate Nodes Generation

New candidate nodes are formed by adding an unscheduled job at the end of the partial sequence

of each selected node. More specifically, from each selected node l ∈ {1, . . . , x}, n− k candidate

nodes are obtained at iteration k where each candidate j is obtained from selected node l by

adding the jobs in U l
k at the end of the scheduled jobs.

3.3 Candidate Nodes Evaluation

Once candidate nodes are formed, they are evaluated. This evaluation is performed taking into

account two factors:

• Influence from the selected node: As already discussed, the influence of selected node l in

iteration k is measured by means of the forecast index Fkl which is explained further in

Section 3.5.

• Influence from the inserted job: This influence is due to the new job inserted at the end of

the scheduled jobs and is measured by CTjkl the completion time of the unscheduled job

uljk, which is the additional completion time incurred when inserting job uljk in the selected

node, i.e.:
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CTjkl = Cmul
jk

and by ITjkl the weighted idle time induced by the insertion of job uljk:

ITjkl =

m∑
i=2

m ·max{Ci−1,ul
jk
− Ci,[k], 0}

i− 1 + k · (m− i+ 1)/(n− 2)
(6)

Hence, in iteration k, given a selected node l, the insertion of unscheduled job uljk is evaluated

according to the following index:

Bjkl = Fkl + c · CTjkl + ITjkl · (n− k − 2) (7)

The parameter c has been introduced in the equation in order to balance the completion time

and the idle time of the new introduced job (in Section 3.6, the calibration of this parameter is

addressed). Additionally, the idle time is weighted by (n − k − 2) to reduce its importance as

indicator as the sequence contains more jobs.

In the beam search literature (see e.g. Sabuncuoglu and Bayiz, 1999), this type of evaluation

method where each unscheduled job is taken into account is denoted as total cost evaluation

function. However, note that, in our case, in order to speed up the computation of the cost

function, an estimate of the actual cost function is carried out.

3.4 Candidate Nodes Selection

The procedure to select the candidate nodes that would constitute the selected nodes of the next

iteration is very simple: we adopt an elitist selection procedure where the x candidate nodes with

the lowest values of B are selected, i.e. in iteration k we look for the combination of j and l

achieving the lowest values of Bjkl as defined in Equation (7). The rest of candidate nodes are

removed from the population, and the chosen candidate nodes are denoted as the selected nodes

for the next iteration. Let us denote by branch[l
′
] and job[l

′
] the value of l and j respectively of

the l
′th best Bjkl in iteration k.
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3.5 Forecasting Phase

The Forecast Index, F , is used to be able to compare candidate nodes with different un- and

scheduled jobs. It balances the following indicators:

1. the idle time of each scheduled job in the candidate node,

2. the completion time of each scheduled job in the candidate node, and

3. the completion time of the unscheduled jobs in the candidate node.

The influence of 1) and 2) changes across the iterations of the algorithm. Recall that the

influence of the idle time allows us to compare candidate nodes with different jobs. In the first

iterations there are few scheduled jobs, and these scheduled jobs may be quite different. Therefore,

the idle time between jobs is expected to have a larger influence in the comparison between nodes,

as compared to the sum of completion times (which is strongly schedule-dependent). In contrast,

in the last iterations the candidate nodes are almost complete sequences, so they are very similar

in terms of scheduled jobs and therefore, a direct evaluation of the completion times of the jobs

to compare nodes would be more related to the final objective. Thereby, in the equation of

the forecast index, the cumulated idle time, denoted as SIT (8) is reduced with the number of

scheduled jobs (it is multiplied by n − k − 2), while the cumulated completion time, so-called

SCT (9), remains the same along the iterations. More specifically:

SITk,l′ =
n− b

n
·
[
SITk−1,branch[l′ ] + ITjob[l′ ],k,branch[l′ ] · (n− k − 2)

]
,∀ k = 1, . . . , n−1, l

′
= 1, . . . , x

(8)

SCTk,l′ = SCTk−1,branch[l′ ] + CTjob[l′ ],k,branch[l′ ] + CTλk,branch[l′ ], ∀ k = 1, . . . , n− 1, l
′
= 1, . . . , x

(9)

where SIT0,l′ = SCT0,l′ = 0, ∀ l
′
= 1, . . . , x and CTλk,l is the completion time of an artificial

job placed at the end of the sequence of the selected node l in the iteration k. The processing

times of this artificial job are equal to the average processing times of the unscheduled jobs (ulj,k

∀ j).

Taking these indicators into account, the forecast index can be then defined as follows:
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Figure 1: Example of BSCH

Fk,l′ = a · SCTk,l′ + SITk,l′ , ∀ k = 1, . . . , n− 1, l
′
= 1, . . . , x (10)

where a, and b are parameters designed to better balance the components of the forecast

index. Parameter a balances the influence of SIT and SCT . Parameter b is introduced in

fraction (n − b)/n of SIT in order to diminish the weight of idle time with the increase of

iterations, given that 1) the idle time of the last jobs is less important than that of the first ones

given the flowtime objective, and 2) the importance of the cumulated idle time as indicator also

decreases as the number of scheduled jobs is higher.

The calibration of a and b is discussed in Section 3.6. An example of the algorithm is presented

in Figure 1. We use the third instance of the benchmark by Taillard (1993) where the last 16 jobs

have been removed, and consider only the first 4 jobs. Selected nodes are shown in lilac while

candidate nodes are shown in orange. The pseudo-code of the algorithm is shown in Figure 2.

3.6 Experimental parameter tuning

Parameters a, b and c have been included to better adjust the performance of the proposed

heuristic. In this subsection, a full factorial design of experiments is performed to set up proper

values for these parameters. For each of them, the following levels are tested

• a ∈ {1, 3, 5, 7, 9, 11, 13}

• b ∈ {0, 1, 2, 3, 4, 5, 6}

• c ∈ {1, 3, 5, 7, 9, 11, 13}
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Procedure BSCH(x)
//Initial Order
Determination of IT ′

j,0, CT
′
j,0 and ξ

′
j0;

ITj,0,l = IT
′
j,0 and CTj,0,l = CT

′
j,0 ∀ l;

α := Jobs ordered according to non-decreasing ξ
′
j,0 breaking ties in favor of jobs with

lower IT
′
j,0;

Update S l
1 (sl1,1 = αl) ∀ l and U l

1 with the remaining jobs.
Determination of CTλ0,l ∀ l. Note that the processing times of the artificial job for
selected node l is equal to the average processing times of all jobs with the exception
of sl1,1;
for l = 1 to x do

SIT1,l =
n−b
n

·
(
ITalpha[l],0,l · (n− 0− 2)

)
;

SCT1,l = CTalpha[l],0,l + CTλ,0,l;
F1,l := a · SCT1,l + SIT1,l;

end
for k = 1 to n− 1 do

//Candidate Nodes Creation
Determination of ITjkl, CTjkl;
//Candidate Nodes Evaluation
Bjkl := Fkl + c · CTjkl + ITjkl, ∀ l = 1, . . . , x and ∀ j = 1, . . . , n− x;
//Candidate Nodes Selection
for l

′
= 1 to x do

Determination of the l′-th best candidate node according to non-decreasing Bjkl

in iteration k. Denote by branch[l
′
] the value of the index l of that candidate

node and by job[l
′
] the value of j;

end
//Forecasting Phase. Update of the Forecast Index
for l

′
= 1 to x do

Update S l′

k+1 and U l′

k+1 by removing job u
branch[l′]
job[l′],k from U branch[l′]

k and including

in Sbranch[l′]
k .

Determination of CTλk,branch[l′] for new selected node l
′ formed by the old se-

lected node branch[l
′
] with job job[l

′
]. Note that the processing times of the

artificial job are equal to the average processing times of all unscheduled jobs
(U l′

k+1);
SITk+1,l′ =

n−b
n

·
(
SITk,branch[l′ ] + ITjob[l′ ],k,branch[l′ ] · (n− k − 2)

)
;

SCTk+1,l′ = SCTk,branch[l′ ] + CTjob[l′ ],k,branch[l′ ] + CTλk,branch[l′ ];
Fk+1,l′ = a · SCTk+1,l′ + SITk+1,l′ ;

end
end
//Final evaluation
Evaluate the flowtime of the scheduled jobs of each selected node and return the least
one.

end

Figure 2: BSCH
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Source Significance
Parameter a 0.000
Parameter b 1.000
Parameter c 0.007

Table 1: Kruskal-Wallis for the parameters a, b and c

representing 343 combinations of values. For each combination, five instances have been generated

for several values of n and m, n ∈ {20, 50, 100, 200, 500} and m ∈ {5, 10, 20}, where the processing

times of each job in each machine is uniformly distributed between 1 and 99. A non-parametric

Kruskal-Wallis analysis is performed since normality and homoscedasticity assumptions required

for ANOVA were not fulfilled. In the experiments, x = n/10 in order to avoid excessive CPU

time requirements for parameter tuning. Results are shown in Table 1, indicating that there are

significant differences between the levels of parameters a and c, but not for parameter b. The

best combination is obtained for a = 9, b = 3 and c = 7. These values are used for the BSCH

heuristic in the next section regardless the value of x.

4 Computational Evaluation

The proposed heuristic is compared with the current set of efficient heuristics formed by 17

heuristics (see Section 2). In order to have a fair comparison, each heuristic is again implemented

under the same computers conditions which means:

• Using the same computer in the computational evaluation (a Intel Core i7-3770 PC with

3.4 GHz and 16GB RAM),

• the same programming language (C# under Visual Studio 2013), and

• the same libraries and common functions for all heuristics.

Experiments have been performed for the 120 instances of the benchmark by Taillard (1993)

which is composed of 12 problem sizes varying the number of jobs and machines according to

n ∈ {20, 50, 100, 200, 500} and m ∈ {5, 10, 15, 20} respectively, with 10 instances for each size.
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Processing times are uniformly distributed from 1 to 99 in this testbed. To better fit the com-

putational time of each heuristic, 5 runs are carried out for each instance and the average values

are collected.

Additionally, the parameter x of the proposed heuristic must be set. As shown in Section 3,

x indicates the number of selected nodes in each iteration and therefore, it is proportional to the

CPU time required by the heuristic. For x > n, additional indications in the first iteration of

the algorithm would have to be provided (i.e. at least it should be indicated which is the first

job of the last x − n selected nodes after the first iteration), so here we restrict to x ∈ {1, n}.

More specifically, we use the values of x also employed in the literature for the LR heuristic,

i.e. x ∈ {2, 5, 10, 15, n/10, n/m, n} (see e.g. Liu and Reeves, 2001, Pan and Ruiz, 2013, and

Fernandez-Viagas and Framinan, 2015b). Note that x = 1 has been removed from the analysis

since BSCH(1) is equivalent to FF (1) (with a different combination of parameters), so it is

already included in the computational evaluation.

4.1 Comparison between BSCH and the efficient heuristics

The comparison among the heuristics is performed in terms of quality of the solutions and com-

putational effort. On the one hand, the former is commonly evaluated by means of the Relative

Percentage Deviation RPD1, which is defined for heuristic h in instance i as:

RPD1ih =
Cih
sum −min1≤h≤H Cih

sum

min1≤h≤H Cih
sum

· 100,∀ i = 1, . . . , I, h = 1, . . . , H (11)

where H is the number of heuristics considered in the evaluation, I is the number of instances

in the test bed, and Cih
sum is the total flowtime obtained by heuristic h in instance i. Note

that ARPD1 indicates Average RPD1. On the other hand, the most common indicator for

the computational effort is the average CPU time. However, Fernandez-Viagas and Framinan

(2015b) detected that this indicator presents several problems when used to evaluate heuristics

with different stopping criteria, and proposed the RPT
′ (Relative Percentage Time) indicator

instead:

14



RPT
′
ih =

Tih −ACTi

ACTi
,∀ i = 1, . . . , I, h = 1, . . . , H (12)

where Tih is the CPU time required by heuristic h in instance i and:

ACTi =
H∑

h=1

Tih/H, ∀ i = 1, . . . , I (13)

In this paper, a slightly different indicator, denoted as RPT , is used to be able to graphically

represent the results in logarithmic scale:

RPTih =
Tih −ACTi

ACTi
+ 1,∀ i = 1, . . . , I, h = 1, . . . , H (14)

The average value of RPT , i.e. ARPT , can be defined as follows:

ARPTh =
I∑

i=1

RPTih

I
, ∀ h = 1, . . . , H (15)

Nevertheless, in order to provide additional information of the experiments, raw CPU times

are also used together with ARPT .

The RPD1 values obtained for each algorithm are shown in Tables 2 and 3. The last row

indicates the average value, i.e. the ARPD1 for each algorithm. As it can be seen, the ARPD1

of the actual set of efficient heuristics ranges from 3.84 to 1.22, where the best one (1.22) is

obtained by FF-PR1(15). Regarding BSCH, the worst ARPD1 is 2.51 while the best one is

0.19. In order to be able to perform a fair comparison among heuristics, CPU times (in seconds)

are summarised in Tables 4 and 5 (the last two rows represent the average CPU time and the

ARPT respectively). The average values are indicated in Table 6 and graphically shown in Figure

4 using ARPT as a measure of the computational effort, as well as in Figure 3 using Average

CPU times.

Considering ARPT , the actual set of efficient heuristics is updated by including a complete

new set of heuristics, all of them including BSCH for different values of x. The following

conclusions can be obtained:

• BSCH(2) (with ARPD1 = 2.51) improves heuristics FF (n/m), FF (n/10) and FF (n/10)−

15



FPE(1) with ARPD1 equal to 3.11, 3.02 and 2.70 respectively, while using less ARPT .

• BSCH(n/m), BSCH(5) and BSCH(n/10) with ARPD1 1.46, 1.35 and 1.21 respectively

outperform FF (2)− FPE(n/10) and FF (n/10)− FPE(n/10) using less ARPT .

• BSCH(10), with ARPD1 and ARPT equal to 0.88 and 0.13, clearly outperforms FF (15)−

FPE(n/10), which has an ARPD1 of 2.35 and an ARPT of 0.17.

• BSCH(15) (ARPD1 = 0.64) outperforms with less computational effort FF (n/10) −

FPE(n), FF (n/m)−FPE(n), FF − IC1 and FF − IC2 which have a minimal ARPD1

of 1.61.

• The best heuristic, BSCH(n), with ARPD1 = 0.19 clearly outperforms heuristics IC2,

FF − IC3, IC3, FF − PR1(5), FF − PR1(10) and FF − PR1(15).

As a consequence, it can be stated that our proposal outperforms the up-to-now efficient

heuristics for the problem.

In order to establish the statistical significance of these results, Holm’s procedure (Holm,

1979) is used where each hypothesis is analysed using a non-parametric Mann-Whitney test

(see e.g. Pan et al., 2008). In Holm’s procedure, the hypotheses are sorted in non-descending

order of the p-values found in the Mann-Whitney test. The hypothesis i is rejected if its p-

value is lower than α/(k − i + 1) where k is the total number of hypotheses. The results of

the Holm’s procedure are shown in Table 7, where the fourth and sixth columns indicate if the

hypothesis is rejected (denoted as R in such case) by Mann-Whitney and/or Holm’s procedure.

As can be seen, hypothesis BSCH(2) = FF (n/10) − FPE(1) is the only one that cannot be

rejected by Holm’s procedure, but it has to be noted that the computational effort required by

FF (n/10) − FPE(1) is much higher to that by BSCH(2). In summary, it can be concluded

that BSCH(n/10), BSCH(10), BSCH(15) and BSCH(n) are statistically efficient and that

BSCH(2) is not inefficient. Note that BSCH(2) would be statistically efficient when considering

the Pareto frontier using the average CPU time instead of the ARPT .
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Figure 3: ARPD1 versus average CPU times. Average computational time (X-axis) is
shown in logarithmic scale.

4.2 Comparison between BSCH and metaheuristics

An additional series of experiments have been conducted to compare the BSCH heuristic with

an iterated local search (denoted as MRSILS) and an iterated greedy algorithm (denoted as

IGRIS). These two are among the best metaheuristics for the problem (see Dong et al., 2013 and

Pan et al., 2008). In order to analyse the impact of BSCH, we separately run both metaheuristics

until the stopping criterion 60 · n ·m/2 milliseconds. For each instance, five runs are considered

and the average flowtime values are recorded. Both metaheuristics have been again implemented

under the same computer conditions and the comparison has been performed for all instances of

the benchmark. Results in terms of ARPD2 and average CPU times are shown in Table 8. Note

that the last column indicates the ratio between the CPU time needed by the metaheuristics

and the BSCH(n) heuristic for each size of instance. ARPD2 is the average RPD2 which is

calculated by Equation (16):

RPD2ih =
Cih
sum − UB

UB
· 100,∀ i = 1, . . . , I, h = 1, . . . , H (16)
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Heuristic ARPD1 ARPT Avg. Time
FF (1) 3.84 0.01 0.01
FF (2) 3.42 0.01 0.01

FF (n/10) 3.02 0.02 0.26
FF (n/m) 3.11 0.03 0.14

FF (2)− FPE(n/10) 2.62 0.06 0.83
FF (15)− FPE(n/10) 2.35 0.17 0.86
FF (n/10)− FPE(1) 2.70 0.04 0.29

FF (n/10)− FPE(n/10) 2.39 0.08 0.96
FF (n/10)− FPE(n) 2.00 0.34 5.25
FF (n/m)− FPE(n) 2.07 0.34 5.09

FF − IC1 1.68 0.58 7.51
FF − IC2 1.61 0.85 11.10
FF − IC3 1.60 2.04 94.14

IC2 1.58 1.14 15.72
IC3 1.54 2.26 94.43

FF − PR1(5) 1.37 2.82 34.71
FF − PR1(10) 1.28 5.57 38.74
FF − PR1(15) 1.22 8.12 41.93

BSCH(2) 2.51 0.02 0.02
BSCH(5) 1.35 0.05 0.05
BSCH(10) 0.88 0.13 0.11
BSCH(15) 0.64 0.20 0.18

BSCH(n/10) 1.21 0.05 0.66
BSCH(n/m) 1.46 0.05 0.27
BSCH(n) 0.19 1.02 19.40

Table 6: Summary of results of the heuristics.

i Hi p-value Mann-Whitney α/(k − i+ 1) Holm’s Procedure
1 BSCH(2)=FF (n/m) 0.000 R 0.0031 R
2 BSCH(n/10)=FF (2)− FPE(n/10) 0.000 R 0.0033 R
3 BSCH(n/10)=FF (n/10)− FPE(n/10) 0.000 R 0.0036 R
4 BSCH(10)=FF (15)− FPE(n/10) 0.000 R 0.0038 R
5 BSCH(15)= FF (n/10)− FPE(n) 0.000 R 0.0042 R
6 BSCH(15)=FF (n/m)− FPE(n) 0.000 R 0.0045 R
7 BSCH(15)=FF − IC1 0.000 R 0.0050 R
8 BSCH(15)=FF − IC2 0.000 R 0.0056 R
9 BSCH(n)=IC2 0.000 R 0.0063 R
10 BSCH(n)=FF − IC3 0.000 R 0.0071 R
11 BSCH(n)=IC3 0.000 R 0.0083 R
12 BSCH(n)=FF − PR1(5) 0.000 R 0.0100 R
13 BSCH(n)=FF − PR1(10) 0.000 R 0.0125 R
14 BSCH(n)=FF − PR1(15) 0.000 R 0.0167 R
15 BSCH(2)=FF (n/10) 0.001 R 0.0250 R
16 BSCH(2)=FF (n/10)− FPE(1) 0.163 0.0500

Table 7: Holm’s procedure.
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Figure 4: ARPD1 versus ARPT . ARPT (X-axis) is shown in logarithmic scale

where UB is the best known upper bound for instance i taken from Pan and Ruiz (2012).

As it can be seen, both ARPD2 values and average CPU times of the metaheuristics are

clearly improved by the proposed constructive heuristic. One the one hand, the best ARPD2

value of the metaheuristics is 0.76 while the ARPD2 value of the BSCH(n) heuristic is 0.40

(there are statistical differences between the algorithms when a non-parametric Mann-Whitney

test is used as p-value equals to 0.004). Additionally, 35 new best upper bounds have been

found in the instances (see Table 9). This fact clearly highlights the excellent performance of the

proposed heuristic since e.g. only 12 upper bounds were updated when Pan and Ruiz (2012) ran

the several metaheuristics until a stopping criterion of 400 · m · n milliseconds (i.e. an average

CPU time of 731.7 seconds). On the other hand, big differences are found when analysing the

average CPU time between the algorithms, which are 19.4 seconds for the BSCH(n) heuristic

and 54.88 seconds for the metaheuristics. Although the differences in average CPU time are not

so relevant, it is due to the use of an instance-size dependent indicator to compare algorithms

with different stopping criteria (see Fernandez-Viagas and Framinan, 2015b for a more detailed

explanation). In fact, regarding the ratio of the CPU time between the metaheuristics and the
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ARPD2 Avg. time
Instance MRSILS IGRIS BSCH(n) MRSILS(BSCH) MRSILS, IGRIS BSCH(n) MRSILS,IGRIS

BSCH(n)

20 x 5 0.01 0.05 1.25 0.01 3.00 0.00 1704.55
20 x 10 0.00 0.08 0.75 0.00 6.00 0.00 2500.00
20 x 20 0.00 0.01 0.75 0.00 12.00 0.00 3508.77
50 x 5 0.57 0.69 0.75 0.28 7.50 0.03 291.60
50 x 10 0.70 0.90 1.04 0.47 15.00 0.03 438.34
50 x 20 0.69 0.99 1.48 0.63 30.00 0.06 529.10
100 x 5 1.11 1.17 0.30 0.22 15.00 0.31 48.49
100 x 10 1.44 1.60 0.57 0.27 30.00 0.40 74.63
100 x 20 1.50 1.89 1.14 0.83 60.00 0.68 87.60
200 x 10 1.10 1.35 -0.61 -0.71 60.00 7.25 8.28
200 x 20 1.24 1.46 -0.76 -0.83 120.00 8.57 14.01
500 x 20 0.79 0.85 -1.87 -1.90 300.00 215.44 1.39
Average 0.76 0.92 0.40 -0.06 54.88 19.40 767.23

Table 8: ARPD2 and average CPU time, for each instance size, required by the BSCH(n)
heuristic and the metaheuristics MRSILS and IGRIS.

proposed heuristic, the computational effort for the metaheuristics is 767.23 times bigger than for

the proposed heuristic. This also serves to explain the good performance of the metaheuristics

in the 60 smallest instances as compared with the proposed constructive heuristic since a huge

computational effort is used for the former (e.g. approximately 3,500 times higher in instances

Ta21-Ta-30). In contrast, the CPU time of the proposed heuristic is always less than 1 second,

and its average CPU times for the first 90 instances is 0.17 seconds against 19.83 seconds required

by the metaheuristics.

Finally, the excellent behavior of the proposed heuristic is also confirmed in a last experi-

ment. We measure the variation in the quality of the solution in the metaheuristic MRSILS

when the BSCH(n) heuristic is used as the initial sequence of the metaheuristic, denoted as

MRSILS(BSCH). Results are shown in the fifth column of Table 3. The ARPD2 found by

MRSILS(BSCH) is –0.06 as compared to 0.76 (ARPD found of by the original MRSILS).

5 Conclusions

In this paper, we have presented BSCH(x), a beam-search-based constructive heuristic to solve

the PFSP to minimise total flowtime. The algorithm constructs sequences, and at the same time,

it combines them and selects the best x ones. Since the nodes are formed by partial sequences, a

forecast index is introduced in order to be able to compare nodes with different un- and scheduled
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Instance Best Bound Instance Best Bound Instance Best Bound Instance Best Bound
TA1 14033 TA31 64802 TA61 253232 TA91 1042494
TA2 15151 TA32 68051 TA62 242093 TA92 1028957
TA3 13301 TA33 63162 TA63 237832 TA93 1043467
TA4 15447 TA34 68226 TA64 227738 TA94 1029244
TA5 13529 TA35 69351 TA65 240301 TA95 1029384
TA6 13123 TA36 66841 TA66 232342 TA96 999241
TA7 13548 TA37 66253 TA67 240366 TA97 1042663
TA8 13948 TA38 64332 TA68 230945 TA98 1035981
TA9 14295 TA39 62981 TA69 247677 TA99 1015389
TA10 12943 TA40 68770 TA70 242933 TA100 1022277
TA11 20911 TA41 87114 TA71 298385 TA101 1223860
TA12 22440 TA42 82820 TA72 273826 TA102 1234081
TA13 19833 TA43 79931 TA73 288114 TA103 1259866
TA14 18710 TA44 86446 TA74 301044 TA104 1228060
TA15 18641 TA45 86377 TA75 284279 TA105 1219886
TA16 19245 TA46 86587 TA76 269686 TA106 1219432
TA17 18363 TA47 88750 TA77 279463 TA107 1234366
TA18 20241 TA48 86727 TA78 290908 TA108 1240627
TA19 20330 TA49 85441 TA79 301970 TA109 1220873
TA20 21320 TA50 87998 TA80 291283 TA110 1235462
TA21 33623 TA51 125831 TA81 365463 TA111 6558547
TA22 31587 TA52 119247 TA82 372449 TA112 6679507
TA23 33920 TA53 116459 TA83 370027 TA113 6624893
TA24 31661 TA54 120261 TA84 372393 TA114 6649855
TA25 34557 TA55 118184 TA85 368915 TA115 6590021
TA26 32564 TA56 120586 TA86 370908 TA116 6603691
TA27 32922 TA57 122880 TA87 373408 TA117 6576201
TA28 32412 TA58 122489 TA88 384525 TA118 6629393
TA29 33600 TA59 121872 TA89 374423 TA119 6589205
TA30 32262 TA60 123954 TA90 379296 TA120 6626342

Table 9: New best bounds (in bold) found by the proposed algorithm.
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jobs.

Under the same computer conditions, the proposed heuristic improves each other efficient

heuristic for the problem both in quality of the solutions and in computational effort (e.g. the

ARPD1 and ARPT of the BSCH(n) heuristic is 0.19 and 0.02 respectively which are much

less than those obtained by the most efficient heuristic so far, FF − PR1(15) with 1.22 and

7.13). When comparing BSCH(x) with the so-far most efficient heuristics in the literature, there

are statistical differences for each new efficient heuristic with the only exception of BSCH(2).

Thereby, the set of efficient heuristics for the problem has been reduced from 17 heuristics to

seven heuristics of only two types of heuristics, the existing FF for parameters 1 and 2 which is

efficient for the smallest CPU times, and our proposal with x ∈ {2, n/10, 10, 15, n}.

The excellent performance of the proposed heuristic is also shown by means of its comparison

against two of the best metaheuristics for the problem. Our proposal statistically outperforms

both metaheuristics (i.e. the ARPD2 of BSCH(n) is 0.40 against 0.76 of the best metaheuristic)

using much less computational effort for each instance of the benchmark. Additionally, the pro-

posed heuristic found new best upper bounds for 35 of the 120 instances in Taillard’s benchmark.
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