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Abstract. There is interest in modeling the atmosphere in the South Atlantic Magnetic 

Anomaly in order to obtain information about the cosmic-ray induced neutron spectrum and 

angular distribution as functions of altitude. In this work we use the Monte Carlo codes 

MCNPX and Geant4 to determine the cosmic-ray-induced neutron flux in the atmosphere 

produced by the cosmic ray protons incident on the top of the atmosphere and to estimate the 

ambient dose equivalent rate as function of altitude. The results present a reasonable 

conformity to other codes (QARM and EXPACS) based on other parameterizations. 

1.  Introduction 

Great efforts are being made to understand the accumulated neutron dose at flight altitude in the South 

Atlantic Magnetic Anomaly (SAMA) [1,2], because a large part of Brazil, and therefore South 

America, are subject to this Anomaly. Figure 1 shows that the SAMA at 12 km altitude is located with 

its center point above Brazil, near Foz do Iguaçú city. 

Among the many particles produced by interactions between primary cosmic rays and atmospheric 

atoms, neutrons are the most important component to consider in order to assess the dose deposition in 

the crew members of an aircraft, as well as in electronic equipment, such as on-board computers [3]. 

Thus, there is great interest in modeling the atmosphere and simulating the cosmic-ray induced 

neutron spectrum at flight altitude to develop further applications for the study of their effects on 

microelectronic devices [4] and carry out dosimetry studies aboard aircrafts. The purpose of this work 

is to determine the cosmic-ray-induced neutron (CRINS) flux in the atmosphere produced by protons 

using the codes MCNPX [5] and Geant4 [6] and then to estimate the ambient dose equivalent rate 

(ADER) through the atmosphere. In this work, we are evaluating the Geant4 by comparing it with 

MCNPX and other codes in order to search possible effects of the Earth's magnetic field on the 

neutron flux as well on the ADER in flight altitude. The magnetic field can be easily included in 

Geant4, but not in MCNPX v2.5 and in the other codes used in this comparison. 
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Figure 1. Earth’s magnetic field map at 12 km altitude, taken 

from [7].  

2.  Methodology 

2.1.  Computational procedure 

 

Figure 2 shows the geometry of the atmosphere used in the simulations. The atmosphere was modeled 

as a cylinder of 50 km height and 25 km radius. For the sake of reproducing the variable density of the 

atmosphere at different altitudes, the cylinder was divided into layers of 2.5 km thickness below 12.5 

km altitude, whereas 5 km layers where used above this altitude level. The air density and composition 

of each layer was set according to the International Standard Atmosphere [8]; the air humidity was 

also modeled below 12.5 km altitude [9]. 

In order to reproduce an infinite medium, we used fully reflective sidewalls of the cylinder for all 

the particles that impinge on them. We used a primary cosmic ray flux composed only of protons at 

the top of the cylinder. The primary proton spectrum was obtained from QARM [10] at the 

geographical coordinates -23.04 S -45.15 W and at the date June 06, 2009. 

 

 
Figure 2. Schematic figure of the atmosphere modeling for cosmic ray 

propagation. 
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2.2.  MCNPX physics models 

 

In the simulations with MCNPX v2.5 the ENDF/VI nuclear data library was used for all materials. We 

considered the scattering matrices S(,) [5, 11] to correct the hydrogen cross section in water, which 

is important for neutron transport at low energies. Nuclear data libraries were used for neutron 

energies under 20 MeV. Physical models were used above this energy range according to the 

following parameterizations: 

       - Neutron and proton interaction only by elastic scattering; 

       - Bertini intranuclear cascade for nucleons, followed by pre-equilibrium;  

       - Coulomb barrier for incident charged particles; 

2.3.    Geant4 physics models 

The simulations were carried out with the version 9.6.3 and 9.6.2 of the GEANT4 toolkit. For incident 

energies above 10 GeV, the hadronic interactions have been modeled with the Quark-gluon String 

Model (QGS). At lower energies, which are the most relevant in the present work, we used either the 

same hadronic modeling (Bertini Model) as MCNPX in the intranuclear cascade phase, followed by 

preequilibrium  (physics list QGSP_BERT_HP), or the Binary Cascade, followed by the Exciton Pre-

equilibrium model and final equilibrium de-excitation with a variety of models (Weisskopf-Ewing 

evaporation of nucleons and light clusters, photon emission, fission, Fermi break-up and statistical 

multifragmentation) as final stages (physics list QGSP_BIC_HP). For the transport of neutrons below 

20 MeV, the High Precision (HP) model with G4NDL4.0 data was used.  

 

3.  Results 

3.1.  Comparison between MCNPX and Geant4 

 

Figure 3 shows the integral neutron flux as a function of altitude calculated with MCNPX and Geant4. 

The simulations were performed using an enough events so that the statistical errors are significantly 

smaller than the values of the simulated data. The agreement between the MCNPX and the Geant4 

simulations with the QGSP_BERT_HP physics list is certainly due the fact that the Bertini 

intranuclear cascade model is used in both cases. However, the agreement with the calculations done 

with the QGSP_BIC_HP physics list is observed only at 5 km altitude. For altitudes higher than 5 km, 

the QGSP_BIC_HP simulations predict a lower neutron counting rate, whereas at lower altitudes the 

situation is the opposite, i.e., they produce a higher neutron counting compared to those of MCNPX 

and the QGSP_BERT_HP Geant4 physics list. 

As a preliminary analysis, the origin of this divergence could be traced back to the different 

neutron multiplicities of each model. At present, we are evaluating the primary proton integral flux as 

a function of altitude in an attempt to establish the connection between the number of neutrons 

produced and the protons absorbed throughout the atmosphere, which should provide us with a deeper 

understanding of this phenomenology. 

 

 

XXXVII Brazilian Meeting on Nuclear Physics IOP Publishing
Journal of Physics: Conference Series 630 (2015) 012022 doi:10.1088/1742-6596/630/1/012022

3



 

 

 

 

 

 

 
Figure 3. Integral neutron flux calculated with MCNPX and 

Geant4 with QGSP_BIC_HP and QGSP_BERT_HP physics 

lists. 

 

Figure 4 shows the cosmic-ray induced neutron spectrum normalized per primary proton at 1 m 

(i.e., ground level) and 15 km altitude as simulated by MCNPX and Geant4 with the BIC and Bertini 

models. We observe a higher neutron production by spallation reactions at ground level with the 

Binary Cascade model of Geant4 than with the Bertini model. However, we have just the opposite at 

15 km altitude. 

In the thermal region at 1 m altitude, the neutron flux simulated with Geant4 is lower than the one 

simulated with MCNPX. This fact could be also explained due to the different neutron multiplicity of 

each model as previously mentioned. 

 

 
Figure 4. Neutron spectrum calculated at 1 m and 

15 km altitude with MCNPX and Geant4 with QGSP_BIC_HP and QGSP_BERT_HP physics lists. 
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Figure 5 compares the neutron flux calculated with MCNPX, GEANT4 (using QGSP_BIC_HP) 

and EXPACS [12] with the experimental data from Federico et al [2] measured at 1 m altitude in São 

José dos Campos and other experimental results taken from the Goldhagen et al [13]. The results were 

normalized to 1 neutron/cm
2
 integral flux in order to analyze only the energy dependence of the 

neutron spectra. At the thermal peak there is a wide dispersion of results, where the experimental 

measurement of Federico et al. [2] shows the largest amplitude and the Geant4 simulation has the 

smallest amplitudes. However, the results of MCNPX, EXPACS and Goldhagen somewhat agree 

among themselves. As well as the previous results (Figure 4), the energy dependence of the MCNPX 

and Geant4 simulations reproduce well the shape of the spectrum between the thermal and evaporation 

peaks, and these, in turn, reproduces well the experimental results of Goldhagen et al [13], but 

overestimate the experimental results of Federico et al [2]. However, the spallation region is clearly 

overestimated in the MCNPX and Geant4 calculations. The divergence between these results could be 

explained by the concentration of water used in the simulations, since the relative height of the peaks 

depends strongly on this [14]. A deeper study of this dependence is being carried out. 

 

 
 

Figure 5. Energy dependence of the neutron flux at 1 m 

altitude calculated with EXPACS, MCNPX, GEANT4 and 

measured experimentally [3,12]. 

 

3.2.  Ambient dose equivalent rate as a function of altitude 

 

Figure 6 shows a comparison of the integral neutron flux per incident proton as a function of altitude 

between our Monte Carlo simulations with MCNPX and Geant4, and QARM code. The results present 

a reasonable conformity throughout for altitudes that ranges from 2.5 km to 15 km, but for ground 

level there is a divergence between our Monte Carlo simulations and QARM that could be explained 

due to the soil composition used on QARM code, information which could not be retrieved. 
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Figure 6. Absolute neutron flux as function of altitude 

determined by MCNPX, Geant4 and QARM.  

 

Figure 7 compares the ambient dose equivalent rate obtained with MCNPX, GEANT4 and QARM. 

In order to determine the ambient dose equivalent rate, we multiplied the CRINS spectra by the 

integral proton flux at the top the atmosphere to obtain the CRIN in absolute value and then multiplied 

these spectra by a conversion factor that can be found in the ICRP74 data [15]. 

From this figure it can be seen that there is a remarkable agreement at 10 km altitude between the 

three codes. QARM gives the highest equivalent ambient dose values at altitudes lower than 10 km, 

whereas at higher altitudes the values predicted with both Monte Carlo codes are higher than those of 

QARM; nevertheless, the agreement between the calculations is quite reasonable. 

 

 
Figure 7. Ambient dose equivalent rate as function of 

altitudes. 

 

As a first order approximation, we have initiated a study of the influence of Earth’s magnetic field 

on the ambient dose equivalent rate. To do this, we have used the Geant4 code together with terrestrial 
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magnetic field data from [16] at the geographical coordinates 23.04 S 45.15 W on the date June 06, 

2010, when its horizontal intensity was 18,528.8 nT. Figure 8 shows the comparison of the ADER 

considering the Earth’s magnetic field and excluding it. The magnetic field does not change the ADER 

for altitudes between 1 m up to 45 km, where the air density is very low compared to the ground level. 

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
m

b
ie

n
t 
d

o
s
e

 e
q

u
iv

a
le

n
t 
ra

te
 (

m
ic

ro
S

v
/h

)

Altitude (km)

 Without magnetic field

 With magnetic field

 
Figure 8. Ambient dose rate versus altitude calculated with 

GEANT4. The Earth's magnetic field was turned on and off 

for comparison. 

4.  Conclusions 

 

The comparison between our Monte Carlo simulations with MCNPX (version 2.5) and Geant4 

(version 9.6.2 and 9.6.3) and the calculations obtained with the codes QARM and EXPACS presents 

good general agreement, although a difference exists at 1 m altitude that could be explained by soil 

composition. For future work, a detailed analysis of the soil composition influence will be necessary. 

As a first order approximation, the Earth's Magnetic field does not change the ambient equivalent 

dose rate for altitudes up to 45 km. Ongoing studies with the Geant4 toolkit and analytical calculations 

are being performed to quantify the influence of the Earth's magnetic field on the primary and 

secondary particles throughout the atmosphere and on the particle angular distributions as a function 

of altitude. 
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