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Abstract: Model Predictive Control is one of the most popular control strategy in the
process industry. One of the reason for this success can be attributed to the fact that
constraints and uncertainties can be handled. There are many techniques based on
interval mathematics that are used in a wide range of applications. These interval
techniques can mean an important contribution to Model Predictive Control giving
algorithms to achieve global optimization and constraint satisfaction. Copyright ©
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1. INTRODUCTION

Model Predictive Control (MPC) is a very ample
range of control methods developed around certain
common ideas. A model is used to predict the future
plant outputs. The elaboration of mathematical
models of processes in real life requires
simplifications to be adopted. In practice, no model
capable of exactly describing a process exists.
Therefore, no model can be considered to be
complete without taking into account possible
modeling errors or uncertainties (Camacho and
Berenguel, 1997).

In practice, all processes are subjected to
constraints. The control system normally operates
close to the limits and constraints violations may
occur. The control system has to anticipate
constraints violations and correct them in a
appropiate way.

If no constraints are present, the model process is
linear and the cost function is quadratic, the
resulting control law is easy to implement and
requires little computation. However, its derivation
is more complex than that of the classical PIDs
controllers. If the process dynamic does not change,
the derivation of the controller can be done
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beforehand, but in the adaptive control case all the
computation has to be carried out at every sampling
time.

When constraints are considered, the control signal
has to be computed using a numerical optimization
algorithm and the amount of computation required
is even higher. The design algorithm is based on a
prior knowledge of the model and it is independent
of it, but it is obvious that the benefits obtained will
depend on the discrepancies existing between the
real process and the model used.

This work proposes control algorithms that can be
used with linear and nonlinear models, quadratic or
non quadratic objective function, linear and
nonlinear constraints and bounded uncertainties.

The plant to be controlled can be described by the
following non linear state-space model:

x(k) = j(x(k-l),u(k),8(k))

y(k)=g(x(k))
(1)

Where u(k) is a vector of inputs or manipulated
variables, x(k) is a vector of state variables, O(k) is a



vector of uncertainties and y(k) IS a vector of
controlled variables or outputs.

Section 2 shows Model Predictive Control
formulation. In sections 3 and 4, interval techniques
for modeling and nonlinear constraints solving are
described. Section 5 proposes a new Model
Predictive Control strategy: Interval Model
Predictive Control (lMPC). In order to illustrate the
algorithm an application to a nonlinear model of an
evaporator is presented in section 6.

2. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) does not designate
a specific control strategy but a very ample range of
control methods which make an explicit use of a
model of the process to obtain the control signal by
minimizing an objective function. The ideas
appearing in greater or lesser degree in all the
predictive control family are basically (Camacho
and Hordons, 1999): Explicit use of a model to
predict the process output at future time instants
(horizon). Calculation of a control sequence
minimizing an objective function. Receding
strategy, so that at each instant the horizon is
displaced towards the future, which involves the
application of the first control signal of the
sequence calculated at each step.

No model capable of exactly describing a process
exists. Parametric uncertainties are uncertainties in
the parameters of the model without changing its
order. That is, the structure of the process is the
same as the model's but with parameters differing
from the real ones.

It is difficult to handle uncertainties in the process
model because its formulation is complex in many
cases. Interval mathematics can be used to model
bounds uncertainties, it can reduce the complexity
of this formulation.

In practice all processes are subject to constraints.
Actuators have a limited range of action and a
limited slew rate. The operating points of plants are
determined to satisfy economic goals and lie at the
intersection of certain constraints. There are many
aspects that cause bounds in process variables.

The constraints acting on a process can originate
from amplitude limits in the control signal, slew
rate limits of the actuator, and limits on the output
signals. However, other types of constraints may
exist: band constraints, overshoot constraints,
monotonic behavior, actuator non linearities and
others (Camacho and Hordons, 1999).

It may occur that process or constraints are not
linear, or cost function are not quadratic. In these
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cases global optimization algorithms using interval
analysis can solve this problem.

3. INTERVAL TOOLS

Interval Mathematics has been used since the early
60s giving rise to the development of algorithms to
achieve global optimization and constraints
satisfaction. Interval Mathematics can be said to
have begun with the appearance of R.E. Moore's
book Interval Analysis (1966). Moore's work
transformed this simple idea into a viable tool for
error analysis. Instead of merely treating rounding
errors, Moore extended the use of Interval Analysis
to bound the effect of errors from all sources,
including approximation errors and errors in data.

Since the appearance of Moore's book, over 1000
publications on interval analysis has appeared as
journal articles and reports. Over two dozen books
are devoted entirely or in part to the subject (Moore,
1966; Neumaier, 1990; Hansen, 1992; Kearfott,
1996).

The main idea used in Interval Analysis is to
consider that a variable X does not take a real value
but is instead define by and interval. That is:

X=[a,b]={x:a$x$b} x,a,bE9t
(2)

All the variables and constants used to model or
control systems will take interval values. In this
case is important to have a set of tools which allow
us to work with the previous variables and
constants. This set of tools is formed by Interval
Arithmetic, Extended Relation Operators and
Interval Functions.

3.1 Interval Arithmetic

Interval Arithmetic is the set of arithmetic
operations defined over intervals. Definition of
addition, subtraction, multiplication and division
are showed below.

[a,b] + [c,d] = [a +c,b+d]

[a,b]-[c,d] = [a-d,b-c]

[a,b]· [c,d] = [m i1(ac,ad,bc,bd),ma:{ac,ad,bc,bd)]

[a,b]/[c,d] =[11d,lIc] .[a,b]
(3)

Extended and generalized operations has been
developed (Hansen, 1992).



3.2 Extended Relation Operators

To provide operators to compare two intervals are
needed. The semantic of these operators over real
numbers is clear, but a definition is necessary over
intervals:

[a,b] = rc, d] {:::> [a,b ]n[c, d];e 0

[a,b]>[c,d]{:::>b>c

[a,b] < rc, d] {:::> a < d

[a,b] ~ rc, d] {:::> b ~ c

[a,b] ~ rc, d] {:::> a ~ d
(4)

This definition favors that all the solutions of the
problem stay in the space of study, however there
may be definitions more appropriate for others
applications. To get this robustness, the definition,
has been carried out following this criterion:

xopY {:::> 3xE X,3yE Y Ixopy

(5)

3.3 Interval Functions

An Interval Function is an interval extension of a
real function. There are several ways of extending
(Hansen, 1992). Natural Interval Extension has
been used in this work. Other kind of extensions
and their influence in the control will be studied in
later works.

The Natural Interval Extension F of a real function
f is formed as the following: Each constant k of f is
substituted by the interval [k,k]. Each real variable
x of f is substituted by an interval variable X. Each
real operator op is substituted by an interval
operator OP

4. BRANCH & BOUND ALGORITHMS

The Branch and Bound algorithms are tools used to
solve a lot of problems. Its methodology consists
on dividing a certain search space into smaller
spaces where the search is easier. The solution of
the global problem will be the best solution of the
smaller problems. The best advantage of these
algorithms is the guarantee of offering a global
solution against local methods.

4. I Traditional definition

Traditional works (Mitten, 1970) define the
important points that characterize the Branch and
Bound algorithms:

Problem to solve and search space.
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Division Rule; define how to divide the search
space.

Bound Rule; define a limit to solve the problem in a
certain space.

Selection Rule; allow to select the following space
to work with.

Suppression Rule; defme what spaces can be
suppressed because of its lack of solution.

4.2 Predictive Control formulation

In order to solve a problem of Model Predictive
Control, it should be taken into account the
following points:

Problem to solve and search space; in MPC the
problem is to find the set of control signals that
minimize a cost function, so the search space is
composed by the control signals domains.

Division Rule; a simple bisection will be used to
divide the present search space.

Bound Rule; interval Arithmetic allow to evaluate
the cost function in intervals obtaining an upper and
lower value.

Selection Rule; select the space, heuristically, which
has the higher probability of containing an optimal
signal control.

Suppression Rule; two different criteria will be
considered: Verify if the present search space may
have a better solution that the one already obtained.
If it is not possible, it will be dismissed. And verify
if the present search space may satisfy the
constraints imposed to control and in negative case,
to dismiss this space.

5. INTERVAL MODEL PREDICTIVE CONTROL

The present work studies the viability to make an
interval extension of the predictive control which
permits to solve problems that are difficult for
traditional algorithms. For example, non linear
models and constraints and modeling uncertainties
through interval values.

5.1 Problem Formulation

Consider the plant to be controlled described by
(I).The problem to be solve by the interval model
predictive controller at each sampling time may be
stated as follows:



min J(u(k),y(k),w(k),O(k»
u

Subject to

J defines an objective function over a fmite control
horizon, w(k) defines the set point sequence and
Cj(k) are sets of non linear constraints.

The key idea of the algorithm is that all variables
and constants are given an interval value instead of
a real value. That is, uncertainties both in model
parameters and errors are given the interval value
defined by the minimum and maximum value that
the uncertainty can take. In general, the
uncertainties, when bounded, can be described by a
set of non linear constraints.

The problem is to determine u(k), in an interval
mathematics form such that it minimizes J while
satisfying the sets of constraints C;(k). Notice that
the decision variables u(k), 8(k) and w(k) are
exogenous variables and y(k) is predicted from the
model equations and the values taken by the other
variables. But this prediction is made using interval
arithmetic.

Three steps are needed to define the problem of the
predictive control in the interval domain field: First
make the interval extension of the cost function and
the model constraints, according to the steps
described above. Second design an algorithm to
resolve the sets of constraints. Third design an
algorithm to minimize the cost function.

5.2 Algorithm to resolve the sets ojconstraints

There are a lot of works (Kearfott, 1996) about the
constraints resolution based on Branch and Bound
algorithms and interval techniques. In this work two
main algorithms have been developed: First an
algorithm of constraint satisfaction allows to know
if a certain solution space satisfies the constraints
imposed to the control. Those algorithms consist on
replacing the interval domains of the solution space
in the variables and verifying through relational
operators, whether these constraints are satisfied or
not. Second an algorithm to bound the solution
space in charge of eliminating those parts of the
space that do not satisfy constraints, returning a
surrounding bound of the minimum space that
satisfies them. In control, it is interesting to found a
bound of the space adjusted enough to satisfy those
constraints. The algorithm adjust made in that
bound will depend on the required precision, the
available time to make the calculations, and the
overestimation that interval arithmetic introduces.
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Algorithm to bound the space that satisfies
constraints.

x = InitialSpace
C = Constraints
ijNotSatisfyConstraints(C,X) ToReturn ListEmpty
List=Insert (X)
While Precision reached

X = FirstElement(List)
List = List -X
(Xi,X2) = SplitSpace(X)
ijSatisjj;Constraints(C'xi) List=List + Xi
ijSatisjj;Constraints(C,X2) List=List + X2

EndWhile
Return UnionSpace(List)

5.3 Algorithm to minimizejunctions

The development of global optimization algorithms
has been a great success in interval analysis
(Hansen, 1992; Kearfott 1996). Those algorithms
allow to find the global minimum of functions
subject to constraints. These functions and
constraints can be linear or non linear and
differentiable and non differentiable. The more
information the functions and the constraints have,
the higher the convergence speed will be. For this
reason, the minimization of differentiable functions
will permit methods with a higher degree of
convergence.

This work has developed a valid algorithm for non
linear and non differentiable functions and
constraints. The algorithm has as an input an initial
search space, a cost function and a set of
constraints. Specifying the predictive control
problem, we found:

Initial search space; it is the set domain of the
present and future inputs that compound the
predictive control. The dimension of that space will
depend on the number of input variables and
horizon control and prediction used.

Cost junction; its minimization permits to calculate
the optimal control signals.

Input constraints; constraints imposed to control.

A first step in the algorithm consists on bounding
the search space to the constraints as much as the
interval techniques allow. This very first part of the
algorithm returns a subspace that bound externally
the defined space by the constraints. Next, the
subspace is inserted in an ordered list used by the
algorithm to keep the different subspaces created.
The following step will be to execute a loop that
will be repeating while a certain precision is
reached. This precision will be calculated by the
subspaces width. The loop starts taking the first
element of the list. The mid point is calculated, and



the cost function is evaluated with these values. A
minimal bound is obtained. If that bound is better
than the ones obtained previously, the bound is
taken. Following, the space is split into two
subspaces. The following operations are made with
these two subspaces: Verify that constraints are
satisfying, and in a negative case, to dismiss them;
evaluate the cost function obtaining an upper and
lower bound for these subspaces and verify that the
lower bound does not exceed the present minimum
( if it does, it will be dismissed) and to insert it in an
ordered way in the list. The list can be ordered
according to the best upper or best lower bound.

Once the precision is obtained by achieving the
subspaces width wished, the algorithm ends
returning the first of the list.

Algorithm to minimize cost functions

x = InitialSpace
C = Constraints
J = FunctionToMinimize
List = Insert(BoundSpaceSatisfyConstraintns(C,X))
While PresicionNonReached

X = FirstElement(List)
Minimum = MidPointTest(X)
List = List - X
(Xl,X2) = SplitSpace(X)
ifSatisfyConstraint(C,Xl)

Evaluate J with XI
ifLowBound(J) > Minimo

List = InsertOrdered(Xl)
Endif

Endif
ifSatisfyConstraint(C,X2)

Evaluate J with X2
ifLowBound(J) > Minimo

List = InsertOrdered(Xl)
Endif

Endif
EndWhile
Return FirstElement(List)

More efficient algorithms have been developed,
however it is needed the use of the gradient (Van
Hentenryck, 1997).

6. SIMULAnON

An evaporator has been chosen as a testing bed for
interval model predictive control. The results
presented in this section have been obtained by
simulation on a non linear model of the process
(Newell and Lee, 1989).

The system dynamics is mainly dictated by the
differential equations modeling the mass balance. In
the solute the mass balance can expressed by the
differential equation:
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(7)

Where M is a constant that defines the total quantity
of liquid in the evaporator, F, is the feed flowrate,
XI is the feed composition, F2 is the product
flowrate and X2 is the product composition. F2 is
the manipulated variable. X 2 is the process variable.
F" XI are disturbances.
Taking a sampling time of one minute, the non
linear discrete model used by the interval controller
is:

X
2
(k) = X

2
(k-l)+ (F,(k)· X 1(k)-F2(k)·X2 (k»

20
(8)

Four results of applying the interval controller are
presented. Figure 1 shows the system response and
the control signal without disturbances and without
constraints. Figure 2 shows the system response and
the control signal with a constraint over X2. Figure
3 shows the system response and the control signal
with a disturbance of ±1O% in XI' Figure 4 shows
the system response and the control signal with the
same disturbances but using a interval model where
these disturbances are considered.
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Fig. 1. Interval control without constraints, without
disturbances.

""PC
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Fig. 2. Interval Control with X2~5, without
disturbances
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Hansen, E. (1992). Global Optimization Using
Interval Analysis. Marcel Dekker, Inc. New
York.

Kearfott, R.B. (1996) Rigorous Global Search:
Continuous Problems. Kluwer Academic
Publishers.

Mitten, L.G. (1970). Branch and Bound methods:
general formulation and properties.
Operation Research 18:24,34.

Fig. 3. Interval Control with disturbances not
considered by the model.

IMPC
30

Moore, R.E. (1966). Interval Analysis. Prentice
Hall.

Neurnaier, A. (1990) Interval Methods for Systems
of Equations. Cambridge University Press,
Cambridge
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Newell, R.B. and Lee, P.L. (1989). Applied Process
Control. A case Study. Prentice Hall

Van Hentenryck, P. (1997) Numerica: A Mode/ing
Language for Global Optimization. The MIT
Press, Cambridge, Massachussetts.

Fig. 4. Interval Control with disturbances
considered by the model.

7. CONCLUSIONS

In this work, a set of interval methods for
application in a MPC framework is proposed. These
methods allow to use nonlinear models, nonlinear
constraints and bounds uncertainties. However,
there are some limitations: High computational
cost, so its application in real time control is
difficult if the process is fast; high storage cost (to
handle spaces generated by branch & bound
algorithms) and function overestimation in Interval
mathematics.

Hardware development more and more fast make
possible the application of interval methods.
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