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ABSTRACT The draft genome sequence of Saccharomonospora piscinae KCTC 19743T,
with a size of 4,897,614 bp, was assembled into 11 scaffolds containing 4,561 open read-
ing frames and a G�C content of 71.0 mol%. Polyketide synthase and nonribosomal
peptide synthetase gene clusters, which are responsible for the biosynthesis of several
biomolecules, were identified and located in different regions in the genome.

The actinobacterial group has been recognized for its extensive secondary me-
tabolism, and members produce approximately two-thirds of all antibiotics used

in clinical, industrial, and biotechnological processes (1). There are two classes of
bacterial bioactive secondary metabolites, namely, the polyketides and the nonri-
bosomal peptides, which are biosynthesized by multifunctional enzymes, i.e.,
polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs), respec-
tively (2).

Saccharomonospora piscinae KCTC 19743T is the type strain of the most recently
described species of the genus Saccharomonospora. It was isolated from the sediment
of a fishpond in southern Taiwan, and it is characterized by its ability to grow at 0 to
8% (wt/vol) NaCl and between 20°C and 40°C (3). The aims of this work were to obtain
the genome sequence of Saccharomonospora piscinae KCTC 19743T and to determine
the presence of secondary metabolite biosynthetic gene clusters.

The type strain of Saccharomonospora piscinae was obtained from the Korean
Collection for Type Cultures (KCTC) and grown for 7 days at 37°C on HM medium (4)
with 10% salts, under aerobic conditions. Genomic DNA was isolated as described
elsewhere (5). In brief, cells were lysed with a mixture of lysozyme and sodium lauryl
sulfate, and nucleic acids were extracted with chloroform-isoamyl alcohol (24:1
[vol/vol]), followed by DNA precipitation with ethyl alcohol. Subsequently, DNA was
purified using the MEGAquick-spin Plus kit (iNtRON Biotechnology) and quantified
by spectrophotometry (DeNovix DS-11 FX spectrophotometer) and fluorometry
(Qubit 3.0 fluorometer). Library construction was performed using the KAPA Hy-
perPrep kit (Roche), according to the manufacturer’s instructions. The draft genome
sequence of Saccharomonospora piscinae KCTC 19743T was obtained by following a
complete-genome shotgun strategy (6) on an Illumina NovaSeq 6000 platform (2 �

150-bp paired-end reads) (Stab Vida, Portugal), with an output of 23,534,814
reads and a sequencing depth of 733�. Downstream analyses were carried814
out using default parameters for all software unless otherwise specified. BBDuk
from the BBTools v.38.44 package (7) was employed for read quality trimming
(qtrim � rl, trimq � 18) and adapter trimming (k � 21, tbo ordered cardinality).
Genome assembly was performed using SPAdes v.3.13.0 (8) (option– careful). The
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NCBI Prokaryotic Genome Annotation Pipeline (9) was used to provide functional
annotation. To determine the presence of secondary metabolite biosynthetic
gene clusters, the assembled genome was analyzed using antiSMASH server
v.5.0 (10).

The draft genome sequence of Saccharomonospora piscinae KCTC 19743T con-
tained 4,897,614 bp, with a G�C content of 71.0 mol%. The reported coding
density was 91.82%, with 0.93 genes per kbp. The assembly resulted in
11 scaffolds (�940 bp), with an N50 value of 1,086,926 bp and L50 value of 3. A total
of 4,561 putative open reading frames (ORFs) were predicted, with an average size
of 986 bp, including 4,508 coding sequences, a complete rRNA operon, 47 tRNA
genes, and 3 noncoding RNA genes. The presence of the secondary metabolite
biosynthetic gene clusters PKS-T1, PKS-T2, PKS-T3, and NRPS, as well as hybrid
clusters, was localized in nine genomic regions within the genome sequence
(Table 1). Our results suggest a high potential for Saccharomonospora piscinae
to produce a variety of secondary metabolites related to the PKS and NRPS
systems.

Data availability. This whole-genome shotgun project has been deposited in
GenBank under accession number VCEK00000000. The version described in this
paper is the first version, VCEK00000000.1. The raw Illumina data from BioProject
PRJNA544002 were submitted to the NCBI Sequence Read Archive (SRA) under acces-
sion number SRX7473633.
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TABLE 1 Presence of secondary metabolite biosynthetic gene clusters in the genome sequence of Saccharomonospora piscinae KCTC
19743T, as detected using antiSMASH

Contig

Genomic region
(nucleotide position,
start to stop)

Biosynthetic
gene cluster(s) Most similar known cluster Similarity (%) MIBiGa accession no.

1 132953 to 205507 T2-PKS Curamycin 71 BGC0000215
314548 to 421784 NRPS, T1-PKS Collismycin A 7 BGC0000973
519335 to 560387 T3-PKS Alkyl-O-dihydrogeranyl-methoxyhydroquinones 57 BGC0001077
705947 to 724544 Terpene Isorenieratene 36 BGC0001227
873907 to 899995 Terpene Hopene 46 BGC0000663

2 226982 to 268169 Arylpolyene A201A 8 BGC0001138
286693 to 307703 Indole Fortimicin 9 NDb

820634 to 841380 Homoserine lactone Albachelin 40 BGC0001211

3 1 to 9615 Ectoine Ectoine 100 BGC0000853
60896 to 82094 Linaridin Lomaiviticin 6 BGC0000241
207856 to 250926 NRPS Sporolide 36 BGC0000150
251706 to 297528 T1-PKS Amycolamycin A/amycolamycin B 10 BGC0001503
990976 to 1014377 Linaridin ND ND ND

4 559645 to 802161 T1-PKS, T3-PKS Concanamycin A 42 BGC0000040

5 47510 to 115116 �-Lactone, NRPS Herboxidiene 8 BGC0001065

6 25520 to 47697 Terpene Geosmin 100 BGC0000661
168655 to 218283 Siderophore, T1-PKS Ficellomycin 14 BGC0001593

9 1 to 13562 T1-PKS Mediomycin A 28 BGC0001662
a MIBiG, Minimum Information about a Biosynthetic Gene cluster.
b ND, not determined.
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