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Abstract: This paper deals with the design procedure of the recently presented robust MPC
for tracking of constrained linear systems with additive disturbances. This controller is based
on nominal predictions and it is capable to steer the nominal predicted trajectory to any target
admissible steady state, that is retaining feasibility under any set point change. By means of
the notion of tube of trajectories, robust stability and convergence is achieved.
The controller formulation has some parameters which provides extra degrees of freedom to the
design procedure of the predictive controller. These allow to deal with control objectives such
as disturbance rejection, output offset prioritization or enlargement of the domain of attraction.
In this paper, output prioritization method, LMI based design procedures and algorithms for
the calculation of invariant sets are presented. The proposed enhanced design of the MPC is
demonstrated by an illustrative example.

1. INTRODUCTION

Model predictive control (MPC) is a control technique
capable to deal with hard constraints of the system and
the optimization of a performance index. This is achieved
by posing the control problem as a mathematical pro-
gramming problem and applying the optimal solution in a
receding horizon manner. This controller typically requires
a terminal state penalization and constraint, in order to
ensure closed loop stability. The stabilizing ingredients
and the finite prediction horizon make that the predictive
controller may loose feasibility under set point changes.

Recently, a novel Robust MPC for tracking has been pre-
sented (Alvarado et al. [2007]). The main characteristics
of this controller are: (i) adds an artificial steady state
as a decision variable (artificial steady state) (ii) uses an
invariant set for tracking as a terminal constraint (iii)
considers a cost function penalizing the error w.r.t the
artificial steady state and an additional term penalizing
the deviation between the artificial steady state and the
target steady state (iv) it is based on the tube-based MPC
controller (Mayne et al. [2005]). This controller, under
mild assumptions, can steer the uncertain system in an
admissible evolution to a neighborhood of any admissible
steady state.

The robust MPC for tracking has some parameters to
be tuned, which provides extra degrees of freedom to be
exploited according to the control objectives. This allows
us to deal with disturbance rejection, enlargement of the
domain of attraction and output tracking prioritization
when the set point is not admissible.

In this paper, the effect of each parameter of the MPC is
analysed and procedures for their selection are presented.

⋆ The authors acknowledge MCYT-Spain for funding this work
(contracts DPI2007-66718-C04-01 and DPI2005-04568)

First, it is shown how to design the proposed MPC to
ensure the evolution to an optimized steady state when the
target is not admissible. Then the robust local controller
is designed to minimize the effect of the disturbances on
the state evolution and hence to enlarge de domain of
attraction of the MPC. This can be posed as a set of linear
matrix inequalities which solution provides the control
gain. Finally, existing results on the computation of an
approximation to the minimal robust positively invariant
set are specialized for disturbances that can be represented
as a zonotope (an affine mapping of a unitary box).

The paper is structured as follows: In §2 the problem to
solve is described and in §3 the robust MPC for tracking
is presented, in §4 the design procedure is introduced, in
§5 the tool that minimize the invariant set. The paper
finishes with an illustrative example in section 5 and some
conclusions.

Notation: A definite positive matrix T is denoted as
T > 0 and T > P denotes that T − P > 0. For
a given symmetric matrix P > 0, ‖x‖P denotes the

weighted Euclidean norm of x, i.e. ‖x‖P =
√

x⊤Px.

(a, b)
∆
= [a⊤, b⊤]⊤. Consider a ∈ IRna , b ∈ IRnb , and

set Γ ⊂ IRna+nb , then projection operation is defined as
Proja(Γ) = {a ∈ IRna : ∃b ∈ IRnb , (a, b) ∈ Γ}. Given
two sets U and V, such that U ⊂ IRn and V ⊂ IRn, the

Minkowski sum is defined by U⊕V ∆
= {u+v|u ∈ U , v ∈ V},

the Pontryagin set difference is: U ⊖ V ∆
= {u|u ⊕ V ⊆ U}.

For a given matrix M ∈ IRn×m and a set V ⊂ IRm, the set
MV ⊂ IRn denotes the set {y = Mv, v ∈ V}. For a given
λ, λX = {λx : x ∈ X}. Let t be a generic vector defined as

t
∆
= {t(0), t(1), . . .}. A set is a C set if is compact, convex

not empty. A matrix 0n,m ∈ IRn×m denotes a matrix of
zeros. The set of vertexes of a given C set Γ is denoted
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as vert(Γ). The set BN ⊂ IRN denotes the unitary ball

BN = {b ∈ IRN : ‖b‖∞ ≤ 1}.

2. PROBLEM DESCRIPTION

Consider the following uncertain discrete-time LTI system:

x+ = Ax + Bu + w, y = Cx + Du (1)

subject to following constraints:

x ∈ X ⊂ IRn u ∈ U ⊂ IRm (2)

and disturbances set:

w ∈ W ⊂ IRn (3)

where: x is the current state, u is the current control
action, x+ is the successor state, w is an unknown state
disturbance, y ∈ IRp is the current measured output, and
(A,B,C,D) ∈ IRn×n× IRn×m× IRp×n× IRp×m. W, is a
compact, convex not empty set and X , U are polyhedral
and polytopic sets respectively.

Let φ(i;x,u,w) denote the solution of (1) at time i if the
initial state is x and the control and disturbance sequences
are, respectively, u and w.

The overall objective is to stabilize the constrained system
and steer the state to a neighborhood of the setpoint
fulfilling the constraints for any possible disturbance.

The following standing assumption is made:

Assumption 1. The couple (A,B) is controllable.

3. ROBUST MPC FOR TRACKING

For the sake of a clear and self-contained exposition of the
contributions of the paper, the robust MPC for tracking
is succinctly presented in this section. A more detailed
explanation of the controller can be found in (Alvarado
et al. [2007], Alvarado. [2007])

3.1 Tube of trajectories

The proposed controller is based on the response of the
nominal system, obtained from (1) by neglecting the
disturbances w. The nominal system is described by:

x̄+ = Ax̄ + Bū, ȳ = Cx̄ + Dū (4)

Choosing an initial state x̄ and a control sequence ū yields
a state sequence x̄ obtained by solving (4) (x̄i = φ̄(i; x̄, ū)).
To counteract the disturbances it is desirable to force the
trajectory to lie close to the nominal trajectory; this can
be done by choosing the control u to satisfy:

u = ū + Ke e
∆
= (x − x̄) (5)

where e denotes the error between the state and the state
of the nominal system.The error e dynamics is given by

e+ = AKe + w; AK = (A + BK) (6)

If matrix AK is Hurwitz then there exists a robust pos-
itively invariant set Z (Kolmanovsky and Gilbert [1998],
Rakovic et al. [2005]) for the system (6) that satisfies

AKZ ⊕W ⊆ Z

The invariance property allows to state the notion of tube
of trajectories given in the following proposition:

Proposition 1. (Mayne et al. [2005]). If the initial real and
nominal system states, satisfy e(0) = x(0)−x̄(0) ∈ Z, then
x(i) ∈ x̄(i) ⊕Z ∀i ∈ IN, for all disturbance sequences w

such that w(i) ∈ W ∀i = 1, 2, . . ..

From this proposition it is inferred that if the nominal
control actions are calculated to ensure that the nominal
predicted states and inputs satisfy the following tighter
constraints

X̄ = X ⊖ Z Ū = U ⊖ KZ (7)

then the system controlled by (5) maintains all the possible
trajectories admissible, that is satisfying the constraints on
states and inputs for all possible uncertainty (Mayne et al.
[2005]).

3.2 Set point characterization and invariant set for tracking

In this section, a suitable parametrization of the steady
states and inputs for the nominal system is presented.
Consider a given output target yt, then any steady state
of the nominal system zs = (xs, us) associated to this set-
point must satisfy the following equation

[

A − In B 0n,1

C D −Ip

]

[

xs

us

yt

]

=

[

0n,1

0p,1

]

(8)

Because of the pair (A,B) is stabilizable, the solution to
this problem can be parameterized as

zs = Mθθ yt = Nθθ (9)

where θ ∈ IRnθ is a parameter vector which characterizes
any solution, and Mθ and Nθ are suitable matrices (Limon
et al. [2008]).

The existence of constraints (7) limits the set of reachable
steady states and inputs. The set of admissible steady
states is denoted as Xs and it is a polyhedron given by
Xs = {xs ∈ X̄ : ∃us ∈ Ū | (A − In)xs + Bus = 0n,1}.
Now, the notion of invariant set for tracking is presented

Definition 1. Let xe be the extended state (x, θ) ∈
IRn+nθ , let KΩ be a control gain such that A + BKΩ

is Hurwitz and let Kθ be given by Kθ = [−KΩ Im]Mθ.
Then, a set Ωe

t ⊂ IRn+nθ is an invariant set for tracking
admissible for (7), if for all (x, θ) ∈ Ωe

t , then x ∈ X̄ ,
KΩx + Kθθ ∈ Ū and ((A + BKΩ)x + BKθθ, θ) ∈ Ωe

t .

The role of the presented parametrization is to simplify the
proposed predictive controller as well as the calculation of
invariant sets for tracking.

3.3 Predictive controller

The main objective of this controller is to robustly steer
the output system to a (neighborhood of) a target yt.
It is assumed that this target can be characterized by a
parameter vector θ by means of (9) (i.e. it is a possible
steady output for the nominal system).

This controller, as the tube-based controller (Mayne et al.
[2005]), considers as decision variables the initial nominal
state x̄ and the sequence of future nominal control actions
ū. In order to deal with the set point change problem an
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artificial steady state and input (x̄s, ūs) = Mθ θ̄ is consi-
dered as decision variable. These variables are calculated
to minimize the following nominal prediction based cost
function:

VN (x, θ; ū, x̄, θ̄) =

N−1
∑

i=0

(

‖x̄(i) − x̄s‖2
Q + ‖ū(i) − ūs‖2

R

)

+ ‖x̄(N) − x̄s‖2
P + ‖θ̄ − θ‖2

T (10)

where x̄(i) = φ̄(i; x̄, ū) and (x̄s, ūs) = Mθ θ̄. The current
state x and the target operation point given by θ are
parameters of the cost function.
This cost penalizes the deviation between the predicted
trajectory and the artificial steady state along the horizon
N . The deviation between the artificial steady conditions
(given by θ̄) and the target one (given by θ) is penalized
by means of the so-called offset cost ‖θ̄ − θ‖2

T .

The cost function must be minimized considering the
constraints derived from stability and admissibility condi-
tions, leading to the following quadratic problem PN (x, θ):

min
x̄,ū,θ

VN (x, θ; ū, x̄, θ̄) (11)

s.t. x̄ ∈ x ⊕ (−Z) (12)

x̄(i) ∈ X̄ , i = 0, · · · , N (13)

ū(i) ∈ Ū i = 0, · · · , N − 1 (14)

(x̄(N), θ̄) ∈ Ωe
t (15)

where: X̄ = X ⊖ Z and Ū = U ⊖ KZ.

PN (x, θ) is solved online to yield an optimal initial state
x̄∗(x, θ), an optimal nominal control sequence ū

∗(x, θ) =
{ū∗(0, x, θ), ū∗(1, x, θ), . . . , ū∗(N−1, x, θ)} and the optimal
artificial steady conditions parameter θ∗(x, θ). From this,
the control applied to the plant is given by:

kN (x, θ) = ū∗(0, x, θ) + K(x − x̄∗(x, θ)) (16)

Notice that the set of constraints that defines the feasi-
bility region of PN (x, θ) does not depend on θ (that is,
the target operating point), but only on the current state
x and the decision variables. Therefore, this feasibility
region only depends on the current state x. Thus, defining
X̄N ⊂ IRn as the set of the admissible nominal initial
states x̄ such that (13), (14) and (15) hold, the set of
feasible states is given by XN = X̄N ⊕Z.

3.4 Stabilizing conditions of the controller

In order to ensure robust stability of the closed loop
system, the following sufficient conditions on the defining
ingredients are assumed:

Assumption 2. The matrices Q, R, T , P , K, KΩ, and sets
Ωe

t and Z fulfil:

• Q > 0 and R > 0
• There exists a constant σ > 0 such that σT ≥ MT

x Mx,
where Mx = [In,0n]Mθ.

• The gain matrix K is such that A + BK is Hurwitz.
• The pair of matrices KΩ and P are such that A+BKΩ

is Hurwitz and P > 0 where

P − (A + BKΩ)⊤P (A + BKΩ) = Q + K⊤

Ω RKΩ

• Set Z ⊂ X is an admissible robust positively invariant
set such that (A + BK)Z ⊕ W ⊆ Z and KZ ⊂ U .

• Ωe
t is an invariant set for tracking (as large as possible)

for the nominal system (4) subject to the constraints
X̄ and Ū and using as control gain matrix KΩ.

Now it is possible to establish the following result:

Theorem 1. (Alvarado et al. [2007]). Consider system (1)
subject to the constraints (2) and such that verifies As-
sumptions 1 and 2. Let kN (x, θ) be the control law result-
ing from the solution of the optimal problem PN (x, θ). Let
Yt be the set of reachable target outputs given by

Yt
∆
= {y = Nθθ : Mθθ ∈ Projx(Ωe

t ) × Ū}

Then ∀x(0) ∈ XN and a target yt ∈ Yt the closed loop
system fulfils the constraints (2) along its evolution and
converges asymptotically to xs ⊕Z.

The proof of this theorem can be found in (Alvarado.
[2007])

3.5 Cancellation of the output offset

The proposed controller is able steer the system state to
a neighborhood of the target steady state, that is xs ⊕Z.
If the disturbances are decaying, the system converges
asymptotically to the target, but if the disturbance tends
to a steady value, the the closed loop system presents offset
on the outputs, i.e. the error y(k)− yt tends to a constant
value.
This can be cancellated by the following methods. One
possible technique is augmenting the model of the system
with integrating disturbances to remove offset (Pannocchia
[2004]); a linear control law ensures robust offset-free con-
trol at expense of enlarging three times the order of the
plant which makes the controller design and calculation
more difficult.
A second method proposed by the authors in (Alvarado
et al. [2007]), achieves the offset free without augmenting
the plant, but adding an outer loop consisting of a distur-
bance estimator and a set point correction given by

ŷt(k) = yt − (C + DK)(In + (A + BK))−1ŵ(k)

where ŵ(k) is the estimated disturbance. The estimator
dynamics should be adjusted according the dynamics of
the disturbance signal and the closed loop system.

4. SYNTHESIS OF THE PROPOSED CONTROLLER

The presented predictive controller is designed by picking
the defining parameters (horizon, matrices and sets) fulfill-
ing Assumption 2. Since this does not fix the parameters,
these can be chosen according to control objectives, such
as closed loop performance, disturbance rejection, domain
of attraction, etc.

Matrices Q and R define the stage cost which is closed loop
performance index. Control horizon N is typically chosen
as large as possible, since a large N provides a larger
domain of attraction and an enhancement of the closed
loop performance. However, the dimension of the problem
grows with N , and hence requires a larger computational
time. Therefore, a tradeoff must be achieved.
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In this section, the chosen of the extra parameters specific
of the proposed predictive controller: the matrices T , K,
KΩ, P and the sets Z and Ωe

t .

4.1 The parameter T

This matrix defines the weight of the tracking error cost
‖θ̄−θ‖2

T in the cost function. The effects of this parameter
on the closed loop system are the following :

• Transient dynamics and set point filtering : if matrix
T is chosen to penalize more heavily the tracking error
cost, then the convergence of θ̄ to θ is made faster,
and hence the transient of the closed loop system to
the target.

• Local optimality : it is well known that MPC can be
designed to be locally infinite horizon optimal (for the
nominal system), however the addition of the artificial
steady state and input makes that this property does
not hold in the presented controller. The optimality
loss can be arbitrarily reduce by picking a large
enough matrix T .

• Offset minimization: this is a remarkable property
of the controller (Alvarado. [2007]). Consider that
the target yt is not reachable that is, the desired
output yt does not fulfil any of the constraints, i.e.
Mθθ 6∈ Ωt ×Ū , ∀θ : yt = Nθ. Under these conditions,
the target can not be reached and then, the output
will present offset.
In this case the proposed controller drives the system
to the neighborhood x̃s⊕Z, where the steady state x̃s

(given by the parameter θ̃) is the one which minimizes
the offset cost. That is

θ̃ = arg min
θ̄

‖θ̄ − θ‖2
T

Mθ θ̄ ∈ Ωt × Ū
Therefore, matrix T allows us to prioritize some

outputs (by weighting more heavily its corresponding
term in matrix T ) to achieve a minimum offset on
this outputs. See that this prioritization does not
vary with the scaling of matrix T , and hence the
effects previously presented can be simultaneously
considered in the design of T .

Then the sensible way to design T is firstly pick the
structure according to the offset minimization, and then,
scale the matrix to achieve a quick transient with a small
enough optimality loss. Finally notice that since the value
of T is independent of the rest of parameters, this can be
tuned online maintaining the stabilizing properties.

4.2 The parameters KΩ, P and Ωe
t

The terminal cost and terminal set strongly depend on
the control gain KΩ. This can be designed according the
following aspects: from a performance point of view, it is
desirable that the terminal cost is taken as the cost-to-go,
which can be ensured if KΩ is chosen as the LQ regulator
gain. From a domain of attraction viewpoint, it is desirable
to take KΩ to achieve a large terminal set Ωe

t .

In this case, the large size of the invariant set for tracking
provides a large domain of attraction XN , even for small
values of the control horizon. Then, the most sensible way

to pick KΩ is the Linear Quadratic Regulator and the
matrix P as the solution of the Riccati equation.

The invariant set for tracking Ωe
t can be taken as a poly-

hedral set which approximates arbitrarily to the maximal
invariant set for tracking thanks to a simple procedure
(Limon et al. [2008]. This provides a set of reachable
targets Yt practically equal to the maximal one (i.e. the dif-
ference between both sets can be made arbitrarily small).

4.3 The parameter K

This parameter has an important role in the proposed
controller since this control gain is used to compensate the
deviation from the nominal predictions in the controller
(16), and therefore, it characterizes the dynamics of the
closed loop system in the presence of disturbances. This
makes that K is chosen according to a robustness or
disturbance rejection criterium.

In this paper, we consider as robustness criterium the
minimization of the minimum admissible robust positively
invariant set. Thus, K is chosen to: (i) ensure the existence
of an admissible robust positively invariant set Z such
that the sets X ⊖Z and U ⊖ KZ are not empty sets; (ii)
minimize the size of Z. This criterium provides a larger
domain of attraction and a larger set of reachable targets
as well as minimizes the effect of the disturbance on the
trajectory of the system.

Consider w.l.o.g. that set X = {x : |h⊤

i x| ≤ 1, i =
1, · · · , nrx} and set U = {u : |ℓ⊤j u| ≤ 1, j = 1, · · · , nru}.
Then, the synthesis problem to solve is to calculate the
control law u = Kx such that the size of the ellipsoid
E(P, 1) = { x ∈ IRn : x⊤Px ≤ 1 } is minimized fulfilling
that:

(i) E(P, 1) is a robust invariant set for system (6). This
condition can be reformulated as follows:

(x+)⊤Px+ ≤ 1, ∀x ∈ E(P, 1), ∀w ∈ W (17)

Applying the S-procedure, and considering the con-
vexity with relation to w, equation (17) is satisfied if
exists λ ≥ 0 such that:

((AK)x + w)⊤ P ((AK)x + w) + λ(1 − x⊤Px) < 1

AK = A + BK ∀x ∈ IRn, ∀w ∈ vert(W) (18)

where vert(W) denotes the set of vertexes of W. This
can be rewritten as:

[

λP − (A + BK)⊤P (A + BK) −(A + BK)⊤Pw

−w
⊤

P (A + BK) 1 − λ − w
⊤

Pw

]

> 0

∀w ∈ vert(W)
(ii) For all x ∈ E(P, 1), the control law |ℓ⊤j Kx| ≤ ρj for

all j = 1, · · · , nru and ρj ∈ (0, 1]. The role of the
parameter ρj is to restrict the set of admissible control
inputs to guarantee a given control range of the the
MPC controller i.e. the set Ū = U ⊖ KZ has not
empty interior.

This condition can be posed as:

ℓ⊤j KP−1K⊤ℓj ≤ ρ2
j , j = 1, . . . , nru

Applying the Schur complement, this yields to
[

ρ2
j ℓ⊤j K

K⊤ℓj P

]

> 0, j = 1, . . . , nru
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(iii) For all x ∈ E(P, 1), |h⊤

i x| ≤ 1. Considering similar
arguments to the previous fact, this condition is
equivalent to

[

1 h⊤

i

hi P

]

> 0, i = 1, . . . , nrx

In order to minimize the size of the ellipsoid E(P, 1),
a suitable measure of this set must be chosen. In this
paper, we propose as measure a parameter γ > 0 such
that E(P, 1) ⊆ √

γX . Therefore, minimize the size of
E(P, 1) is posed as minimizing the parameter γ. Obviously,
admissibility of the solution requires that γ ≤ 1.

Applying standard operations of LMIs (Boyd et al. [1994]),
the proposed synthesis procedure can be formulated as the
solution of the following convex optimization problem:

min
Y,W,γ

γ

s.a.
[

λW ∗ ∗
0 1 − λ ∗

AW + BY w W

]

> 0, ∀w ∈ vert(W)

[

ρ2
i ∗

Y ⊤ℓi W

]

> 0, i = 1, . . . , nru

[

γ ∗
Whi W

]

> 0, i = 1, . . . , nrx

for a given λ ≥ 0. If feasible, the ellipsoid is given by
P = W−1 and the control gain is K = Y W−1. It is worth
remarking that any robust criterium that can be posed as
LMIs can be added to this synthesis problem.

4.4 Calculation of the robust invariant set Z

Once the control gain K is designed, an admissible robust
positively invariant (RPI) set (as small as possible) must
be calculated. See that the proposed synthesis of K ensures
the existence of this set. It would be desirable to compute
the minimum robust positively invariant set (mPRI) F∞

(Kolmanovsky and Gilbert [1998], given by

Fs =
s

⊕

k=0

(A + BK)kW

when s tends to infinity. Unfortunately, F∞ can only be
calculated for some special cases, such as, when a dead-
beat control law is used.

In the recent paper (Rakovic et al. [2005], a procedure
for the determination of an invariant approach of F∞ is
presented. This allows one to compute a RPI Z such that
F∞ ⊆ Z ⊆ F∞ ⊕ ǫBn for a given bound of the absolute
error ǫ. To this aim, the following functions are calculated

α(s) = min α : (A + BK)sW ⊆ αW
β(s) = min β : Fs ⊆ βBn

These values are calculated by solving a number of Linear
Programming problems. If a large enough value of s is
taken such that (1 − α(s))−1α(s)β(s) ≤ ǫ then the set
Z = (1 − α(s))−1Fs is an approximation of F∞ with an
error bound less than ǫ.

From a practical point of view, it might be desirable to
calculate the approximation for a relative error bound,
which does not require an a priori estimation of the size of
the invariant set to choose the error bound. This is stated
in the following lemma.

Lemma 1. Let s be a positive real number such that

α(s) ≤ λ

1 + λ

for a given relative error bound λ ∈ (0, 1). Then the set
Z = (1 − α(s))−1Fs is a RPI such that

F∞ ⊆ Z ⊆ (1 + λ)F∞

On the other hand, we specialize this result for the case
that the uncertainty set is a zonotope of the form

W = HBn ⊕ w0

where H ∈ IRn×n is non singular. This is motivated be-
cause this class of set is frequently used to bound additive
uncertainties in practice. For this class of uncertainties we
can state the following lemma.

Lemma 2. Consider a set W = HBn ⊕ w0 where H is a
non singular matrix. Denote (A + BK) as AK and define
the matrix Hz(s) = [As−1

K H,As−2
K H, · · · ,H]. Then

‖H−1As
KH‖∞ = min α : As

KHBn ⊆ αHBn

‖Hz(s)‖∞ = min β :
s−1
⊕

k=0

Ak
KHBn ⊆ βBn

Based on this lemma, an approximation to the mRPI
with a relative error boud λ for the case of zonotopic
uncertainties is presented in the following lemma.

Lemma 3. Let s be such that

‖H−1(A + BK)sH‖∞ ≤ λ

1 + λ

for a given relative error bound λ ∈ (0, 1) and denote
α̂(s) = ‖H−1(A+BK)sH‖∞. Then the zonotope Z given
by

Z = (1 − α̂(s))−1Hz(s)Bsn ⊕ (In − (A + BK))−1w0

is a RPI such that F∞ ⊆ φK ⊆ (1 + λ)F∞.

The proofs of these lemmas can be found in ([Alvarado.,
2007, Chapter 6].

The zonotope expression of the invariant set makes easier
the calculation of the linear mapping and Pontryagin dif-
ference, and consequently the calculation of the polytopes
X ⊖ Z and U ⊖ KZ. However, constraint (12) requires
the calculation of the set of inequalities (hyperplanes) that
define Z. A zonotope is a compact expression of a polytope
with a number of facets that grows exponentially with
the dimension of the unitary box (sn). Although there
exists specialized algorithms to obtain the facets, these are
only tractable for a reduced dimension of the zonotope.
In ([Alvarado., 2007, Chapter 6]) can be found several
practical procedures for this calculation.

5. ILLUSTRATIVE EXAMPLE

Consider a constrained sampled double integrator
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x+ =

[

1 1
0 1

]

x +

[

0 0.5
1 0.5

]

u + w

y = [ 0 1 ]x.

where the disturbances are bounded in w ∈ W = 0.1B2.
The system must fulfil the following constraints: |x1| ≤ 5,
|x2| ≤ 5, |u1| ≤ 0.3, |u2| ≤ 0.3.

The objective is to show the proposed procedures to
find a suitable robust controller gain K to ensure the
admissibility of the tube-based predictive controller, i.e.
ensuring that X ⊖ Z and U ⊖ KZ are not empty sets.

To test the proposed synthesis method, we design two
matrices, KLQR and Kop. The first matrix is obtained as
the LQR gain for Q = I2 and R = 10I2. The second matrix
is designed using the proposed method with a value of
ρ = 0.48 in order to get the same set KZ as in the previous
case. Figure 1 shows the approximated RPI for both gains.
It can be seen that the proposed method provides a smaller
set Z.
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Fig. 1. Comparative of the admissible minimal robust
invariant sets

In order to demonstrate the role of the parameter ρ, let
us try to calculate the minimum robust invariant set with
the minimum size, for that, pick a ρ = 1 and consider a
LQR gain with Q = 1000 ∗ I2 and R = 1. Figure 2 shows
the RPI derived from LQR and the proposed method. It
can be seen how the set KZLQR is not feasible due to
violates the control constraints (ŪLQR = U ⊖ KZLQR is
an empty set). The proposed method provides a feasible
RPI but, since ρ = 1, the set Ūop = U ⊖ KZop is quite
small, so smaller is the parameter ρ bigger is the robust
minimal invariant set (worst disturbance rejection) but
bigger is Ūop (The nominal system has a less restrictive
control constraints, so the evolution of the nominal system
is faster). Thus, with the value of ρ it is possible to
choose between disturbance rejection and performance, as
bigger is ρ better disturbance rejection but worse is the
performance.

6. CONCLUSIONS

This paper deals with the design step of the robust
predictive controller for tracking (Alvarado et al. [2007].
This controller can be thought as a natural extension of
predictive controllers to achieve set point tracking and has
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Fig. 2. Comparative of the minimal robust invariant sets

some extra parameters that can be tuned to achieve the
following objectives:

• Offset minimization
• Disturbance rejection by minimizing the RPI
• Guarantee of feasibility of the tube-based MPC and

enlargement of the domain of attraction.

The first one depends on the tracking error cost weighting
matrix T , which can be freely chosen (under a mild
assumption) to penalize more heavily some outputs in
order to minimize their offset. The last two objectives are
achieved by means a LMI which can be efficiently solved.

Finally, we present a method to estimate the mRPI in the
case that relative error bound is used, and the uncertainty
is posed as a class of zonotopes. We also provide practical
methods to derive reliable approximations in case of exact
calculation is not affordable.
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