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Continuous-Time Chaotic Oscillators
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Abstract—This paper presents an optimization procedure to
choose the chaotic state equation which is best suited for im-
plementation using GmGmGm-CCC integrated circuit techniques. The
paper also presents an analysis of the most significant hardware
nonidealities of GmGmGm-CCC circuits on the chaotic operation—the
basis to design robust integrated circuits with reproducible and
easily controllable behavior. The techniques in the paper are
illustrated through a circuit fabricated in 2.4-���m double-poly
technology.

Index Terms—Analog and mixed analog/digital circuits, non-
linear circuit design.

I. INTRODUCTION

DURING the last several years, there has been an ever-
increasing interest in the application of chaotic modu-

lation for data encryption in communication systems. This
has been supported by a number of remarkable theoretical
developments [1], and demonstrated through circuit imple-
mentation with wired links [2]–[7] and with RF links [8].
Some attempts have also been made to realize the chaotic
modulation/demodulation units using monolithic integrated
circuits—prompted by the convenience to reduce the size and
the power consumption of chaotic communication systems.

A few chaotic chips have been reported during the last
six years [9]–[13]. Most of them use discrete-time circuits
to generate random signals with white or colored spectra
[9]–[11], or to emulate the behavior of chaotic neurons [12],
[13]. The circuits presented in [14] and [15] use electrically
controllable continuous-time circuits to generate a bifurcation
sequence to chaos, including several well-known attractors
(Rössler, Chua’s double-scroll, etc.). The circuit in [14] and
the chaotic neurons have also been demonstrated for chaotic
modulation with wired links [13], [16].

These chips have been basically aimed at demonstrat-
ing the possibility to generate chaotic behaviors, in some
cases using additional off-chip components [15]. Thus, their
design has been focused on the realization of well-known
chaotic state equations, with no assessment of the adequacy
of these equations for their implementation using integrated
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circuits. Neither detailed analysis of the integrated circuits
hardware nonidealities nor their influence on the chaotic
operation have been reported. Consequently, we can state
that the basic tools needed to synthesize robust chaotic IC’s
with predictable behavior are lacking. This paper intends to
overcome this drawback by addressing the optimum real-
ization of a chaotic circuit for the vector field modulation
data encryption system [1], and the study of the influence
of their hardware nonidealities. We will focus on the re-
alization of modulator/demodulator IC units which can be
expressed in Lur’e form with a scalar time-invariant nonlin-
earity [17]–[19]. The reason is simply the wide repertoire
of nonlinear dynamical phenomena, including all kinds of
bifurcations and routes to chaos, which has been identified
within this family, as well as its demonstrated applications to
data encryption [6]–[8].

Section II first proposes an optimization procedure for the
synthesis of chaos generators described in Lur’e form. We
hence propose using the state-variable synthesis method to
define the system level topology, and using transconduc-
tors and capacitors ( - techniques) as basic elements
for the circuit level realization. Several advantages support
this choice. For instance, it allows a direct conversion from
the state equations to the - circuit. It only requires
grounded capacitors in the active realization, thus precluding
the disturbing influence caused by the bottom-plate parasitics
of integrated capacitors. The purpose of the optimization
is, given a particular chaotic behavior, to obtain the most
robust possible - monolithic implementation able to
synthesize it. The presented procedure is general, although
in the paper it is illustrated with the vector field modulation
scheme. Section III proposes an IC-oriented design able to
reproduce the well-known double-scroll attractor, as an ex-
ample of application of the algorithm. Section IV proposes a
classification of the error sources which affect the functionality
of the integrated chaos generator. Analysis of these errors
is essential to determine the accuracy requirements of the
blocks composing the oscillator. Then, three of the most
relevant sources of error are discussed, namely, the effect of
nonideal integrators, nonlinear static deviations of transcon-
ductors, and mismatch errors on the circuit elements. In doing
so, the optimized - circuit devised in Section III is used
as a benchmark. Section V presents experimental results to
illustrate the performance of a fabricated prototype of this
circuit for chaotic modulation, and Section VI gives some
concluding remarks.
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Fig. 1. Block diagram of a chaotic generator in Lur’e form.

II. HIGH-LEVEL SYNTHESIS OF - CHAOTIC OSCILLATORS

A. A - State-Variable Architecture for
Lur’e form Chaotic Oscillators

Members of the Lur’e family, denoted hereafter by are
described by the continuous-time nonlinear state equation

(1)

which can be mapped onto the analog computer concept of
Fig. 1. It consists of a forward path containing a linear time-
invariant subsystem (included in the dashed box of Fig. 1)
and a feedback path with a memoryless nonlinearity. In the
above equation, represents the time-integration constant;

is the state-space vector;
is a real invertible square matrix; and

are real vectors; and the nonlinear map
is a real-valued function, which is assumed continuous.

Fig. 2(a) shows a conceptual, generic - state-variable
architecture for an th-order Lur’e form of the type in (1).
In this diagram, state variables are translated into capacitor
voltages, the linear transconductors are assumed to perform
as ideal VCCS’s [see Fig. 2(b)], and the scalar function
is determined by the nonlinear transfer characteristics of the
nonlinear transconductors at the right hand side of the figure.
According to Fig. 2(c), the output currents supplied by the
nonlinear transconductors are given by

(2)

Assuming for simplicity that all the integrating capacitances
take the same value transconductances and

of Fig. 2(a) can be explicitly calculated from the elements
of matrices , and in (1), as follows:

(3)

where and is a reference transcon-
ductance.

Because of the property oftopological conjugacy[20],
the same qualitative dynamics can be achieved by using
different values of the transconductances and
[equivalently, matrices and in (1)] in Fig. 2. Based on

that, an algorithm can be defined to obtain the optimum set of
values for integrated circuit implementation. Two main steps
are identified in this algorithm: first, it must systematically
generate a large enough set of topologically conjugate systems
(definition of the design space); second, it must be able to
select the optimum configuration according to some criteria
(evaluation of candidates and selection). Both steps will be
respectively discussed in this and the next section.

Based on a fundamental theorem about topological conju-
gacy of vector fields [19], it can be shown that the family

can be partitioned into topologically conjugate equivalence
classes, each characterized by two characteristic polynomials
(equivalently, by their associated eigenvalues). Thus, given a
particular nonlinear continuous function the members of
an equivalence class in are formed by those vector fields
whose matrices and satisfy

(4)

and

(5)

where the set of coefficients
define the class and is the operator which
transforms a square matrix into its characteristic polynomial.

Note that while the number of parameters of the matrices in
are the equivalence classes are defined by only
coefficients. Thus, there exists infinitely many solutions to

(4) and (5). In order to define the space for the optimization
procedure, only a finite set formed by the canonical systems
in the family will be taken into account.

For our purposes, canonical systems are those vector fields
with a minimum number of different nonzero entries in
and whose symbolic representation can be found in every
equivalence class of except for a set of zero measure1

[19]–[22]. Consequently, they can realize almost every pre-
scribed set of coefficients and
hence, synthesize almost every possible qualitative dynamics
in Because any nonzero matrix entry has to be realized by
means of a transconductor in Fig. 2(a), canonical systems are
a priori the most advantageous in terms of system complexity.
On the other hand, because the equivalence classes are defined
by coefficients, canonical systems are characterized by

different nonzero entries in the matrices (we can assign
a value to one of the parameters and solve for the rest).

Not all the templates for matrices and with
different nonzero entries are valid symbolic representations of
canonical systems, but the following conditions must be met
[19]:

• system must be observable [17]; this excludes, for in-
stance, the case

• system must remain in closed loop; this excludes the case

• system cannot be decomposed into independent subsys-
tems; and

• equations (4) and (5) must be solvable.

1Note that some coefficients may appear at different entries of matrices
AAA; BBB; andDDD:
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(a)

(b)

(c)

Fig. 2. (a)Gm-C realization of the block diagram in Fig. 1 based on the state-variable approach. (b) Ideal model for the linear transconductors. (c)
Ideal model for the nonlinear transconductors.

We have written a computer routine which takes into
account the above constraints to sequentially generate all
the canonical systems of a given order within the family

At the same time, the routine takes some prescribed
coefficients as input, and gives
the corresponding numerical values of matrices and
and, consequently, the transconductance ratios in the generic
architecture of Fig. 2(a).

B. High-Level Optimization

Once the design space has been defined, we are in the
position to perform the selection process according to some
evaluation criteria. In the following, it is assumed that the
set of coefficients corresponds
to some chaotic behavior of interest. The different evaluation
criteria are described below.

1) Asymptotic Synchronization:There are two possible
ways of using the block diagram of Fig. 1 in a chaotic vector
field modulation scheme [23], depending on whether the
coding process at the modulator is applied in the forward linear
[6] [Fig. 3(a)] or the feedback nonlinear path [24] [Fig. 3(b)].
In both cases, message recovery is achieved by ensuring that
the state vector of the demodulator tends asymptotically
to that of the modulator This is equivalent to saying
that the origin of the error system obtained by substracting
the state equations of the modulator and demodulator is
asymptotically stable. If this occurs, and thus

as by continuity
of It can be shown that to guarantee the asymptotic
synchronization of the encoder/decoder pairs in Fig. 3, matrix

must have all its eigenvalues in the left complex-half plane
[18], [23]. Thus, if the Lur’e form is given by (1), there must
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(a)

(b)

Fig. 3. Encoder/decoder pairs of a vector field modulation scheme using chaotic generators in Lur’e form. (a) Coding function in the forward path. (b)
Coding function in the feedback path.�(t) is the transmitted signal;s(t) is an information-bearing signal;r(t) is the recovered message;xxx(t) andyyy(t) are,
respectively, the state vectors of the transmitter and the receiver;xxx�(t) andyyy

�
(t) are subvectors ofxxx(t) andyyy(t) formed by all the state variables involved in

the nonlinear paths of the transmitter and the receiver, respectively;c( ) is a continuous function which codifiess(t) with the signalxxx(t) in (a) [alternatively
xxx�(t) in (b)]; d( ) is a decoding function, continuous inxxx(t) for (a) such thatdfxxx; c[xxx; s(t)]g = s(t) [alternatively,d( ) is continuous inxxx�(t) for (b),
and verifiesdfxxx�; c[xxx�; s(t)]g � s(t)]; and functionsw( ) andw( ) are such thatxxx� = w[w(xxx)] in (a) and' = w[w(')] in (b).

be a real number such that matrix can be decomposed as
with verifying the above requirement.

As a result, the nonlinearity in Fig. 3 takes the form
Obviously, this is a necessary condition for

the selection of a Lur’e form but, unfortunately, not sufficient.
Usefulness of a chaotic generator for vector field modulation
schemes can only be verified after statistical simulations of
the communication link accounting channel imperfections
and parameter mismatch. If none of the elements of the
design space passes this robustness test, the model defined
by must be rejected for data
encryption purposes.

2) Reduced Complexity:Because system parameters must
be mapped into physical devices, those models having a
maximum number of zero entries area priori the best suited
in terms of area and power consumption. Among the set of
templates satisfying this requirement, there are cases especially
appealing for integration, for instance, those having a unitary

vector2 (component for some integer
and 0 otherwise). In these configurations, the row of transcon-
ductors at the bottom of Fig. 2(a) can be replaced by a simple
wire connecting the line to the input nodes of the nonlinear
blocks, thus saving linear transconductors. Also, the
transmitted signal in the chaotic modulation schemes of

2This is always possible because we can assign a value to some of the
parameters (in this case, the nonnull component ofDDD) and solve for the rest.

Fig. 3 becomes a scalar quantity, which notably simplifies the
communication link.

Other systems advantageous for integration purposes are
those with a minimum number of nonlinear blocks. This is
because nonlinear transconductors are usually the most area-
and power-intensive blocks in the diagram of Fig. 2(a). Thus,
templates with proportional to a unitary vector are also
preferred options for monolithic synthesis.

3) Optimum Dynamic Range:Physical implementations of
the circuit in Fig. 2(a) suffer from limitations on the dynamic
range, because of the internal noise and deviations from
the ideal transfer characteristics of real transconductors. The
dynamic range must be made as large as possible for a reliable
modulation/demodulation of the information signal.

One way to improve the dynamic range of the circuit of
Fig. 2(a) is scaling [25], [26]. The purpose of scaling is to
make the signal levels of all the state variables equal, so
that there is not a single node in the circuit that limits the
maximal level of the injected information signal. Let be
the maximal input voltage amplitude which can be handled by
the transconductors of Fig. 2(a), and let be the vector of
the maximal amplitudes reached by the state variables within
the chaotic attractor. Scaling is achieved through the linear
transformation

(6)
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where is the state vector of the scaled oscillator;is the state
vector of the original nonlinear system; andis a nonsingular
diagonal matrix defined by

(7)

where With this transfor-
mation, the scaled equation reads as

(8)

where and Since
defines a similarity transformation, we have

(9)

which means that the scaled system is described by the
same set of coefficients as the
original—it reproduces the same qualitative dynamics. It is
worth pointing out that scaling does not affect the system
architecture (null entries to matrices and remain
unaltered after scaling), but the canonical property of the
original system may be lost, i.e., system parameters, initially
with identical magnitude, turn to be different after scaling.
Thus, the price to pay for improving the dynamic range is a
possible increase on the system complexity. In the following
steps of the optimization procedure, the design space will be
augmented to include the scaled systems.

4) Low Sensitivity to Parameter Variations:Sensitivity
analysis [27], [28] is essential to evaluate the tolerance of
the chaotic oscillations against parameter deviations, and
select those canonical systems which minimize the influence
of such variations on the dynamic performance. Since the
dynamic behavior of the elements in is governed by the
set of coefficients it must be
known how these values are affected by the variations of the
components of matrices and For convenience, let
us gather the set of coefficients into the vector

(10)

and define as the column vector formed by all the entries
of matrices and

(11)

The deviation in the coefficient caused by the variations of
the parameter vector around a nominal point can be first-
order approximated by using a truncated Taylor expansion,
which results in

(12)

where and Normalizing
with respect to at the nominal point results in the variability

or relative change of with respect to

(13)

where the quantity

(14)

is the sensitivity of to parameter Defining the stability
matrix as and the variability vectors of and
respectively, as and (13) can
be written in matrix form as

(15)

It is worth noting that the sensitivity matrix is invariant to the
scaling of parameters. Thus, the dynamic range optimization
detailed in Section II-B-3 does not affect the matrix

In order to compare the sensitivity performance of the
different candidates, matrix gives poor insight. Rather, the
worst-case deviations of the coefficients and their respective
variances will be used as figures of merit [28]. The worst-case
deviations of the coefficients can be obtained by taking the
magnitudes on the right-hand side of (15)

- (16)

and the variance of the deviations of the coefficientscan be
obtained by the expression

var cov (17)

where cov is the square matrix with elements

cov cov (18)

and cov denotes the covariance between two random
variables. In evaluating (17), the same matrix cov is
assumed for all the elements of the design space.

5) Reduced Mismatch:Matching properties are largely fa-
vored if circuit elements are built by replicating a given
unitary device [29]. Thus, if system parameters are related
by integer ratios, the circuit will gain in accuracy and, at the
layout level, in modularity and integration density. Certainly,
this property is always guaranteed whenever the coefficients

are rational numbers. On the
other hand, if the ratio of the largest to the smallest magnitude
of the nonzero parameters is very high, the number of unit
elements required to implement the oscillator increases, and
consequently the area and the power consumption will increase
as well [29]. Thus, replication only results efficiently whenever
the spread of system parameters is low.3

3The spread of the system parameters can be minimized with a proper
similarity transformation of the state variables. The new system will also
reproduce the same qualitative dynamics, but the circuit architecture and
sensitivity performance may change.
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Fig. 4. The double-scroll chaotic attractor.

III. - DESIGN OF CHUA’S CIRCUIT

The above optimization procedure has been applied to the
synthesis of an IC-oriented Chua’s circuit [30]. As is well
known, Chua’s circuit is a third-order autonomous system
belonging to with a real-valued continuous PWL nonlinear
function given by

(19)

where is a real scale factor. Function divides into
an inner region containing the origin, and two outer regions

and such that, According to
(19), the two parallel boundary planes separatingfrom the
outer regions and are given, respectively, by

(20)

Chua’s circuit exhibits a wide variety of bifurcation and
chaotic phenomena. Among them, it generates the double-
scroll Chua’s chaotic attractor (shown in Fig. 4), whose dy-
namic can be qualitatively defined by the set of characteristic
coefficients [30]

(21)

High-level optimization among the canonical members of
described by the above set of coefficients has led to the
following system parameters:

(22)

Fig. 5. OptimizedGm-C realization of the Chua’s model.

where

(23)

The system defined by (22) and (23) verifies most of the
criteria defined in the high-level optimization procedure: vec-
tor is unitary, all the parameters have integer values, and
their spread is very low (the largest ratio among nonzero
parameters is four). Additionally, this configuration is found to
exhibit a fairly good sensitivity performance against parameter
deviations, and also satisfy the asymptomatic synchronization
constraint. Regarding this last point, a convenient value for
the parameter defined in Section II-B1 is

—this ensures the necessary condition for asymptotic
synchronization of the encoder/decoder pairs of Fig. 3. Sta-
tistical simulations of these communication schemes using
the system (22), (23) demonstrate a much more robust syn-
chronization ability of Fig. 3(a) than that of Fig. 3(b). Thus,
the encoder/decoder pair in Fig. 3(a) will be assumed in the
following.

Fig. 5 shows a simplified realization of the sys-
tem (22), (23) based on the general architecture of Fig. 2(a)
and using differential-input transconductors. As stated in (3),
all the integrating capacitors are assumed identical. Linear
transconductors have been implemented by building a unitary
block with gain and connecting in parallel as many of
such units as indicated by the values of and in (23). On
the other hand, the nonlinear transconductor has been designed
so that its output current can be expressed as

(24)

according to the encoder/decoder requirements on asymptotic
synchronization. Fig. 6 shows two different alternatives for
the implementation of the nonlinear transconductor. In both
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Fig. 6. Alternatives for the physical realization of the nonlinear transconductor.

cases, the PWL transfer function is obtained by shaping
the characteristic of a linear transconductor. In Fig. 6(a),
shaping is realized in voltage-mode at the front of the unit
transconductance element, while in Fig. 6(b) shaping is done
in current mode. Equivalence of both alternatives is guaranteed
whenever Subsequent analyzes will use any of
these representations as dictated by convenience although, in
practice, we have adopted the current shaping approach for the
realization of the PWL transconductor.

Two further circuit-level considerations must be taken into
account in the design of the schematic of Fig. 5. One is that
all the integration nodes are affected by the parasitics present
at the input stages of the transconductors. To ensure that
all the integration nodes exhibit the same capacitanceby
construction, an extended approach is to add dummy devices
[31]. Following this strategy, the global time constant of the
circuit is given by

(25)

where is the total capacitance at the state variable nodes.
Since parasitics are nonlinear and depend on the operating
point of the circuit, it is largely recommended that more than
80% of the total capacitance be contributed by the nominal
integrating capacitance Note that by adding dummy el-
ements, Fig. 5 can be seen as an array of unit integrators
( structures) grouped by state variables, and loaded
by a nonlinear transconductor.

A second consideration is that integrated components suffer
severely from uncontrollable process variations (which may
be around 30% of the absolute nominal values) due to the
statistical deviations in technological parameters, temperature
variations, and aging. Because such deviations are intolera-
ble for the synchronization of the encoder/decoder pair of
Fig. 3(a), a tuning mechanism [28], [32] must be incorporated
to the general system architecture (not shown in Fig. 5).
Absolute accuracies of about 1–2% are attainable with such
a mechanism [16]—enough to guarantee correct operation of
the analog encryption system.

IV. ERROR SOURCES AND BLOCK REQUIREMENTS

Hardware nonidealities make any physical realization of
the schematic in Fig. 5 deviate from the intended dynamics

defined by (22), (23) and may even preclude the appearance
of chaotic behavior. Error sources may be dynamic or static.
The former are caused by the reactive behavior of the building
blocks. Many of these errors can be grouped as integrator
nonidealities, and have a large influence on the characteristic
coefficients of the system. Another dynamic error source is due
to the nonlinear transconductor, which can produce delays and
ripples in the state variable when it crosses from one piece
of the characteristics to another.

Static deviations are those observable from the DC charac-
teristics of the building blocks and also have a large influence
on the dynamic behavior of the system. For instance, real
transconductors deviate from the linear behavior shown in
Fig. 2(b), and this gives harmonic distortion, intermodulation,
and makes the time constant of the circuit to be a function
of the state variables. Another static error source is due to the
gradual transition between the segments of the PWL character-
istics in a real implementation of the nonlinear transconductor.

From a different perspective, error sources may be classified
as deterministic or random. All the error sources referred to
so far are deterministic. Attenuation of deterministic errors
on the system performance does not require, in general, large
device areas, but proper circuit topologies and strategies. Also,
these deviations can be easily included as modifications to the
mathematical model of the system, and hence, compensations
could be developed if required. On the other hand, mismatch
errors are strongly dependent on the area of the devices, and
there is no reduction technique other than proper sizing. Their
effects can be summarized as system parameter deviations,
offset terms in the state equations, and time constant variation.
Random errors are of crucial importance during the synthesis
route, and their effects are in many cases the limiting factor
on the accuracy of the system.

In the following, we will discuss three of the most relevant
errors on the implementation of the schematic in Fig. 5:
the effect of nonideal integrators, the influence of nonlinear
static deviations in real transconductors, and the influence of
mismatch between circuit components.

A. Effect of Nonideal Integrators

Their influence is better understood by resorting to
frequency-domain analysis. Fig. 7 shows a Laplace domain
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Fig. 7. Laplace domain representation of the optimized Chua’s circuit.

representation of Fig. 5, assuming that linear transconductors
are ideally modeled as shown in Fig. 2(b). It consists of a
linear dynamic one-port terminated in a nonlinear resistor.
The linear one-port is described by the impedance rational
function shown in Fig. 7, and the transfer characteristic
of the nonlinear resistor is given by (24). By KVL,

(26)

which can be expressed in a unified manner as

(27)

where in the inner region and in the
outer regions and Solutions of (27) are the natural
frequencies of the system. It is worth noting that the product
of these frequencies by the time constantcoincides with
the eigenvalues of the dimensionless oscillator model, i.e., the
roots of the equations and with
the left hand side terms given by (4) and (5), respectively.
Thus, (27) is inherent to the equivalence class defined by (21).

Fig. 8(a) shows a macromodel valid both for the linear and
the PWL differential input transconductors used in Fig. 5. It
includes the following second-order effects [33]: 1) finite input
and output impedance; 2) frequency-dependent transconduc-
tance; and 3) output current saturation. Usually, the input
conductance is very low and can be disregarded with
minor problems. Capacitances and (alternatively,
for the PWL transconductor) are the parasitics associated to the
input and output nodes, respectively. (alternatively, for
the PWL transconductor) represents the output resistance. The
internal reactive behavior of the transconductor is modeled by

For angular frequencies up to this impedance
can be approximated as

(28)

where is a time constant. Finally, function in
Fig. 8(b) [alternatively, in Fig. 8(c) for the PWL
transconductor] models the output current saturation observed
for input voltage larger than Note that the nonlinear
transconductor exhibits the same input impedance and reactive
behavior as the linear transconductors, since we have assumed
a current shaping approach in its implementation.

Taking into account Fig. 8, the transfer function of the unit
integrators in Fig. 5 can no longer be represented by its ideal

(a)

(b) (c)

Fig. 8. Second-order effects of real transconductors: (a) macromodel
schematic; transfer characteristic of (b) the linear transconductors in Fig. 5,
G(Vin) = (gmu=2)(jVin + Elj � jVin � Elj); and (c) the nonlinear
transconductor in Fig. 5,Gq(Vin) = hi[G(Vin)]:

characteristic

(29)

but instead, by the following rational function [34],

(30)

where is the finite DC gain given by ,4 and
is the time constant associated to the resistive component of
the impedance at the integration nodes, i.e.,

Now to examine the effect of the nonideal integrators on
the characteristic coefficients of the system, we can use the
method proposed in [34], which consists of two steps. First,
(27) must be recast into the equivalent form

(31)

derived from (29). Next, must be replaced by in
(31) without changing the coefficients of the polynomial. After
some algebra, this gives the following modified characteristic

4The dummy device approach referred to in Section III can be extended
to achieve the same resistive behavior at all the integration nodes. We will
represent such a resistance byRt:
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Influence of nonideal transconductors on the characteristic coefficients.

equation:

(32)

where and are, respectively, the time constantsand
normalized with respect to

and (33)

Note that every member of the equivalence class defined
by (21) will show the same dependence on the integrator
nonidealities, since (32) has been obtained regardless of the
particular system topology used [recall that (27), and hence
(31), are inherent to the family of Chua’s circuits]. Of course,
this is true whenever identical unit integrators are considered,
and the nonlinear transconductors exhibit the same reactive
behavior as the linear ones.

Fig. 9 shows the percentual variabilities of the coefficients
with respect to parameters and

from where circuit requirements for the transconductance
amplifiers can be inferred.

Parameters and have a large influence on the dynamic
performance of the oscillator (as they modify its natural
frequencies) and may even preclude the appearance of chaotic
behavior. Obviously this situation is undesirable for data
encryption purposes and must be avoided. Thus, it is necessary
to obtain a quantitative estimation of parametersand
that ensure the existence of chaotic motion on the monolithic
design. This can be done in a very simple manner using the
method proposed by Ogorzalek, which has been successfully
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(a)

(b)

Fig. 10. Effect of the finite gain of the integrators on the stability sectors of
the linearized system: (a) infinite gain and (b) gainT1 = 5:

applied to the Chua’s circuit [35].5 Let us consider the lin-
earized system obtained by replacing the nonlinear resistor
in Fig. 7 by a linear one of value for some real
number and let us obtain the absolute stability sectors [17]
of this linearized system in terms of Let us draw these
sectors on the driving point characteristic of the nonlinear
resistor plane). Suppose that the system parameters
are such that there exist two disjoint absolute stability (or
Hurwitz) sectors separated by unstable regions. Under these
circumstances, a necessary condition for the existence of
chaotic behavior is that the central piece of the nonlinear
resistor DP characteristic lies in a unstable region, while the
outer pieces cross over stability sectors.

First assume that so that, only the effect of
is observed. Taking into account (32) and using the

Routh–Hurwitz criterion, the stability sectors of the linearized
system are defined by the inequalities:

(34)

(35)

(36)

Fig. 10(a) shows the stability sectors (shaded areas) drawn in
the nonlinearity plane for the ideal case as well as

5This approach, based on control theory, gives necessary conditions for
the onset of chaotic oscillations, and hence, only provide lower limits for the
parametersT1 and T2: Much more accurate results can be obtained using
bifurcation analysis at the expense of an enormous computational effort.

(a)

(b)

Fig. 11. Effect of the nondominant pole of the integrators on the stability
sectors of the linearized system: (a) zero excess phase and (b)T2 = 0:01:

the DP characteristic of the nonlinear resistor [see (24)] for
V. As can be seen, there are two different Hurwitz

sectors; the central piece of the nonlinearity lies in a unstable
region; and the outer pieces intersect one of the Hurwitz
sectors and pass from the region containing the central piece
to the other unstable sector. Thus, the necessary conditions for
the appearance of chaotic behavior are met.

Fig. 10(b) shows the effect of the finite gain of the in-
tegrators on the stability sectors of the linearized system.
It manifests as an expansion of the Hurwitz regions. For
low enough gain, both regions merge into a single stability
sector, thus precluding the existence of chaos. This occurs
for approximately Fig. 10(b) illustrates the case

Note that the outer pieces of the PWL characteristic do
not completely cross the stability sector because of the current
saturation shown by the nonlinear resistor [see Fig. 8(c)]. As
a consequence, no chaotic behavior arises. This observation
allows us to characterize the set of suitable DP characteristics
which can exhibit the nonlinear resistor to assure chaotic
behavior. The slope of the central piece of the characteristic
can take any positive value larger than that obtained from
(36). On the other hand, the slope of the outer pieces must
be negative enough so that the breakpoints originated by the
saturation of the characteristic lie on the unstable sectors
as shown in Fig. 10(a). Clearly, the range of values for the
outer slopes of the characteristic increases as the position
of the breakpoints tends to the origin, and conversely,
as the saturation points are as far as possible from zero.
Thus, parameter which has been contemplated so far as
a mere scale factor on the system dynamics, is shown to
play an important role when considering the limitations of
real circuits.
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(a) (b)

(c) (d)

Fig. 12. x1 � x3 projections of the chaotic attractor for different values of�:

Let us now consider the effect of on the chaotic re-
gion, assuming infinite gain for the integrators. Again, taking
into account (32) and using the Routh–Hurwitz criterion, the
stability sectors of the linearized system are given by

(37)

(38)

(39)

(40)

Fig. 11(a) and (b) shows, respectively, the stability sectors
(shaded areas) associated to the cases and
for the parameters given in (23). Contrary to the finite gain
influence, the effect of the excess phase in the integrators is
a shrinking of the Hurwitz regions. Consequently, the chaotic
region increases because of the influence of the nondominant
poles. However, this advantageous aspect must be seen with
caution. For large enough excess phase, the stability sector
defined by (37) and (39) reduces to a single line and then
disappears, thus precluding the existence of chaos. This occurs
for approximately which puts an upper limit on the
allowed excess phase.

B. Nonlinear Static Deviations of Transconductors

In practice, the transfer gain of real transconductors varies
continuously with the input signal level. Accordingly, the

input–output characteristic of the unit transconductors in Fig. 5
must be expressed as where is a contin-
uous, differentiable function [characteristic in Fig. 8(b)
must be regarded as a first-order PWL approximation to

]. We will further assume that is monotonically
increasing and odd-symmetric, so that transconductors are free
from systematic offset errors. As an example, if transconduc-
tors are built upon basic differential pairs in the saturation
region, function is given by

otherwise
(41)

where and is a positive real parameter which
controls the shape of the characteristic. Observe that for
the ideal characteristic in Fig. 2(b) is recovered.

Using this model for and assuming that the nonlin-
ear transconductor is implemented as in Fig. 6(b), the state
equations of the system in Fig. 5 can be written as

(42)

Note that in the most general case, this vector field
is piecewise continuous, not piecewise linear, which notably
complicates its analysis. For this reason, we will exclusively
resort to computer simulations.

Fig. 12 illustrates the influence of the shaping parameter
on the trajectories generated by (42). In all cases, system

parameters were those of (23); breakpoint position was

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on April 02,2020 at 14:44:16 UTC from IEEE Xplore.  Restrictions apply. 



492 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 4, APRIL 1998

Fig. 13. Chip microphotograph.

and numerical integrations started at the same initial
conditions. Fig. 12(a) shows the projection of the
chaotic attractor generated by (42) for the ideal case
As parameter increases, the shape of the attractor varies,
as Fig. 12(b) and (c) shows. For saturation of
the transconductance amplifiers causes the trajectory of (42)
to become locked, after some transient, at a stable limit
cycle. This confirms that the static nonlinear deviations of
the transconductors may have dramatic consequences on the
dynamic behavior of the system, and must be considered on
the realization of the monolithic design.

C. Mismatch Errors on the Circuit Elements

In the following, we will assume that none of the above
deterministic error sources is present, and only consider the
influence of random deviations on the circuit elements. As-
sume that every unit transconductance stage in Fig. 5 has a
gain deviation and an output offset current. That is, while the
ideal characteristic is given by [see Fig. 2(b)]

(43)

we have, in practice,

(44)

where both and are stochastic variables, assumed
statistically independent with zero mean. Similarly, assume
that the currents delivered to the integrating capacitors have
a gain slightly different from unity, and
include an offset term where again the deviations

and are statistically independent random vari-
ables with zero mean.6 Finally, assume that the state variable
capacitances in Fig. 5 are affected by random variations so that

(45)

where is the nominal value of the three capacitancesand
the variations are assumed statistically independent with

6These deviations arise in practice because of the nonideal output stages
of the transconductance amplifiers. Adopting the dummy device approach for
the realization of Fig. 5, we can assume that all the integrating capacitances
are affected in the same way by these deviations.

zero mean. Using the above models for the different building
blocks in Fig. 5, and considering that the piecewise linear
function defined in Fig. 6(a), is free from random
variations,7 we have

(46)

where is given by

(47)

since the value of defines the maximum number of unit
transconductances in the array of Fig. 5. Neglecting the terms
containing products of random variables, (46) can be rewritten
in the following form:

(48)

where

(49)

or, equivalently, as

(50)

with matrices and defined by (22). Observe that all
the state equations of the system are affected in the same
manner by mismatches—a consequence of the decomposition
in unitary elements applied in the schematic of Fig. 5. Note
from (50) that the effect of mismatch between the integrating
capacitors is to perturb the time constant of the system by

On the other hand, the mismatch between

7This assumption can be accepted if the parameters of the nonlinear
characteristic are externally controlled with ideally infinite accuracy.
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Fig. 14. Measured double-scroll Chua’s attractor.

transconductors introduces two different kinds of error con-
tributions. Some of them are time-invariant and have been
grouped into the global offset term The rest of the
errors are time-variant since they depend on the state variables.

The consequences of all these variations on the functionality
of the network can be evaluated by Monte Carlo analysis. A
general theoretical development has not been reported yet, and
hence, it is difficult to establish the form and the error levels
which can be tolerated. Among the many possible criteria,
we have chosen a measure which can be translated to the
individual building blocks, with the intention of optimizing
their implementation.

Assuming that the magnitudes of the state variables are
always below the clamping voltage, of the transconductors,
the maximum nominal current which can be delivered at any
time instant by the transconductors is found to be

(51)

Now, for the output stages of the transconductors, we request
that the current gain error be bounded by

(52)

and that the offset error, relative to the maximum output
current coming from the unit transconductance elements given
by (51), be bounded by

(53)

Similarly, for every individual differential input stage imple-
menting a transconductance and driven by a signal ,8 we
request that the relative transconductance error be bounded by

(54)

and that the offset error, relative to the maximum output signal
of the transconductor be bounded by

(55)

Note that this is equivalent to establishing the same bound
for the input-referred offset error relative to the
maximum input signal level

8Here,xi denotes a state variable. The errors are due to the circuit elements,
and not to the signals, which are assumed exact in every case.

Fig. 15. Audio data transmission.

Conditions (52)–(55), applied on corresponding building
blocks in the cell, allow the obtention of a bound for the error

of the integrand of every state equation. The bound of
this error can be calculated as follows:

(56)

Hence, the random error on any of the integrands is, at any
time instant, less than a fraction of its maximum possible
nominal value. In addition, since the relative errors on the
weights are individually bounded, it can be expected that, for
sufficiently low values of the behavior of the system will
be similar to the nominal one.

V. CIRCUIT DESIGN AND EXPERIMENTAL RESULTS

Taking into account the influence of the error sources dis-
cussed in the previous section, we have designed a monolithic
circuit based on the schematic of Fig. 5, suitable for data en-
cryption using the vector field modulation scheme of Fig. 3(a).
All parameters in this circuit are electrically controllable to
serve as cryptographic key in the audio transmission scheme.

Fig. 13 shows a microphotograph of the chaotic mod-
ulator/demodulator unit, which includes an on-chip tuning
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scheme, and other auxiliary circuitry for biasing and measure-
ment purposes. The dimensions of the circuit (developed in
a 2.4 m double-poly double-metal CMOS technology) have
been also indicated in Fig. 13. Power dissipation is less than
1.8 mW for a symmetrical biasing of2.5 V. Further details
of the prototype are given in [36]. Because of their optimum
design, the fabricated prototype is able to reproduce the whole
bifurcation sequence toward the double-scroll Chua’s attractor
in a robust and reproducible manner.

Fig. 14 shows the projections of the double-scroll featured
by the circuit. Fig. 15 illustrates the performance of the whole
audio encryption scheme using the vector filed modulation
scheme of Fig. 3(a) with the coding function is a
simple addition. Input signal [Fig. 15(a)] consists of a segment
of speech. The worst-case signal-to-noise ratio of the recovered
signal [Fig. 15(b)] is greater than40 dB (this occurs at very
low frequencies) with less than0.2 dB loss of the input signal
power. At higher frequencies, the signal-to-noise ratio rises up
to 60 dB, while retaining similar losses at the receiver. As
can be seen from Fig. 15, the transmitted signal [Fig. 15(c)]
bears no resemblance to the information content.

VI. CONCLUSIONS

Every monolithic implementation encompasses several de-
sign considerations both at the system and at the circuit levels.
System-level considerations center on the actual architecture
of the nonlinear oscillator. Since there is a large variety of
synthesis methods to realize a given electronic system, these
criteria must determine which architecture provides the best
compromise between complexity and performance. Important
factors in the choice of a synthesis method are dynamic range
properties and sensitivity to parameter variations. At the circuit
level, the designer has to deal with the limitations imposed by
the technological process, as well as the desired operating fre-
quency, and the required tunability range. Additionally, there
are topological demands coming from the system level, such
as the number of inputs and outputs of the building blocks, and
the specifications of the block requirements. Depending on the
above considerations, designers have to decide which active
elements are used to construct the building blocks defined
at the system level, or the convenience of using balanced
topologies, among other things. Other important constraints at
the circuit level are chip area and power dissipation. These
considerations are used in this paper for optimum choice
of the chaotic state equation which is the best suited for
implementation using - integrated circuit techniques.
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[33] A. Rodŕıguez-V́azquez, B. Linares-Barranco, J. L. Huertas, and E.
Sánchez-Sinencio, “On the design of voltage-controlled sinusoidal os-
cillators using OTAs,”IEEE Trans. Circuits Syst.,vol. 37, pp. 198–211,
Feb. 1990.

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on April 02,2020 at 14:44:16 UTC from IEEE Xplore.  Restrictions apply. 
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