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Abstract—In this paper, an adaptive control scheme for the
safe operation of a fuel cell system is presented. The aim of
the control design is to guarantee that the oxygen ratio do not
reach dangerous values. A first level of control is given by a
feedforward control. An improved behavior is obtained using
an adaptive predictive controller to determine the voltage to
be applied to the air compressor. An admissible robust control
invariant set for the PWA model of the system is computed.
The control action of the predictive controller is obtained in
such a way that the state is always included in the safe region
characterized by the admissible robust control invariant set.
This guarantees that the proposed controller always provides
safe evolutions of the system.

I. INTRODUCTION
In the last years many research efforts have been directed

to the study of hybrid systems. See, for example, [1], [2], [3],
[4], [5], [6]. These systems exhibit discrete and continuous
dynamics simultaneously. The presence of the two kinds of
dynamics leads to the substantial inapplicability of both the
classical systems theory and the automata theory.
In this paper, the application of an adaptive model predic-

tive control to a fuel cell plant is presented. The fuel cell,
located in the laboratory of the Department of Systems and
Automatic of the University of Seville, generates electricity
from the chemical reaction between oxygen and hydrogen.
The plant is composed of different sub-systems. A complex
non-linear model of the whole system has been obtained.
From this model, a simple discrete-time piecewise affine
(PWA) model for control purpose is identified.
In particular, the objective of the control action is to

avoid that the oxygen ratio reaches dangerous values. A
feedforward control of the voltage of the compressor rep-
resents a first level of control. In order to obtain a better
behavior, an adaptive model predictive controller for the
compressor voltage is presented. The proposed controller
relies on the use of an admissible robust control invariant
set. The computation of admissible robust control invariant
sets for hybrid systems has been addressed in [4]. The
computation of the maximal robust control invariant set
for a PWA system is in many situations computationally
unaffordable. Using the special characteristics of the obtained
PWA system we are able to present an efficient algorithm
for the computation of an admissible robust control invariant
set for the fuel cell system. The presented adaptive model
predictive controller incorporates a constraint that forces the
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evolution to be confined in the obtained admissible robust
control invariant set. This guarantees that in spite of the
simplifying assumptions adopted to obtain an implementable
adaptive predictive controller, the evolution of the system
always remains in the safe region.
The paper is organized as follows. In the next section a

brief description of a fuel cell is given. In section 3 the
piecewise affine model of the fuel cell is presented. The
computation of the admissible robust control invariant set is
detailed in section 4. The adaptive predictive controller, along
with different numerical results are presented in section 5.
The paper draws to a close with a section of conclusions.

II. DESCRIPTION OF FUEL CELLS
A fuel cell (FC) is a device that generates electricity

from hydrogen and oxygen. This is achieved by converting
chemical energy of the fuel directly into electricity. A fuel
cell is a class of galvanic cell based on oxidation-reduction
reaction composed by three main parts:
1) Anode: where the electrons and ions are produced. The
anode reaction is

H2 → 2H+ +2e−.

2) Cathode: where the ions and electrons are joined. The
cathode reaction is

1
2
O2+2H+ +2e− → H2O.

3) Electrolyte: it is the electric insulator able to conduct
ions. The electrolyte of the proposed Fuel Cell is a
Proton Exchange Membrane (PEM) made of a polymer
(Nafion).

The overall reaction is

H2+
1
2
O2 → H2O+Electricity+Heat.

See that the secondary products are merely water and heat.
The rate of the reaction is determined by the electricity
consumption of the external load.
The elementary fuel cell is assembled forming a Mem-

brane Electrode Assembly (MEA) where the PEM is sand-
wiched between the anode, the cathode and the flow field
plates. The anode and cathode are made of carbon fiber paper
and a platinum catalyst. An elementary fuel cell can provide
1.2V although the typical value is 0.6 V. In order to obtain
a larger voltage, fuel cells are stacked.
The fuel cell system shown in Fig. 1 is a PEM FC

which operates with pure hydrogen and air and an external
humidifier. This provides up to 1200W of unregulated DC
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Fig. 1. The Fuel Cell

power at a nominal output voltage of 26V . The fuel cell is
now connected to a resistive load which can be manipulated
manually and will allow the simulation of several and chang-
ing loads.
The system is basically divided in five subsystems:
1) The Cell stack: it is the part of the system where the
electricity is produced.

2) The electric load: simulates a real consumer of the
produced electricity.

3) Air supply and humidity exchanger: the fuel cell is
supplied by air with a required humidity.

4) Hydrogen storage and supply: the hydrogen pressure
and flow are regulated in the operating conditions.

5) Cooling system: the heat produced by the generation
of the electricity is refrigerated by a fan.

A detailed description of the fuel cell and of the related
dynamic model is presented by A. Arce and A. Del Real
in [7], [8]. The dynamic model of the fuel cell has been
developed based on existing knowledge taken from literature
(see [9]) and validated on the real plant. This model has
been implemented in Matlab/Simulink environment and it
has been validated with the real plant.
The oxygen ratio is a very important variable to consider

due to the oxygen starvation phenomenon. The system is
said to be in starvation mode when the ratio between the
oxygen input flow and the reacting one is less then 2. When
it happens, the current oxygen flow can not maintain the
process and this can damage the membrane and therefore
destroy the fuel cell. It is clear the importance of controlling
that ratio to assure that the system never enters in a starvation
mode. Hence, the safety condition is

λO2 =
Wo2,in

Wo2,reacted
≥ 2, (1)

whereWo2,in is the oxygen input flow andWo2,reacted is the
oxygen reacting in the cell.
The aim of the adaptive control design is to assure that

the oxygen ratio does not reach starvation values. For that
purpose, the continuous-time Simulink model developed by
A. Arce and A. del Real [7], [8] has been considered. A
discrete-time PWA model has been obtained from this model
and used to design the control, as illustrated in the following.

III. PWA MODEL OF THE FUEL CELL
In the fuel cell system, the control of the air compressor

is a crucial task as it is responsible for a safe operation of
the system. The air compressor is controlled by means of a
feedforward control. This control maintains the output λO2
in a safe value for constant currents. As the variations on the
compressor voltage have an important effect on the dynamics
of λO2 , this voltage will be considered as the control input
for the system. The idea is to obtain, by means of an adaptive
predictive controller, a control correction signal that, added to
the original feedforward control, improves the performance
of the system while guaranteeing that the unsafe transients
are avoided.
A first analysis of the system, described in [10] (accepted

at the American Control Conference, 2007), revealed a non-
proper behavior of the system if the load current Ist was
used as the input and the oxygen ratio λO2 as the output.
This led us to identify a first PWA model considering the
ratio between the variation and the current

r(k) =
ΔIst(k)
Ist(k)

, (2)

as the non-manipulable input. The oxygen ratio normal-
ized around the steady-state value was considered as the
output, y(k) = λO2 − 2.2391, and the obtained PWA model
was

y(k) = Gi(z)r(k) if r(k) ∈ Ri , (3)

where the transfer functions depend on the active re-
gion Ri. A linear system is identified for each ratio be-
tween −0.1 and 0.1 and variation of 0.01, that is ri =
−0.1,−0.09, . . . ,0.09,0.1. Note that the regions depend only
on the input r(k). Moreover, due to the PWA nature of
the model, each transfer function is considered valid for
a particular nominal ratio ri and for close values. That
is, the nominal values are ri = −0.1,−0.09, . . . ,0.09,0.1,
i= 1, ...,ni, where ni = 21 is the number of different regions.
Hence, the distance between them is δr = 0.01. Furthermore,
for each ratio r the closest value of ri is considered as
the nominal one. In other words, given the nominal value
ri, region Ri is defined as Ri = {r : |r− ri| ≤ 0.5δr}. Note
that it has been supposed that the ratio can not exceed the
value of 0.105 in magnitude. It follows that the difference
between the nominal ratio and the applied one is bounded,
that is, denoting Δr(k) = r(k)−ri with ri the current nominal
ratio, it results that |Δr(k)|≤ 0.5δr = 0.005. Hence, the effect
of this difference can be considered as a bounded additive
uncertainty.
In the former model (3), the controller for the air com-

pressor is the aforementioned feedforward law. In order to
improve the control of the air compressor, a new model
of the system is required. In particular, it is necessary
to introduce the manipulable input which will be used as
additional control signal. This new model should describe the
evolution of λO2 as a PWA model. In the following the PWA
model for control purpose is presented. It has two inputs: the

ha
l-0

02
56

63
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

00
8



load current (or its ratio) and the variations of compressor
voltage. The ratio r(k) will be considered as an external
signal defining the system dynamics, that is, the active linear
model of the PWA at each instant. That signal will be used
in the adaptive model predictive control for selecting the
linear model to employ for computing the prediction. The
predictive controller provides a correction signal that is added
to the feedforward law. The main objective is to compute
such a correction signal in such a way that it robustly avoids
the unsafe starvation region.
For this aim and knowing that the dynamics of the system

depend on the the ratio r(k), the PWA model has been
identified applying two pseudorandom binary signal (PRBS):
the first on the current ratio, around the nominal value ri,
and the second as voltage variation added to the compressor
voltage.
In other words, for each nominal ratio ri ∈

{−0.1, −0.09, . . . , 0.09, 0.1}, the ratio excitation is

r(k) = ri+ rPRBS(k) (4)

where rPRBS = {+ δr
2 ,− δr

2 } is the value of the PRBS.
The other excitation signal is the variation of the compres-

sor voltage

vcmp(k) = vFF(Ist(k))+ vc(k) (5)

where the nominal voltage vFF is that provided by the
feedforward control and it depends only on the current,
vc(k) = {−1,+1} is the added PRBS signal and the com-
pressor voltage vcmp is given by their sum.
Moreover, the system is initially at the equilibrium given

by vcmp(k) = vFF(Ist(k)) and the constant current Ist(k) = Ist .
The output considered for identification is the value y(k) =
λO2−2.2391 and it has been employed to identify the linear
model valid around the nominal ratio ri. The least square
criterion has been applied jointly with the four pole model

y(k) = b1z−1+b2z−2
1+a1z−1+a2z−2+a3z−3+a4z−4

r(k)+
c1z−1+c2z−2

1+a1z−1+a2z−2+a3z−3+a4z−4
vc(k)

(6)

Note that the model is given by the sum of two transfer
functions whose four poles are the same. This structure
provides good identification results and is very useful for
computing a robust control invariant set due to its simplicity.
Then the model can be rewritten in form of regressor

function, that is

y(k) = φ(k)Tθ (7)

where φ(k) is the regressor composed by the last values
of output and inputs and the parameter vector is θ =
[−a1, −a2, −a3, −a4, b1, b2, c1, c2]T . The parameter vector
θ is obtained solving the corresponding least square problem.
Then, for each admissible nominal ratio, a linear model is

computed. As a further level of simplification we consider
a PWA model composed by ni = 9 linear models, that is,

the related to ri ∈ {−0.1, −0.075, 0.05, . . .0.075, 0.1}, with
ni = 9 number of regions. Hence the active linear model is
the i-th if r(k) = ri +Δr(k), with a |Δr(k)| ≤ 0.5δr, where
δr = 0.025 and i= 1, . . . ,ni.

IV. ROBUST INVARIANT SET
The first step to design the adaptive model predictive

controller is to find an admissible robust control invariant
set for the PWA model. This requires the computation of a
region of the state-space such that, for all the contained states
there is a control input such that the next state is contained
in the set, for all the considered linear plants. In other words,
define the state-space PWA model as

x(k+1) = Aix(k)+BRi r(k)+BVci vc(k)+Ew(k) (8)

if r(k) ∈ Ri and where

Ai =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−a1 −a2 −a3 −a4 b2 c2
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

BRi =
[

b1 0 0 0 1 0
]T

,

BVci =
[

c1 0 0 0 0 1
]T

,

E =
[

1 0 0 0 0 0
]T

.

(9)

The state, normalized around the steady-state value
of 2.2931, is x(k) = [λO2(k) − 2.2931, λO2(k − 1) −
2.2931, λO2(k − 2) − 2.2931, λO2(k − 3) − 2.2931, r(k −
1), vc(k − 1) ]T . The active model of the PWA model is
determined by the current value of the ratio r(k): the i-th
model is valid at time k if r(k) ∈ Ri. As the value of r(k)
is accessible, at each instant it is possible to know which of
the 9 linear models determines the dynamics of the system.
The additive uncertainty w(k) represents the error due to

the difference between the PWA model and the non-linear
model and it can be experimentally checked that this un-
certainty never reaches amplitudes greater than 0.015. Thus
the constraint w(k) ∈ W = {w(k) ∈ R : |w(k)| ≤ δw = 0.02}
provides an appropriate bound. The control input is bounded
too: vc(k) ∈ V = {v(k) ∈ R : |vc(k)| ≤ 10}
The safety condition, namely λO2 ≥ 2, bounds the admis-

sible region of the state space. The admissible region for the
first 4 states, which are the past values of λO2 − 2.2391, is
given by:

2−2.2391 ≤ x j(k) ≤ 3−2.2391 j = 1, . . . ,4 (10)

where the upper bound is a trivial bound never reached by
λO2 and it is added just to simplify the algorithm.
The fifth state is the past value of the ratio. As we restrict

to ratios included between −0.1− 0.5δr and 0.1+ 0.5δr, it
results that x5 must satisfy:

−0.1125 ≤ x5(k) ≤ 0.1125 (11)
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The sixth state, which is the past compressor voltage, has
to fulfil:

−10 ≤ x6(k) ≤ 10 (12)

These linear inequalities define a safe polyhedron of the
state space and can be expressed asX = {x : Mx≤N}⊂R6.

Fig. 2. Projection of the invariant set on x4 = x5 = x6 = 0.

Define the set Ck as the set of states x for which there
is an adaptive robust control policy that guarantees that the
sequence x(0), x(1), . . . ,x(k) belongs to the admissible set
X regardless of the uncertainty and the ratio input. It is
clear that Ck+1 ⊆Ck, ∀k. Moreover standard arguments from
invariant set theory allows one to affirm that the set

lim
k→∞

Ck =C∞

constitutes an admissible robust control invariant set.
Define as a sort of extended state the vector composed by

the state x and the input vc, that is: xe(k) = [x(k)T vc(k)T ]T .
Given the polytopic set Ck = {x : Mkx ≤ Nk}}, the set Ck+1
is given by

Ck+1 =
ni
⋂

i=1
Pro jx(P

i
k) (13)

where
Pik = {xe ∈Ck×V : ∀r ∈ Ri, ∀w ∈ W ,

Mk(Aix+BVci vc+BRi r+Ew) ≤ Nk}
(14)

and Pro jx(Pij) indicates the projection of the set Pij ⊂ R7 on
the subspace R6 related to state x and Ri = [ri−δr, ri+δr].
Note that Pik is the set of x

e = [xT , vTc ]T such that the state
x is mapped inside Ck when the model is the i-th and the
input applied is vc, regardless of the admissible values of r
and w. Then, projecting Pik on the subspace of x, the result is
the set of states for which there exists at least an admissible
value of vc such that the successor state is mapped inside
Ck for all r ∈ Ri and w ∈ W . Hence, the intersection of the

projections provide the set of states that can be maintained in
the safe region k+1 steps. Note that the previous statement
relies on the fact that the value of r(k) is assumed to be
measurable.
The following theorem provides a way for computing Pik

given Ck. This, and equation 13 allows one to compute Ck+1.

Theorem 1: Consider the set Pik defined in 14. Define:

Sik = {xe ∈Ck×V : MkAix+MkBVci vc ≤
Nk−MkBRi ri−0.5|MkBRi δr|− |MkEδw|}

(15)

where |MkBRi δr| indicates the vector whose entries are the
absolute values of the elements of MkBRi δr. The same for
|MkEδw|. Then,

Pik = Sik.

Proof: Indicate with nk the number of rows of Mk and
Nk. Define with Mk, j and Nk, j the j-th rows of the matrix Mk
and vector Nk, respectively. Note that:

Pik = {xe ∈Ck×V : ∀r ∈ Ri, ∀w ∈ W

Mk(Aix+BVci vc+BRi r+Ew) ≤ Nk}

= {xe ∈Ck×V : ∀ j = 1, . . . ,nk,
max

r∈Ri, w∈W
{Mk, j(Aix+BVci vc+BRi r+Ew)}≤ Nk, j}

= {xe ∈Ck×V :Mk, j(Aix+BVci vc)+
max

r∈Ri, w∈W
{Mk, j(BRi r+Ew)}≤ Nk, j, ∀ j = 1, . . . ,nk}

= {xe ∈Ck×V :Mk, j(Aix+BVci vc)+max
r∈Ri

{Mk, jBRi r}+

max
w∈W

{Mk, jEw}≤ Nk, j, ∀ j = 1, . . . ,nk}.
(16)

Considering that, for all j = 1, . . . ,nk,

max
r∈Ri

{Mk, jBRi r} = Mk, jBRi ri+0.5|Mk, jBRi δr|,

max
w∈W

{Mk, jEw} = |Mk, jEδw|,

we have that
Pik = {xe ∈Ck×V :Mk(Aix+BVci vc)+MkBRi ri+

0.5|MkBRi δr|+ |MkEδw|≤ Nk} = Sik.

The following algorithm provides a way to compute an
admissible robust control invariant set:
Algorithm 1:
1) Set the initial region C0 = X = {x : M0x ≤ N0} and

j = 0.
2) For each region Ri define

Sij = {xe ∈Cj×U :MjAix+MjBVci vc ≤
Nj−MjBRi ri−0.5|MjBRi δr|− |MjEδw|}.

3) Compute

Cj+1 =
ni
⋂

i=1
Pro jx(S

i
j).
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4) If Cj+1 = Cj, or Cj+1 is empty then stop. Else, set
j = j+1 and return to step 2.

The algorithm has been applied to the obtained model and
it converged after 19 iterations to a non-empty polyhedron
Ĉ= {x∈X : M̂x≤ N̂}. The projection of Ĉ on the first three
dimension is represented in Fig. 2, where x4 = x5 = x6 = 0.
In the case that the obtained admissible robust invariant

set would be empty or too small, a possible solution is to
increase the accuracy of the PWA model, for instance using
a higher order linear model or employing more regions.
This would lead to a smaller uncertainty and to an enlarged
robust invariant set, at the expense of a greater computational
complexity.

V. ADAPTIVE MODEL PREDICTIVE CONTROL

The admissible robust control invariant set Ĉ is used
to guarantee that the proposed controller provides a safe
operation of the fuel cell. Every control strategy that forces
the state x(k) to remain in the admissible robust control
invariant set assures that the system remains in the safe
region. We employ an adaptive model predictive control
strategy which minimizes a quadratic cost and guarantees
that the state remains in the safe region. The model used
for the prediction depends on the current ratio. Note that the
use of the admissible robust control invariant set yields to a
formulation of the model predictive control which guarantees
robust safety for the fuel cell and is less conservative then
the classic robust schemes, min-max predictive control for
example.
The PWA model (9) has been used for designing the

model predictive control. The inputs of the controller are
the measures of λO2(k) and of the current Ist(k). At each
instant the ratio r(k) is computed from the current measure

r(k) =
Ist(k)− Ist(k−1)

Ist(k)
, (17)

and the state x(k) of the PWA model (8) is updated.
The active linear model is given by the value of r(k) as

previously described. Moreover, we suppose that the ratio
is maintained constant N steps, where N is the control (and
prediction) horizon. Note, however, that if in the prediction
the current reaches the extremal values, 9A and 41A, then
the ratio is set to zero for the rest of the prediction horizon.
Hence, the ratio in the prediction horizon is

r(k+ j) =

{

r(k) if Ist(k+ j) ∈ [9, 41]
0 otherwise.

and Ist(k+ j) is computed from Ist(k) and using equation
(17).
Through a set of linear constraints, we imposed that the

first predicted state belongs to the admissible robust control
invariant set Ĉ despite of the uncertainties. This guarantees
that the evolution of the system always remains in Ĉ. The
last set of constraints imposes that the predicted nominal
state does not violate the safety condition (λO2 > 2).
The proposed model predictive control is the following:
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Fig. 3. Evolution with MPC and a random varying r(k).

min
vc(k),...,vc(k+N−1)

{
N−1
∑
j=0

(x(k+ j|k)TQx(k+ j|k)+

vc(k+ j)TRvc(k+ j))+
x(k+N|k)TPx(k+N|k)}

s.t. x(k|k) = x(k)

x(k+ j+1|k) = Aix(k+ j|k)+BRi r(k+ j)+
BVci vc(k+ j),
if r(k+ j) ∈ Ri, j = 0, . . . ,N−1

M̂(Aix(k)+BRi r(k)+BVci vc(k))+ |M̂Eδw|≤ N̂,

if r(k) ∈ Ri

x1(k+ j|k) ≥ (2−2.2391), j = 1, . . . ,N.

(18)

The prediction horizon is N = 8, the cost is quadratic in
the predicted state x(k+ j|k) and in the control input vc(k+
j), j = 1, . . . ,N. The considered output is y(k) = Cx(k) =
[1, 0, 0, 0, 0, 0]x(k) = λO2(k)− 2.2391 and the weighting
matrices are Q = 10CTC for the error and R = 0.1 for the
input.
Note that, in practice, the ratio is not indefinitely main-

tained at a non-zero value. As a matter of fact, in normal
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operation, the ratio will be close to zero. Only in the
transitory change from a load current to another the ratio
will take values different from zero. Hence we consider the
system corresponding to ratio zero for computing the matrix
P. The final cost matrix P is the one corresponding to the
LQR obtained using the same weighting matrices.
Note that the employment of different linear models de-

pending on the current ratio provides the adaptive nature to
the control strategy. This, jointly with the safety constraint
x(k+ 1) ∈ Ĉ, allows to assure safeness avoiding the use of
more conservative strategies, such as the min-max predictive
controller.
In Fig. 3 it is shown the result of the application of the

MPC in the non-linear system. The ratio r(k) is constant
during each interval of 5s and it takes random values. The
current Ist reaches a wide range of admissible values. The
control action is smooth and it has amplitude smaller than
2V . Note that the value of λO2 never reaches the unsafe
values, not even between 5 and 10 seconds, when the ratio
is maintained at a value which would have caused unsafety
in absence of the control.
The ability of the propose adaptive MPC to prevent oxygen

starvation is more evident in Fig. 4, where the maximal value
of the ratio r = 0.1125 is maintained during 3 seconds. The
value of λO2 does not reach unsafe values.
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Fig. 4. Evolution with MPC and a step of r(k).

VI. CONCLUSIONS
In this paper the application of an adaptive model pre-

dictive control to a fuel cell plant has been addressed. In
particular, the aim of the control action is to avoid that the
oxygen ratio reaches values lower than 2, regardless on the
variation of the load current. The fuel cell plant is located in
the laboratory of the Department of Systems and Automatic
of the University of Seville. A simple discrete-time model in
PWA form has been developed. An adaptive model predictive
controller has been proposed. Such a controller relies on the
computation of an admissible robust control invariant set.
The controller forces the system to remain in such a safe
set.
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