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Abstract: This paper presents a non linear model predictive controller for a PEM fuel
cell for which the starvation control is the main objective. A second order Volterra
model for control is obtained using input/output data for which the power supplied by
the fuel cell is considered as a measurable disturbance. The controller developed allows
to solve the nonlinear objective function in a way that it can be actually implemented
in fast systems like Fuel cells. The use of a nonlinear controller is justified while
comparing the outcome obtained with a linear controller of the same class.
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1. INTRODUCTION

Fuel cells technology has proven a great devel-
opment in recent years, mainly in the search of
efficient and less polluting alternative sources of
energy to the traditional ones. There are still
many open issues regarding the practical use of
this technology, depending on the type of fuel
cell being considered. These research topics range
from manufacturing issues to materials science,
and process control is among those areas of active
work (Prukushpan et al., 2004b), (Prukushpan et

al., 2004a). In this paper, a Polymer Electrolyte
Membrane (PEM) fuel cell is considered, whose
fast dynamical response and low temperature op-
eration makes it suitable for mobile applications.

Linear controller design techniques are widely
employed in industry, although a great deal of
processes are non-linear. In many situations the
process is operating in the vicinity of a nominal
operating point and therefore a linear model can
provide good performance. The simplicity and
the existence of tested identification techniques
for linear models allows an easy and successful

implementation of linear controllers in many sit-
uations. However, there exist many situations in
which non-linear effects justify the need of non-
linear models, such as in the case of strong non-
linear processes subject to big disturbances or
setpoint tracking problems where the operating
point is continually changing, showing the non-
linear process dynamics.

When the model is nonlinear the resulting control
schemes present some challenging problems. A
clear example is Linear Model Predictive Con-
trol, (mpc) which is arguably the most popular
advanced control technique in industry, due to
the intuitive control problem formulation and its
ability to deal with economic objectives and oper-
ating constraints (Camacho and Bordons, 2004).
However, its nonlinear formulation has a lot of
open issues, and its scarce influence on industrial
control practice is nowadays due to two main rea-
sons: on one hand its online computational com-
plexity and on the other, its inability to construct
a nonlinear model on a reliable and consistent
basis (Lee, 2000), despite nonlinear dynamics are
significant in industrial processes.169



Using a nonlinear model changes the predictive
control problem from a convex quadratic program
to a non-convex nonlinear problem, which is much
more difficult to solve. Furthermore, in this situa-
tion there is no guarantee that the global optimum
can be found, especially in real time control, when
the optimum has to be obtained in a prescribed
time. The solution of this problem requires the
consideration (and at least a partial solution) of a
nonconvex, nonlinear problem (nlp), which gives
rise to a lot computational difficulties related to
the expense and reliability of solving the nlp on
line. Nevertheless, when the process is described
by a Volterra model, efficient solutions for the
model predictive control problem can be found.
This solution makes use of the particular structure
of the model, giving an on-line feasible solution.

The main advantage about the use of Volterra
models relies in the fact that being a natural
extension of the linear convolution models, they
are quite straight forward to obtain from in-
put/output data without any prior consideration
about the process model structure. Hence, in this
paper the ability to capture non linear dynamics
of the process combined with the explicit con-
sideration of operation constraints are taken into
account.

The paper is organized as follows. First the PEM

fuel cell is described, as well as the control objec-
tive. In the following section, the model prediction
equations and the optimization procedure that
involves the controller is presented. Then the pro-
posed control strategy is tested under simulation
of a PEM fuel cell model, where a comparison
with other control techniques is performed. Fi-
nally, the major conclusions are drawn.

2. PEM FUEL CELL

Polymer Electrolyte Membrane (PEM) Fuel Cells
is one group of fuel cells that run at low temper-
ature and show fast dynamical response, making
them suitable for mobile applications. As in all
fuel cells there are many components making up
the whole power system in order to be able to sup-
ply electrical power. Typical components include
DC/DC or DC/AC converters, batteries and in
the case the fuel cell is not fed directly with hy-
drogen, a reformer must also be used. Therefore,
there are many control loops schemes depending
on the devices that must be controlled. The lower
control level takes care of the main control loops
inside the fuel cell, which are basically fuel/air
feeding, humidity, pressure and temperature.

The work carried out in this paper deals with the
low level control of the fuel cell, where several
techniques exist to fulfil one of three main possible

objectives to achieve: maximum efficiency, voltage
control or starvation prevention. In all cases, the
controller manipulates air and fuel feeding, play-
ing with compressor voltage and hydrogen supply
valve.

The controller developed will consider that the
operating temperature inside the cells and reac-
tive humidity are controlled, so these variables
can be considered to be constant. Hydrogen sup-
ply is controlled using the inlet valve in such a
way that hydrogen pressure in the anode tracks
oxygen pressure in the cathode. This is done by
a simple proportional controller in order to avoid
high differential inlet pressure which could spoil
the device. The main control action is therefore
oxygen (or air) pressure, which is manipulated by
acting on the compressor voltage.

The control criterion considered for the controller
will be starvation. This is the worst phenomenon
that can take place in a fuel cell, since once it
has appeared the only way to deal with it is
to switch the cell off or in other case the cell
could be destroyed. Starvation is related to the
amount of available oxygen inside the cell and
takes place when this amount drops below a
certain limit. Oxygen excess ratio is an indicative
of the occurrence of this situation and can be
considered a good performance index. It is defined
as:

λ
O2

=
W

O2,in

W
O2,react

(1)

Being W
O2,in

the amount of oxygen that reaches
the cathode and W

O2,react
the amount of oxygen

that really reacts. This variable must be super-
vised and kept above a threshold to maintain a
safe operation regime.

The objective criterium must be achieved inde-
pendently of the load demand, that is, the current
that the cell must supply at each moment, which
is the main disturbance. Therefore the process
inputs are the compressor voltage which is the
manipulated variable and the load current that
is the disturbance. The main process outputs are
oxygen excess ratio and cell voltage.

3. VOLTERRA MODEL BASED
PREDICTIVE CONTROLLER

Volterra models are given, in their quadratic for-
mulation, by equation (2). In which the additional
second order terms in form of crossed products of
former inputs are able to capture some nonlinear
behavior of industrial processes. In table (1) the
are explained the meaning for the parameters in-
volved in the model.170



y(k + d) = h0 +

N1
∑

i=0

h1i
u(k − i)

+

N2
∑

i=0

N2
∑

j=i

h2ij
u(k − i)u(k − j) (2)

Table 1. Volterra Model Structure

d Delay

N1 Linear Truncation Order

N2 Quadratic truncation Order

Once the model has been defined it is possible to
build the prediction equations, whose structure
reminds of those of the linear mpc (Clarke et

al., 1987), except for new terms that appear due
to the nonlinear extension:

y = Gu + c + f

c = Hu
past

+ p + g (3)

In equation (3) all the elements for the prediction
are presented. The vector of predicted system
outputs y depends both of past plant inputs c and
future inputs that will be given during the control
horizon. The vector of future control actions is u,
which is the one that has to be calculated, and
f is a vector containing all the quadratic terms
of future control actions. This is the term giving
the nonlinear characteristic to the optimization
problem.

On the other hand, all the past history of the
dynamic is contained in c whose dependence of
past input / outputs of the system is explained
trough the past control actions u

past
, prediction

error p, and the quadratic past inputs g.

Considering N
p

and N
u

as the prediction horizon
and control horizon respectively, the matrices in-
volved in equation (3) are:
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The prediction error p is calculated as the differ-
ence between the measured value of the process
output and predicted model output at each sam-
ple time, and it is considered constant for the rest
of the prediction horizon.

The computation of the elements in vectors f

and g is done through a proper partition of the
quadratic terms. The rearrangement is as follows:
The crossed future-future and future-past control
action terms will be included in f . On the other
hand g will account only for past-past input terms.

Defining a matrix B containing the second order
coefficients as in (4), the calculation of the terms
of f

i
and g

i
can be written as in (5) and (6)

respectively. In order to illustrate this structure
it has been chosen N2 = 4

B =









h2(1, 1) h2(1, 2) h2(1, 3) h2(1, 4)
0 h2(2, 2) h2(2, 3) h2(2, 4)
0 0 h2(3, 3) h2(3, 4)
0 0 0 h2(4, 4)









(4)

f1 =
[

u(k) 0 0 0
]

B
[

u(k) u(k − 1) u(k − 2) u(k − 3)
]

T

f2 =
[

u(k + 1) u(k) 0 0
]

B
[

u(k + 1) u(k) u(k − 1) u(k − 2)
]

T

...

f
p
=

[

u(k + p − 1) . . . u(k + p − 4)
]

B
[

u(k + p − 1) . . . u(k + p − 4)
]

T

(5)

g1 =
[

0 u(k − 1) u(k − 2) u(k − 3)
]

B
[

0 u(k − 1) u(k − 2) u(k − 3)
]

T

g2 =
[

0 0 u(k − 1) u(k − 2)
]

B
[

0 0 u(k − 1) u(k − 2)
]

T

...

g
p
=

[

0 0 0 0
]

B
[

0 0 0 0
]

T

(6)

The control action is computed in order to mini-
mize a quadratic function, that has been taken as
shown in equation (7).

J =

Np2
∑

j=Np1

[ŷ(t + j | t) − w(t + j)]2 +

Nu
∑

j=1

λ[∆u(t + j − 1)]2 (7)
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Following the ideas of Doyle et al. (Doyle et

al., 2002), an iterative algorithm is proposed to
obtain an approach to the optimization problem
that arises while dealing with vpc.

For the unconstrained case, the iterative algo-
rithm is:

Step 1. set i = 1.

Step 2. Calculate c and u solving the least squares
control problem in (8).

c = Hu
past

+ g + p

u = (GtG)−1Gt(s − c − f) (8)

Step 3. Determine if the condition to end the
iteration process is met:

|ui(k) − ui−1(k)| ≤ ∆ (9)

where ∆ is the desired tolerance.

• If the condition is achieved, then u(k) =
ui(k)

• If not, recalculate f using ui(k) for present
and future values of the input. Set i = i + 1,
and return to step 2.

4. IDENTIFICATION OF VOLTERRA
MODEL

While trying to identify a linear input/output
model for a linear mpc it is usually used an prbs

signal to feed the input of the system. Thus, with
the output signal obtained it is possible to identify
a model adjusting the resulting data set. For
the linear case, this is an ordinary least squares
problem. The actions required to identify a second
order Volterra model are slightly different, but
still sharing much of this straightforward method.

The main difference lies in the fact that a three
level input signal is needed rather that a prbs

signal. However, for the rest of the identification
procedure nothing else is changed, since the iden-
tification problem to be solved remains an ordi-
nary least squares problem, and thus not need-
ing any special formulation to identify a model
(Pearson, 1999).

In order to identify a model for the PEM fuel cell
it has been used a non linear simulator ((del Real
et al., 2007)). This model combines theoretical
equations and experimental relations, resulting
in a semi-empirical formulation. It describes the
following areas: fluid dynamics in the gas flow
fields and gas diffusion layers (oxygen, nitrogen,
liquid water and vapor); thermal dynamics and
temperature effects; and a novel algorithm to cal-
cule an empirical polarization curve. As a result,
this model can predict both steady and transient

states due to variable loads (such as flooding and
anode purges), as well as the system start-up.

Figure 1 shows the data set used to obtain the
second order Volterra model for the system. The
identification data was obtained for three different
loads for the fuel cell, represented by the current
supplied, starting at 5 A and ending at 30 A.
The manipulated variable, that is, the compressor
voltage, is set to three different levels for each
operation point, so that the non linear behavior
of the plant, mainly the nonlinear gain can be
extracted through the identification procedure.
On the other hand it can be seen how the output
variable can take values between 1.5 and 3.8.
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Fig. 1. Identification Data Set

The Volterra model that was chosen for this pro-
cess was taken accordint to the following trunca-
tion orders shwon in table 2.

Table 2. Model parameters

Parameter Value

N1 40

N2 20

The values for the model are presented in figures
2 and 3. The linear parameters of the model (2)
are displayed in (2), in which the typical impulse
response for a linear model can be recognized. On
the other hand, the second order parameters are
presented in 3, where it can be seen the fading
memory of the system through the decay of the
parameters value towards zero while time passes.
This behavior could be interpreted as an extended
second order impulse response.

Finally in 4 the results of identifying the system
are shown. In the upper graph the identification
data set is presented with the outcome of the
model, whereas in the bottom plot, the validation
set is displayed.172
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Fig. 3. Volterra model: Second order parameters
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Fig. 4. Outcome of model. Identification (top) and
validation (bottom) sets

5. CONTROLLER PERFORMANCE

Finally, the Volterra model based predictive con-
troller was implemented in Simulink and applied
to the mathematical model of the fuel cell. A
second controller, a linear model predictive con-
troller, was used to obtain simulation results al-
lowing comparison between the linear and non lin-
ear controllers. During the simulations, different

steps in the measurable perturbation w (current
in the fuel cell) were applied.

In first place, the linear predictive controller was
tested with the fuel cell model. The controller is
based on a convolution model with N1 = 40 and
N1 = 1 parameters considering the influence of
input u and perturbation w. As prediction horizon
N

p
= 40 and as control horizon N

u
= 10 was

used. For the weight parameter λ, considering the
control action in the cost function, a value of 1000
was chosen. Figure 5 shows the simulation results
of the fuel cell model controlled by the linear
controller. As can be seen in the results, the linear
controller is able to compensate the discrepancy
between the oxygen excess ratio and its reference.
In steady state, the linear controller avoids errors
and stabilizes the oxygen excess ration in λ = 2.
On the other hand, the results show clearly that
the controller changes its behavior for different
values of the perturbation. For low values of the
perturbation, the output of the system tends to
oscillate. For high values of w, the system response
gets very slowly needing nearly 10 seconds to
reach steady state.

0 20 40 60 80 100 120 140
1

2

3

t [s]

λ
 [−

]

0 20 40 60 80 100 120 140

25

30

35

t [s]

V
st

 [V
]

0 20 40 60 80 100 120 140
0

20

40

t [s]

w
 [A

]

0 20 40 60 80 100 120 140

40

60

t [s]

u 
[%

]

Fig. 5. Results of the linear controller

In second place, the designed nonlinear controller
was applied to the simulation model. For the
different horizons and the weighting parameter
the same values as in the case of the linear
controller were used. The results in figure 6 show
that the nonlinear controller has a fast reaction
on errors in the oxygen excess ratio λ provoked
by sudden changes in the perturbation w. It can
clearly be seen that the output of the system
controlled by the nonlinear controller oscillates
less for low values of the perturbation than in the
case of the linear controller. For high perturbation
values, the reaction of the system is considerably
faster and needs only 5 seconds to reach steady
state. With respect to the computational effort
of the nonlinear controller, the results show that
the calculation of the new control action requires
in the maximum case 10 iterations (after a sudden
change in the perturbation) but normally only 1 to
3 iterations (nearly steady state). In the maximum
case of 10 iterations, the used computer (Pentium173



Error linear nonlinear

J 168.13 131.74

Table 3. Comparison of the sum of
square errors during the simulation with

the linear and nonlinear controller.

4 with 3 GHz) needed 0.0244 seconds and stayed
clearly below the sampling time of 0.1 seconds.
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Fig. 6. Results of the non linear controller

For better comparison of the results, the oxygen
excess ratio of the simulations with the linear and
the nonlinear controller is shown in 7. As can be
seen, both controllers show a similar behavior for
intermediate values of the perturbation. For low
and high values, the nonlinear controller shows
a better control behavior and the oxygen excess
ratio reaches steady state rapidly with few oscilla-
tion. Finally, to give an idea of the control quality,
the sum of the square errors was calculated:

J =
∑

i=1

(s(i) − y(i))
2

The resulting errors obtained in the simulation
with the linear and the non linear controller can
be seen in table 3.
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Fig. 7. Direct comparison of the oxygen excess
ratio controlled by the linear/non linear con-
troller.

6. CONCLUSIONS

This paper has presented a non linear model
predictive controller based on Volterra models for
a PEM fuel cell. In order to test the performance
of the controller it was tested under simulation on

a full non linear model of the real process. The
advantages in performance obtained have been
shown when compared to a linear counterpart.
The complexity introduced by the non linear
controller does not jeopardize the solution of the
optimization problem, being able to deliver the
control signal within the required time.
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Pearson, R.K. (1999). Discrete-Time Dynamic

Models. Oxford Univeristy Press.
Prukushpan, J. T., A. G. Stefanopoulou and

H. Peng (2004a). Control of fuel cell breath-
ing. IEEE Control Systems Magazine.

Prukushpan, J. T., A. G. Stefanopoulou and
H. Peng (2004b). Control of fuel cell power
systems: Principles, modeling and analysis
and feedback design. series Advances in In-

dustrial Control, Springer.

174


