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ABSTRACT The power coordination control of a photovoltaic/battery microgrid is performed with a novel
bio-computing model within the framework of membrane computing. First, a neural-like P system with
state values (SVNPS) is proposed for describing complex logical relationships between different modes
of Photovoltaic (PV) units and energy storage units. After comparing the objects in the neurons with the
thresholds, state values will be obtained to determine the configuration of the SVNPS. Considering the
characteristics of PV/battery microgrids, an operation control strategy based on bus voltages of the point of
common coupling and charging/discharging statuses of batteries is proposed. At first, the SVNPS is used to
construct the complicated unit working modes; each unit of the microgrid can adjust the operation modes
automatically. After that, the output power of each unit is reasonably coordinated to ensure the operation
stability of the microgrid. Finally, a PV/battery microgrid, including two PV units, one storage unit, and
some loads are taken into consideration, and experimental results show the feasibility and effectiveness of

the proposed control strategy and the SVNPS-based power coordination control models.

INDEX TERMS Neural-like P system, state value, microgrid, power coordination.

I. INTRODUCTION

Currently, the energy source in electricity industry is gradu-
ally transferring from conventional to renewable, for a cleaner
electrical power generation. Thus, plenty of renewable-based
generators have been used in the electrical power systems.
Photovoltaic (PV) generation is gaining popularity due to
the characteristics of clean resource, continuous improve-
ments in solar modules, and economic incentives from
governments [1]. However, it is vulnerable to climate, which
can arouse volatile, random, intermittent and uncontrolled
output power. Therefore, energy storage equipment is of great
importance to control power fluctuations and the research

on power coordination control of the photovoltaic/battery
microgird is urgently needed.

There are different characteristics and multiple operating
modes (such as maximum power point tracking -MPPT-,
constant power operation and operation stop) for PV gener-
ation units and energy storage units in a photovoltaic/battery
microgrid. The logical relationship between different modes
of energy storage units, such as charging and discharg-
ing modes, is complex. Once the logical relations can be
clearly expressed and reasonably coordinated, the power
regulation ability of microgrid will be improved signifi-
cantly, as well as the reliability and economic benefit of
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load power supply. There are two operation modes for a
microgrid: grid—connected mode and isolated island opera-
tion mode [1], [2]. Dual characteristics coexist in units and
loads when the microgrid is connected to grids, so that the
power between units and loads are interacted via the Point
of Common Coupling (PCC). Thus, the influence of the high
penetration rate of photovoltaic distributed power generations
(resulted from the randomness and volatility of the new
energies) on the stability of the microgrid is considerable.
Therefore, a reasonable and effective operation control strat-
egy is essential for coordinating the output power of each
unit in a microgrid as well as ensuring its operation sta-
bility. coordinated In [1], both microgrids operation models
and unit statuses were established by Petri nets (PNs), and
different algorithms for energy management were designed
for distinguishing the operating characteristics in energy
scheduling calculation. In [2], a cell-like fuzzy P system
was proposed to establish the controlled units models of
microgrids. The coordinated control and energy management
were carried out by controlling units access or elimination.
Moreover, multi-agent systems (MASs) were employed to
construct the framework of microgrids through establishing
the hierarchical agents with high performance. By studying
inter-communications, specific functions and coordination
strategies of agents, the operation control of microgrids was
finally performed by dividing one task into several minor
tasks to different agents by using MASs [3]-[7]. However,
owing to the structure flexibility, changing operation modes
and various distributed units with different characteristics
in microgrids, the power coordinated control of microgrids
is still a complicated and challenging work. Every method
mentioned above has its own merits and demerits. For exam-
ple, the control strategy based on PNs has the advantages of
graphical knowledge representation and parallel information
processing. However, the triggering condition and operation
model definition are extremely complex. The cell-like fuzzy
P system with fuzzy logic can make full use of expertise in a
parallel manner, it can only control the unit access or elimi-
nation, but does not adjust the unit power output. In MASs,
several agents are cooperated to fulfill the control strategy.
Although the MAS-based distributed control coordination
strategy for microgirids is attractive, the cooperation of dif-
ferent agents as well as the knowledge representation and
behavior control of each agent are still unsolved. Therefore,
particular attention should be paid to the modification and
improvement of the aforementioned methods as well as the
exploration of new ones for the power coordination control
of microgirds.

A novel operation control strategy and power coordination
control method for power systems using membrane systems
(or P systems) [8] is discussed in this paper, which is attrac-
tive in computer science research [9], [10]. Membrane com-
puting, a computing paradigm abstracted from the structure
and function of living cells, is a new branch of natural com-
puting. There are three types of membrane systems: cell-like
P systems, tissue-like P systems and neural-like P systems
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(nP systems). Spiking neural P systems (SN P systems) and
basic neural-like P systems (BnP systems) are included in the
nP systems, where the SN P system is a fresh distribution
and parallel neural computing device inspired by the neuro-
physiological behavior of neurons transmitting information
by electrical impulses (spikes) along axons between neurons.
The SN P system [11] is one of the important nP systems and
has been proved with powerful computing ability in comput-
ing Turing computable functions [12], solving NP-complete
problems in linear-time [13], generating binary and string
languages [11], [12], and solving application problems, such
as logic gates design [14], image processing [15], combinato-
rial optimization problem [16] and fault diagnosis [17]-[20].

The BnP systems are networks of neurons working with
multisets (or strings) and conversing between different
statuses [21]. They are inspired by the graphical structure
and intercellular communication of biological neurons, and
are special kinds of tissue-like P systems where the com-
putational units (cells) are replaced by neurons. Therefore,
the BnP system has excellent distributed parallel comput-
ing capability, covering characteristics of both tissue-like
P systems and neuron systems. In [22], a simple neural-like
P systems was proposed for improving the efficiency of
maximum independent set selection in a distributed way.
This neural-like P system is attractive because no informa-
tion about the graph with overall size is needed for indi-
vidual processors. In addition, the communication can be
carried out with one-bit messages. Besides, by transmitting
symbol-impulses (spikes) to neighboring neurons and pro-
cessing multisets (or strings) of symbol-impulses (spikes)
from the neighbors, the BnP system was improved to fulfill
certain constraints in polynomial time without using neuron
division or neuron separation [23]. Up to now, the research
about BnP systems are still scattered. In the authors’ opin-
ion, the theoretical research and practical application of BnP
system need to be further developed.

Actually, the BnP system with multisets (or strings) of
objects and different states is suitable to describe the complex
logical expressions of both different modes of PV units and
statuses of energy storage units. A novel power coordination
control strategy of microgrids based on the BnP systems is
proposed in this article. A neural-like P system with state
values (SVNPS) is defined based on the framework of the
nP system. The state values (0 or 1) could be determined by
comparing the objects in the neurons with thresholds, and
the configuration of the SVNPS changes according to the
corresponding values. In order to guarantee the operation
stability of microgrids and avoid battery damage caused by
fast/over charging/discharging, an operation control strategy
based on PCC bus voltages and statuses of charge (SOC) of
batteries is proposed. Based on the control strategy, the con-
trol power of the microgrid is decentralized into each unit by
using the SVNPSs to construct the modes of microgrids units,
and then the units can adjust the operation modes automati-
cally according to the operation of the microgrid. Afterwards,
the specific output power of the units will be reasonably
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coordinated for operation stability of the microgrid. The pro-
posed control strategy is implemented in MATLAB, and the
experimental results show the efficiency improvement and
the feasibility of unit SVNPSs model in microgrid power
coordination.

The reminder of this paper is organized as follows.
Section II describes the microgrid structure and declares
the problem to be solved. Section III defines SVNPSs and
each unit in the microgrid is modeled by the SVNPSs in
Section IV. In Section V, the details about the simulation and
the main results are presented. Conclusions are finally drawn
in Section VI.

Il. PROBLEM DESCRIPTION

A. STRUCTURE OF THE MICROGRID

The structure of the studied microgrid [2] is described
in Figure 1, which contains a microgrid control center
(MGCC), two photovoltaic generation units (PV units),
an energy storage unit and loads (including static loads and
adjustable loads).

@ Grid

i
T ransformer

Switch

FIGURE 1. A sketch map of the studied PV/battery microgrid.

Due to the influence of light intensity and temperature,
there could be a violent fluctuation and unfavorable discon-
tinuity in the output power of PV units, which finally affects
the stability of PPC bus voltage. In addition, load variation
also affects the stability of PPC bus voltage. Therefore, it is
necessary to ensure the operation stability of the microgrid
according to real-time balance realization of the power.

In order to retard the batteries degradation caused by
fast/over charging/discharging, SOC of batteries is limited in
areasonable range to control the charging/discharging power.
According to different SOC ranges, five battery statuses are
defined in Table 1, where P,,,, represents the upper limit of
power.

When the PV/battery microgrid is connected to the grid,
Equation (1) will be obtained based on voltage loss of trans-
mission line

Uy = Ui —[RPy+Pr £ Pp)+X(—=Qv+0r £ 0p)]/U>
(D

where: U, is PCC bus voltage connected to the front grid,
U, is the grid voltage; Py, P; and P, indicate the active
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TABLE 1. Battery statuses and power limits of charging and discharging.

Storage Output  SOC SOC discharge power charge power lim-

unit power of lower upper limit it

status  storage  limit limit

VL P1 0 10% 0 Praz

L P2 10%  20% _29c-s0cl0k —y Py
max

M P3 20% 80%  Pmax Praz

50c90%—soc X
SOCQO%— 50c80%
mazx

VH P5 90% 100% Pmaax 0

H P4 80% 90%  Pmax

power of PV, load and battery units, respectively; Qy, Or
and Q,, represent the reactive power of PV, load and battery
units, respectively; R represents the line impedance and X
represents the line reactance.

Noticing that the studied microgrid is in a medium and low
voltage system and the impedance characteristic of the trans-
mission lines is resistive. Thus, the reactive power related to
the reactance X can be ignored. Therefore, PCC bus voltage
depends on the active output power of PV, load and battery
units. The active power shortage can be calculated by the
voltage deviation, which is the difference between U, and
MGCC with the rated voltage. The operation modes of each
unit are determined by U, and SOC. Considering the active
power shortage, predicted data of the PV units and loads,
and the operation mode of each unit, the output active power
of each unit is coordinated to ensure the stability of PCC
bus voltage (within 5% of the rated voltage) and microgrid
power.

B. POWER COORDINATION CONTROL STRATEGY FOR
PV/BATTERY SYSTEMS

In PV/battery microgrids, the power of loads and PV units is
stochastic and fluctuant. Thus, energy storage units are used
for power output complementation between loads and PV
units. However, because of cost and limited capacity, energy
storage unit is not always satisfactory. To solve this problem,
an operation control strategy is proposed in this article based
on PCC bus voltage and SOC of batteries considering load
shedding and PV output power limit. The proposed strategy
is shown in Figure 2 and the illustration of each variable
is described in Table 2, where the charging and discharging
power are restricted to protect the batteries.

When the microgrid is connected to the grid, the control
strategy helps to stabilize PCC bus voltage within +5%
fluctuation of its rated voltage. The process is described as
follows. Firstly, U, detected from MGCC is evaluated to see
whether the amplitude of voltage is acceptable and the corre-
sponding statuses of battery SOC could be obtained. There
are five situations for a positive answer. According to the
judgement result, the statuses of battery SOC are obtained.
If the amplitude of U; is in the allowable range, there are five
cases. (1) If U fluctuates in a normal range and SOC is very
low (VL), then PV units will work in MPPT mode and storage
units will work in VL status, which means that batteries are
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FIGURE 2. An operation control strategy.
TABLE 2. Variables and corresponding illustrations. IIl. NEURAL-LIKE P SYSTEMS WITH STATE VALUES
A. BASIC NEURAL-LIKE P SYSTEMS

Variable Illustration Variable Illustration Wi 11 the initial definiti £ BnP t h
Uz PCC point voltage Py PV active power output . © reca. ¢ initial definition ot Bn Sys.ems cre as COI:'_
Upmin  lower limit of PCC voltage Pp;ppr PV predictive active sidered in [21]. The BnP systems are defined on the basis

fluctuation power ] of tissue-like P systems, and the computational units are
Umaaz  upper limit of PCC voltage Pay PV active power incre- . .

Auctuation ment replaced by neurons. Such membrane systems contain multi-
P,ceq load active power output  Ppeeqo  load predictive active sets of objects, and each neuron is associated with states that

- . power _ can determine the operation of objects.

Py battery predictive active Ppy,q, PV battery maximum ... . . .

power power Definition 1: A BnP system (with degree m > 1) is a

charged at maximum power while the discharging power is 0.
(2) If SOC is low (L), then PV units will work in MPPT
mode and storage units will work in L status, which means
that batteries are charged at the maximum power while the
discharging power is constrained. (3) If SOC is medium (M),
then PV units will again work in MPPT mode and storage
units will work in M status, which means that both the charg-
ing and discharging of batteries are at the maximum power.
(4) If SOC is high (H), then PV units will again work in MPPT
mode (maximize the use of clean energy) and storage units
will work in H status, which means that the charge power
of batteries are constrained while the discharging power is
the maximum. (5) If SOC is very high (VH), then PV units
will work in Lim and storage units will work in VH status,
which means that the charge power is 0 while batteries are
discharged at the maximum power.

In this study, the SVNPS is used to solve the operation
mode conversion problem of each unit in the microgrid
and state values in the SVNPSs are employed to represent
the corresponding modes and statuses of different units.
In what follows, the definition of the SVNPS is proposed in
Section III, and then Section IV describes the modeling of
SVNPSs for different units.

VOLUME 6, 2018

tuple

IM=(,o01,...,0m,syn, i)

where:

1) O is a finite non-empty alphabet (of chemical objects,
but we also call them excitations/impulses);

2) o1, ..., onareneurons, of the formo; = (Q;, $i.0, wi,0,
Ri), 1 <i < m, where
a) Q; is a finite set (of states);
b) s;.0 € Q; is the initial state;
¢) wi o € O* is the initial multiset of impulses contained
in the neurons. Accordingly, (s1,001.,0, - - - » Sm,0Wm,0) 1S
the initial configuration of IT;
d) R; is a finite set of rules of the form s — §'xyg0Zour,
where s, 5" € Qj, w, x € 0%, ygo € (O X {g0})*, Zowr €
(O x {out})*, with the restriction that z,,, = A for all
i € {1,...,m} different from i, ; the mark go means
that the associated impulses have to emit immediately
and transmit to the linked neurons; the mark out means
that the associated object outputs the system IT;

3) syn € {1,...,m} x {1,...,m} are synapses among
neurons;

4) ip € {1, ..., m} indicates the set of indexes of output
neurons.
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B. NEURAL-LIKE P SYSTEMS WITH STATE VALUES

This paper proposes the neural-like P systems with state

values (SVNPSs) in the framework of nP systems.
Definition 2: An SVNPS (with degree m > 1) is a tuple

n = (07 Ts Qv 0-19 "-1UM787 n7syn7 iO)

where:

) O = {d,...dg,dgy1,...,dp} is a finite alphabet
whose elements are called objects, representing real
variables. Objects in Oy = {dy, ..., d,} are called

initial objects and objects in O, = {dg41, ..., dp) are
called final objects.
D) T ={T1,1, s Ty oo s Tg Ly oo e s Tq’rq} is a finite set

of real numbers (thresholds) associated with the set of
initial objects Oyjr. Specifically, {7j 1, ..., Tj, rj} are the
thresholds associated with the initial object d; in such
manner that for each real value v(d;)) of d}, a vector of
state values (vj 1, ..., vj,,j) is defined as follows: for
eachk,1 <k <r;,

bk = 0, v(dj) < tjx

L, v(dj) > 7k
The vector of state value of v(d;) can be considered as
a binary number with r; digits.

3) QO ={s1,...,sny}isafinite alphabet such that QN O =
¢ whose elements represent the statuses of the system in
different moments (s; € Q denotes the initial status of
the system). There exists a partition {Q;, Or} of O\ {s1}
such that the status in Q; are called intermediate status
and the status in QF are called final status.

4) o1,...,0, are the neurons, of the form o; =
(si, wi, vi, Ri), where:

e §; € Q is the initial status of neuron o;. If 5; € Q;
(resp. s; € Qr) then o; is called an intermediate
neuron (resp. o; is an output neuron); o1 is called
the initial neuron.

o For the initial neuron, w; is a set of objects in
Ojnir (the contents of o1) and vy is the empty-
set. If o; is an intermediate neuron then w; is the
emptyset and v; is a binary number representing
some state values associated with o; (the contents
of ;). If o; is an output neuron then w; is a set
of objects in Oy, (the contents of o;) and v; is the
emptyset.

e R, is a finite set of rules of type:

— For the initial neuron: s; wi — s;v, where s; €
01, w1 C Oijnic and v is a set of vector of state
values (binary numbers) corresponding to some
real values of all objects in wj.

— For the intermediate neurons: s;v — syw, where
si € Q1,5 € OF, vis a set of vector of state
values corresponding to some real values of all
objects in wy, and w € Opy, is a set of final
objects.
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- For output neurons: syw — sp(w, out), where
sf € Or and w C Oﬁn.

5) & is a mapping from the set of all vectors of state values
(binary numbers) corresponding to some real values
of all objects in the initial neuron, onto the set Q; of
intermediate status of the system.

6) nis a mapping from the set of all vectors of state values
(binary numbers) corresponding to some real values
of all objects in the initial neuron, onto the cartesian
product Or X Ofiy.

7) syn € {1,...,m} x {1,...,m} such that for i,j, 1 <
i,j<n:

- (i,0) ¢ syn.
- (1,)) e syn=s; € Q.
- (i,)) esynns;i€ O = s; € OF.
syn represents the synapses among neurons.

8) ip € {l,...,m} indicates the set of indexes of output

neurons.

An overview of the computations is described as follows.
An instantaneous description or a configuration C, at an
instant ¢ of an SVNPS is described by the following pair:
(a) the status of each neuron at instant t; (b) the contents
(objects or binary numbers) of each neuron present in the
system at that moment.

Given an assignment of real values (v(dy), . . ., v(d,)) to the
initial objects dy, ..., dy in the initial neuron o1, the initial
configuration associated with (v(dy), ..., v(d,)) is described
by the following tuple: (a) the status of neuron oj is s;; (b)
the contents of the initial neuron oy is (V(dy), ..., v(dy));
and (c) the contents of all intermediate neurons and all output
neurons are the emptyset.

A rule s; wi — s;v for the initial neuron o fires
when some real values (v(dy),...,v(d,)) are assigned to
all objects dy, ...d, associated with o1. Then the corre-
sponding vector of state values is v = (Vi,1,..., Vi r, .-,
Vg.1s - - -+ Vq,r,)- When applying such a rule, the initial neuron
o1 passes from status s to status s;, being s; = 6(vi 1, ...,
Vi - . vq,rq), and the state values of vector v are
sent to the intermediate neuron o; whose status is s;.

A rule s,y — spw for an intermediate neuron o; fires
when o; receives the vector v of state values associated with
some real values (v(d1), ..., v(dy)) assigned to all the initial
objects d1, .. . d,; in o1. When applying such a rule, the status
of neuron o; changes from s; to s¢, and the objects from
w are produced and sent to the output neuron oy, being
n) = (s¢, w).

Arule syw — sy (w, out) of an output neuron oy fires when
oy receives the objects from w. When applying such a rule,
the status of the system does not change, and the objects from
w are released to the environment (the output ot the system).
Then, the computation halts.

All computations of an SVNPS start from an initial con-
figuration and proceed as stated above; only halting compu-
tations give a result, which is encoded by the objects present
in the environment.

SVl
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FIGURE 3. An SVNPS model for the PV unit.

IV. MODELLING FOR UNITS WITH SVNPSS

According to the operation control strategy presented in sub-
section II-B and the operation state of each unit, the unit
SVNPS models are established and the control power of the
microgrid operation is dispersed into each unit. Then the
operation modes of each unit could be used to coordinate and
control the output of each unit in the microgrid in a reasonable
and efficient way, so as to meet the power balance and power
quality output requirements of the microgrid.

A. SVNPS-BASED MODELS FOR MICROGRID UNITS

Since the neurons in SVNPSs contain multisets of objects and
different statuses, an SVNPS can transform into different con-
figurations by numerical comparison relationships between
the objects and corresponding thresholds. The different sta-
tuses can be used to deal with the operation mode conversion
in each unit of the microgrid. The operation modes and sta-
tuses of PV, storage and load units can be represented by the
SVNPSs. Accordingly, the reliability of the control strategy is
improved due to the distributed parallelism characteristics of
SVNPSs. The SVNPS-based model for each unit is described
in detail as follows.

1) AN SVNPS MODEL FOR THE PV UNIT
PV is clean energy, its output power is mainly affected by
light intensity. To maximize economic benefits, PV units
usually work in MPPT mode. According to the control strat-
egy described in subsection II-B, if and only if U, is higher
than the upper limit of allowable voltage fluctuation and the
status of SOC is VH, then PV units work in the output power
limiting status (Lim). Accordingly, an SVNPS-based model
IT; for the PV unit is established, as shown in Figure 3.
An SVNPS-based model for a PV unit is a tuple I
o0,T,0,01,...,0m,06,n,syn, ip), where:
= {di, d2, d3, da}, Oinir = {d1, d2}, Opin = {d3, da},
where d; represents U;, d» indicates SOC of batteries,
ds describes MPPT mode and dj expresses Lim mode.
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— T = {11, ©p}, where 1 is the threshold corresponding
to di and represents the upper limit of allowable voltage
fluctuation; 1, is the threshold corresponding to d» and
indicates the lower limit of battery SOC in the VH status.
0 {s1, 82, 53, 54, 55, 56, 57}, Q1 {52, 53, 54, 55},
Or = {s6, 57}

o1 (s1, w1, vi, Ry), where: (a) wy {d1, dr};
(d) vy #; and (c) the rules from R are of type
s1wp — s;v,being v € {0, 1}2 representing the vector of
state values associated with an assignment of real values
(v(d1), v(d>)) to initial objects d1, d,. Table 3 shows the
status and rules in each neuron.

TABLE 3. Neurons in SVNPS model for the PV unit.

Neuron Status Rule
. o1 = ({s1(v1,v2)},{d1(m1), d2(72)},
g1 51,84 s1dido — S)
o2 52,56 o2 = ({s2 (v1,v2)}, s2v1v2 — s6d3)
o3 53,56 o3 = ({s3 (v1,v2)}, s3v1v2 — sed3)
o4 54,56 o4 = ({54 (v1,v2)}, sav1v2 — s6d3)
o5 55,56 o5 = ({s5 (v1,v2)}, s5v1v2 — s7dy)
g6 S6 o = (86, ds, {86d3 — S6 (d3, Out)})
o7 S7 o7 = (87, dy, {S7d4 — S7 (d47 Out)})
— For2 < k < 5, 00 = (sg,wWk, Vi, Rr), where:
(@) wy = @; (b) v € {0, 1}? represents the vector of

state values associated with an assignment of real values
(v(d1), v(d>)) to initial objects dj, da; and (c) the rules
from Ry are of type sxvk — spwy, being n(v) =
(s, wp).

Forj = 6,7, 0j = (55, wj, vj, R;), where: (a) if spvp —
sfw;, is a rule of the intermediate neuron oy and s; = s7
then w; = wy; (b) v; = #; and (c) the rules from R; are
of type sjw; — sj(wj, out).

8 is the mapping from {0, 1}? onto Q; defined as follows:
8(0,0) = 52, 8(0, 1) = 53,8(1,0) = 54 and §(1, 1) = 55
(see Table 4).

1 is the mapping from {0, 1} onto QF x Oy defined as
follows: 1(0, 0) = (s¢, d3), (0, 1) = (s¢, d3), n(1,0) =
(s6, d3) and n(1, 1) = (57, d4).
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TABLE 4. Relationships between state values and intermediate statuses
in the SVNPS of PV units.

Vo V1 Status
0 0 So
0 1 S3
1 0 S4
1 1 S5

- syn=1{(1,2),(1,3),(1,4),(1,5),(2,6),(3,6), 4, 6),
5, 7).
— iy =1{6,7).

There are seven neurons in the SVNPS IT;, which means
that it has seven statuses, i.e., s1, ..., §7, where s represents
the initial status, s7, . . ., s5 indicate intermediate statuses and
s, 57 describe final statuses. Accordingly, the output neurons
are o¢ and o7. The computing process of the SVNPS is
described as follows.

Step 1: Calculate state values. There are objects d; and
d in neuron o1, and 71 and 1, represent the corresponding
thresholds of the objects. By comparing d; with 11, the state
value vj is obtained. If di < 71, then 77 = 0; otherwise,
71 = 1. The state value v is obtained in a similar way;

Step 2: Choose intermediate statuses via the state values vy
and v;. The relationships between state values and intermedi-
ate statuses are shown in Table 4. The rules s1did>» — s;juivp
in neuron o fire and the neuron changes from the initial status
to an intermediate status, and then a state value vyv; is sent
to a corresponding neuron. For example, if vav; = 00, then
the neuron changes to status s, which means that the value
of vy 18 sent to neuron o0y,

Step 3: The rules in an intermediate neuron are fired
when the neuron receives the state value, and the status
of the neuron changes with producing and sending a new
object to its postsynaptic neurons. For instance, if neuron op
receives the value vovq, then the rule spvjvy — sed3 in
neuron o3 fires and a new object d3 is produced and sent to
neuron og. Accordingly, the status of the neuron changes from
§7 to 565

Step 4: Termination conditions. The rules in an output
neuron fire when the output neuron receives new objects and
the computing of the SVNPS ends when the output neuron
emits its objects. For example, the rule s¢ds — s6(d3, out) in
neuron og fires when the neuron receives the object d3 from
neuron o and the computing ends when d3 is output from oy.

2) AN SVNPS MODEL FOR THE STORAGE UNIT
Batteries are with dual characteristic, which means that stor-
age units in a microgrid can be used as a micro power
to supply the loads or loads consuming electrical power.
Thus, to avoid battery life damage caused by over/fast charg-
ing/discharging, the charging/discharging times and power
should be limited. According to the different ranges of battery
SOC, an SVNPS-based model IT; for the battery unit is built,
as shown in Figure 4.

An SVNPS model for a battery unit is a tuple Il
0,T,0,01,...,0m,6,n,syn, ip), where:

- 0= {dy,dr,d3,dy, ds, ds, d7}, Ojnir = {d1, da}, Opipy =
{d3, d4, ds, de, d7}, where dj represents Uy, d; indicates
SOC of batteries, d3, d4, . . ., d7 express the five statues
of the storage unit.
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FIGURE 4. An SVNPS model for the battery unit.
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TABLE 5. Neurons in SUNPS model for the battery unit.

Neuron Status Rule
o1 = ({s1(v1,v21,v22,v23, v24) },

o1 81, 8i {d1(m1), d2(721, T22, 723, T24) },
s1dida — $;V1V21v22V23V24)
o2 = ({s2(v1,v21, v22,v23, v24)},
72 52,98 S2V1V21, V22, V23, V24 — S8d3)
. . 03 = ({s3(v1,v21,v22,v23,v24)},
73 53,59 $3V1V21, V22, V23, V24 — Sodd)
04 = ({sa(v1,v21,v22,v23,v24)},
74 54,510 54v1v21, V22, V23, V24 — S10d5)
o5 = ({s5(v1,v21,v22,v23,v24)},
75 85,510 S5V1v21, V22, V23, V24 — S10d5)
o6 = ({se(v1,v21, v22,v23,v24)},
76 56, 511 86V1V21, V22, V23, V24 — s11dg)
o7 = ({s7(v1,v21, v22,v23,v24)},
o7 ST, 512 S7V1V21, V22, V23, V24 — S12d7)
o8 S8 og = (ss,ds, {sgd3s — sg (d3,out)})
a9 S9 o9 = (89,d4, {sods — sg (da,out)})
010 510 010 = (s10,ds, {s10d5 — s10 (ds, out)})
011 S11 o111 = (311,d6, {511d1 — 811 (dﬁ,out)})
012 S12 o012 = (s12,d7, {s12d7 — s12 (d7,out)})
- T = {11, 721, T22, T23, T24}, Where 7| is the threshold

corresponding to d; and represents the upper limit of
allowable voltage fluctuation; 721, 722, 723, T24 is the
threshold corresponding to d and indicates the lower
limit of battery SOC in the L, M, H and VH statuses,

respectively.

-0 = {s51,8,...,512}, Or = {s2,53,...,87}, O =
{ss, 59, ..., 512}

- o1 = (s1,wr,v1, R1), where: (a) wi = {di,da};

(b) vi = @; and (c) the rules from R are of type
s1 w1 — s;v,beingv € {0, 1}’ representing the vector of
state values associated with an assignment of real values
(v(d1), v(d>)) to initial objects d1, d. Table 5 shows the
status and rules in each neuron.

—For2 < k < 7, 00 = (Sk, Wk, Vi, Rr), where:
(@ wry = @; (b) v € {0, 1) represents the vector of
state values associated with an assignment of real values
(v(d1), v(d>)) to initial objects di, da; and (c) the rules
from Ry are of type sgvi — spwy, being n(vx) =
(s£, wp).

- For 8 < j < 12, 0 = (s, w}, v}, R;), where: (a) if
SKVE —> sfw;( is a rule of the intermediate neuron oy
and s; = s then w; = w,; (b) v; = @; and (c) the rules
from R; are of type sjw; — sj(w;, out).

— § is the mapping from {0, 1}° onto Q; defined as
follows: §(0,0,0,0,0) = s, 6(0,0,0,1,0) =
53, 8X,X,1,1,0) = s4, 8(0,0,X,X,1) = s5,
8(0,1,1,1,1) = s¢ and 8(1,1,1,1,1) = s7 (see
Table 4). (Moreover, § is not an injective function).

— 1 is the mapping from {0, 1}° onto Qr x Oy defined
as follows: 7(0,0,0,0,0) = ss, 1(0,0,0,1,0) =
s9, n(X,X,1,1,0) = s10, 1(0,0,X,X,1) = s10,
n,1,1,1,1) = sy and n(1, 1,1, 1, 1) = s12. (More-
over, 7 is not an injective function).

- syn={(1,2), (1, 3), (1,4), (1,5), (1,6), (1,7), (2, 8),
(3,9), 4, 10), (5, 10), (6, 11), (7, 12)}.

- ip=1{8,9,10, 11, 12}.
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There are twelve neurons in the SVNPS IT,, which means
that it has twelve statuses, i.e., s1,52,...,512, where s
indicates the initial status, s»,...,s7 represent intermedi-
ate statuses and sg,...,s12 describe terminated statuses.
Accordingly, o, ..., 012 are output neurons. The relation-
ships between state values and intermediate statuses are
shown in Table 6, where the character X means that the corre-
sponding state value could be 0 or 1. The computing process
of I, is similar to IT; described in Subsection IV-A-1).

TABLE 6. Relationships between state values and intermediate status in
the SVNPS of storage units.

Vo4 V23 V22 V21 U1 Status
0 0 0 0 0 S92
0 0 0 1 0 s3
X X 1 1 0 S4
0 0 X X 1 S5
0 1 1 1 1 s6
1 1 1 1 1 S7

3) AN SVNPS MODEL FOR THE LOAD UNIT

Loads include important and non-important loads. In the
proposed SVNPS-based control strategy, the cutting in and
cutting out of non-important loads are allowable to ensure
continuous power supply for important loads and the maxi-
mum utilization of the energy, so as to guarantee the operation
stability of the microgrid. If PCC bus voltage U; fluctuates
in the allowable ranges and SOC of batteries is VH (SOC >
90%), then the non-important loads cut in. If U; is lower than
the allowed fluctuation voltage (U, < 90% rated voltage)
and SOC of batteries is VL (SOC < 10%), the non-important
loads cut out. In other cases, the cutting in/out of loads is not
considered. An SVNPS-based model IT3 for the load unit is
established, as shown in Figure 5. The relationships between
state values and intermediate statuses are shown in Table 7.
The computing process of I13 is similar to I1; described in
Subsection IV-A-1).

An SVNPS model for a load unit is a tuple 13 =

0,T,0,01,...,0m,6,n,syn, ip), where:

- 0 = {di,da,d3,d4,ds}, Oppir = {d1,do}, Oin =
{d3, da, ds},, where dj represents Us, d> indicates SOC
of batteries, d3, da, ds express the three statuses of the
load unit.

- T = {‘L’]], 712, 721, ‘L’zz}, where 711712 is the threshold
corresponding to di, 711 and 717 represent the upper
and lower limit of allowable voltage fluctuation, respec-
tively; 121722 is the threshold corresponding to d>, 121
and 17 indicate the lower limit of battery SOC in the L
and VH statuses, respectively.

- Q = {S17S29~--5S9}’ Q[ = {SZ,S3,...,S6}, QF =
{s7, 58, 59}.
- o1 = (s1,w1,v1, R1), where: (a) wi = {di,da};

(b) vi = @; and (c) the rules from R; are of type
s1wp — s;v,being v € {0, 1}4 representing the vector of
state values associated with an assignment of real values
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FIGURE 5. An SVNPS model for the load unit.

TABLE 7. Relationships between state values and intermediate status in
the SVNPS of load units.

V22 V21 V12 U11 Status
1 1 0 1 S2
X 1 0 0 S3
0 X 0 1 S4
X X 1 1 s5
0 0 0 0 s6

TABLE 8. Neurons in SVNPS model for the load unit.

Neuron Status Rule
o1 si.s; 017 ({s1(v11,v12,v21,v22) }, {d1 (111, T12),
7Pt da(Te1, Te2)}, s1d1d2 — Siv11V12V22V21v22)

o2 = ({s2(v11,v12,v21,v22)},

72 52,57 52011V12021V22 — 57d3)
o3 = ({s3(v11, v12,v21,v22)},

73 53,8 53V11v12V2122 — Sgd4)
o4 = ({sa(v11,v12,v21,v22)},

o 4,58 541101202122 — S8d4)
o5 = ({s5(v11, v12, v21,v22)},

75 55,58 55V11012V21v22 — Sgd4)
o6 = ({s6(v11,v12,v21,v22)},

76 56,59 S6V11V12021V22 — Sods)

o7 s7 o7 = (877 ds, {S7d3 — s7 (ds, Out)})

os S8 og = (887 ds, {88d3 — S8 (dg7 out)})

g9 S9 o9 = (s9,ds, {s9ds — sg (ds, out)})

(v(d1), v(d>)) to initial objects dy, d,. Table 8 shows the
status and rules in each neuron.

For2 < k < 6, o; (Sk, Wk, vk, Ri), where:
(@) wy = @; (b) v € {0, 1}4 represents the vector of
state values associated with an assignment of real values
(v(d1), v(d>)) to initial objects di, da; and (c) the rules
from Ry are of type sgvi — spw,, being n(vy) =
(s£, wp).

For7 <j <9, oj = (Sj, Wi, Vj, Rj), where: (a) if spvy —
Sf W;( is a rule of the intermediate neuron oy and s; = s¢
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then w; = wy; (b) vj = #; and (c) the rules from R; are
of type sjw; — sj(w;, out).

8 is the mapping from {0, 1}* onto Q; defined as follows:
8(1,1,0,1) = 52,8(X,1,0,0) = 53,8(0,X,0, 1) = 54,
8(X,X,1,1) = ss and §(0, 0,0, 0) = s¢ (see Table 6).
(Moreover, § is not an injective function).

1 is the mapping from {0, 1}* onto QF x Oy defined
as follows: n(1,1,0,1) s7, n(X,1,0,0)

sg, 1(0,X,0,1) = s, n(X,X,1,1) = s3 and
7(0,0,0,0) = s9. (Moreover, 1 is not an injective
function).

syn ={(1,2),(1,3),(1,4),(1,5),,6),(2,7), (3, 8),
4, 8), (5, 8), (6,9)}.
io = {7,8,9}.

B. POWER COORDINATION CONTROL BASED ON SVNPSS
The out power of each unit is associated with not only PCC
bus voltage and SOC, but also the statuses of other units in the
same microgrid. Thus, PCC bus voltage, SOC and statuses of
all the units should be considered to fulfill power coordination
control. The operation modes and statuses of each unit can
be obtained via the SVNPS-based models (I, 15, I13) built
in Subsection IV-A. However, the specific output power of
each unit is still unknown. So, this section aims at setting
the power output rules of each unit for power coordination
control considering operation stability of the microgrid. The
flow chart of power coordination is shown in Figure 6, where
charging/discharging rules of batteries are shown in Figure 7.

Next, main steps in Figure 6 is described as follows. Firstly,
the active power shortage AP is calculated via PCC bus
voltage. In this paper, it is agreed that the positive direction
of power flow is from the microgrid to the connected grid.
Thus, AP > 0 means that U, is higher than the rated voltage
and there is superfluous electricity in the microgrid. In this
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FIGURE 6. The flow chart of power coordination.
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FIGURE 7. The principle for charging and discharging of batteries.

case, batteries charge according to the status of SOC. If SOC
is high and the redundant power AP cannot be absorbed by
batteries, then non-important loads are cut in to consume the
electricity. After that, if AP still cannot be fully absorbed,
then PV power generation is limited to balance the power in
the microgird. Likewise, AP < 0 means that U, is lower than
the rated voltage and there is an electricity shortage in the
interior of the microgrid. In this case, it is needed to increase
the power supply of PV and storage units. If a PV unit works
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in the Lim status, then it should immediately switch to work
in MPPT mode. After that, if the power shortage is not solved,
then the storage units discharge to supply power. Besides,
if necessary, non-important loads could be cut out to ensure
power coordination of the microgrid.

V. SIMULATION AND ANALYSIS
This section displays the simulation and validation of the pro-
posed control strategy, as well as the comparison results with
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two other control strategies, i.e., traditional control strategy
without storage and traditional control strategy with storage.

A. TRADITIONAL CONTROL STRATEGY

WITHOUT STORAGE

The capacity parameters of microgrid units are shown
in Table 9. The output power of PV and load units in Figure 8
are used to predict the power of a typical summer day (from
10 am to 18 pm). Figure 9 is PCC voltage fluctuation curve
when the microgrid only contains PV and load units. In this
situation, the PCC point voltage can be calculated by Equa-
tion (1). In Figure 9, it can be seen that there is an intense
voltage fluctuation (beyond £5% of the rated voltage), which
will cause damage on the loads and affect the operation
stability of the microgrid.

TABLE 9. Capacity parameters of microgrid units.

PVI/kW PV2/kW Storage/kWh Loadl/kW Load2/kW
30 30 60 30 15
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FIGURE 8. Output power of PVs and loads.
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FIGURE 9. PCC voltage fluctuation curve.

B. TRADITIONAL CONTROL STRATEGY WITH STORAGE
Storage units could be used to control the stability of the
microgrid instantaneous power. The output power, loads and
batteries under this control strategy are plotted in Figure 10.
Working in MPPT mode is beneficial to improve the energy
efficiency for PV generation units. The initial value of battery
SOC is 75%, and the maximum charging/discharging power
of storage unit is 45kW.

The charging of SOC can be seen in Figure 11. In time
periods, from 10:00 am to 10:40 am and from 17:00 pm to
18:00 pm, PV power generation is low but the load demand
is high. Thus, battery discharging is needed to meet the
power supply. In this situation, the battery output power is
positive and there is a downward trend of SOC. In time
period, from 10:40 am to 12:00 pm, the storage unit is 0
and there is no charging for battery. In time period, from
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FIGURE 10. Output power of PVs, loads and batteries.

12:00 pm to 13:10 pm, due to the enhancement of light inten-
sity, PV units provide excessive electricity and the battery
is fully charged. After that, the system voltage will be high
because of the power generation redundancy.

2
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FIGURE 12. PCC voltage fluctuation curve.

The PCC voltage fluctuation curve is shown in Figure 12.
It indicates that the instantaneous power of the microgird can
be smoothed by the storage unit. However, there is still a
fierce voltage fluctuation due to the limited battery capacity.
Besides, frequency charging/discharging, empty or full volt-
age of SOC will result in a reduction of battery life.

C. OPERATION CONTROL STRATEGY BASED ON SVNPSS
The experiments based on the proposed strategy with
SVNPSs are shown in Figures 13 to 15. Figure 13 dis-
plays the power changing curves of polysilicon photovoltaic,
monocrystalline silicon photovoltaic, loads and batteries.
Figure 14 indicates the changing curve of SOC. Figure 15
is the result of the voltage fluctuation curve of PCC bus.

During time period 10 am to 11 am, PV power generation
is low, whereas the load demand and SOC of batteries are
high. In this case, the batteries discharge to supply power,
the output power of the batteries is positive and SOC has a
downward trend. It should be mentioned that, because of the
limitation on battery discharging power, this downward trend
is slower than that under traditional control strategy.
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FIGURE 15. PCC voltage fluctuation curve.

From 11 am to 13 pm, the output power of PVs increases
due to the enhancement of light intensity. At this moment,
batteries will be charged from the excessive power. The
output is negative and SOC displays an upward trend.
At 13:15 pm, the microgird still has power excess while SOC
reaches saturation state, which means that the batteries cannot
be recharged. Therefore, the loads are cut in to balance the
power. At 13:45 pm, the PV units are limited because there is
still excess of power after adding all the loads. At 16:00 pm,
the PV units are switched from limited mode to MPPT mode
since the PV power generation decreases with the weakening
light. Subsequently, the loads increase but the power cannot
be balanced with MPPT mode. In this condition, the batteries
will discharge and SOC will decrease. Figure 15 indicates that
the control strategy based on PCC bus voltage and SOC is
favorable to power balance of each unit and system voltage
quality.

The results, from Figures 8 to 15, with different control
strategies reveal that storage units can improve the active
power balance to some extent. However, there is still a violent
fluctuation in PCC bus voltage. The proposed SVNPS-based
control strategy can overcome this shortcoming and has the
following advantages: 1) adjusting output power of loads and
PVs, and 2) providing battery protection with a power limit.
Besides, the SVNPS offers an intuitive illustration based on a
strictly mathematical expression and provides a graphical and
parallel way for describing the complex modes and statuses
of PV and storage units.
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VI. CONCLUSIONS

An SVNPS is proposed in this article, and state values in the
SVNPS are used for system switching to different configura-
tions. Based on the SVNPS, an operation control strategy of
microgirds is presented to coordinate the power. The SVNPS
is used to deal with the multi-modes of different units in
the microgird by constructing unit SVNPS-based models and
then the output power is coordinated according to the opera-
tion statuses of the constructed SVNPSs. Finally, simulations
with different control strategies, i.e., traditional control strat-
egy without storage, traditional control strategy with storage
and operation control strategy based on SVNPSs, are per-
formed to validate the capability of the proposed strategy. The
objective of this article is proposing a new control strategy
and verifying the feasibility and effectiveness of the presented
method. In the future, works will be carried out to prove the
superiority of SVNPSs for energy management of complex
microgrids.
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