
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/222416898

Min-Max MPC based on a computationally efficient upper bound of the worst

case cost

Article  in  Journal of Process Control · June 2006

DOI: 10.1016/j.jprocont.2005.07.005

CITATIONS

34
READS

128

4 authors, including:

Some of the authors of this publication are also working on these related projects:

HYCON2 View project

CONFIGURA View project

Daniel R. Ramirez

University of Seville

57 PUBLICATIONS   853 CITATIONS   

SEE PROFILE

Teodoro Alamo

Universidad de Sevilla

240 PUBLICATIONS   4,675 CITATIONS   

SEE PROFILE

Eduardo F. Camacho

Universidad de Sevilla

389 PUBLICATIONS   12,603 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Daniel R. Ramirez on 19 November 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/222416898_Min-Max_MPC_based_on_a_computationally_efficient_upper_bound_of_the_worst_case_cost?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/222416898_Min-Max_MPC_based_on_a_computationally_efficient_upper_bound_of_the_worst_case_cost?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/HYCON2?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CONFIGURA?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Ramirez98?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Ramirez98?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Ramirez98?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Teodoro_Alamo?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Teodoro_Alamo?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Sevilla?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Teodoro_Alamo?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Camacho3?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Camacho3?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Sevilla?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Camacho3?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Ramirez98?enrichId=rgreq-b41434730df6bc462e68aea6d12f5f8c-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQxNjg5ODtBUzo2OTQ2NDMyOTM0MjU2NjZAMTU0MjYyNzI3NTM5OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Min-Max MPC based on a computationally efficient

upper bound of the worst case cost∗

D.R. Ramírez†, T. Alamo, E.F. Camacho and D. Muñoz de la Peña
Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla

Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n, 41092 Sevilla

Phone: +34 954487347, Fax: +34 954487340

email: {danirr,alamo,eduardo,davidmps}@cartuja.us.es

June 28, 2005

Abstract

Min-Max MPC (MMMPC) controllers [1] suffer from a great computational burden

which limits their applicability in the industry. Sometimes upper bounds of the worst pos-

sible case of a performance index have been used to reduce the computational burden. This

paper proposes a computationally efficient MMMPC control strategy in which the worst

case cost is approximated by an upper bound based on a diagonalization scheme. The

upper bound can be computed with O(n3) operations and using only simple matrix opera-

tions. This implies that the algorithm can be coded easily even in non mathematical oriented

programming languages such as those found in industrial embedded control hardware. A

simulation example is given in the paper.

Keywords: Predictive control, Minimax techniques,Uncertain linear systems.
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1 Introduction

In Min-Max MPC controllers [2, 1], the value of the control signal to be applied is found by

minimizing the worst case of a performance index (usually quadratic) which is in turn computed

by maximizing over the possible expected values of disturbances and uncertainty. Solving these

problems can be very time consuming as they are of the NP-hard kind [3, 4, 5]. Thus, the

implementation of this type of control is very difficult leading to a lack of experimental results.

Only a few applications to plants with slow dynamics [6] or complex simulated models [7] have

been reported. For moderate fast dynamics the min-max problem can be solved numerically

only when the number of extreme realizations of the uncertainty is relatively low. This is the

case when the prediction horizon is small or when a complexity reduction strategy like that of

[8] is used. When fast dynamics are to be controlled the min-max problem cannot be solved

numerically, and approximate solutions have to be used [9, 10]. However, these techniques

impose great rigidity in the controller parameters, as well as a certain degree of approximation

error.

Recently, the MMMPC control law has proven to be piecewise affine when a quadratic [11]

or 1-norm based criterion [12, 13] is used as the cost function. With these results, together

with those obtained when multiparametric mathematical programming is applied [12], explicit

forms of the control law can be built. However, the number of regions in which the state space

has to be partitioned grows with the prediction horizon in a combinatorial explosion. Thus,

storage requirements and searching time for the appropiate region can be very high for practical

values of the prediction and control horizons. A search tree strategy has been proposed to

reduce the searching time in the MPC context [14, 15]. If the process model or the controller

tuning parameters change, however, the computation of the regions has to be done again. This

field continues evolving and new and more elaborate robust predictive controllers based on

multiparametric programming have appeared in [16, 17].
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Often the computational burden issue is solved by using a bound of the worst case cost

instead of computing it explicitly [18]. The upper bound can be computed by using LMI tech-

niques such as in [19, 20, 21, 22, 23]. The LMI problems have a computational burden that

cannot be neglected in certain applications. Moreover, the interior point methods used to solve

the LMI depend on the initial solution and the time needed to converge is not always the same.

We consider in this paper linear systems with bounded additive uncertainties and a quadratic

criterion. In this case, computing the worst case cost implies the solution of a quadratic maxi-

mization problem with a computational complexity that is exponential with the prediction hori-

zon. In this paper an efficient upper bound of a quadratic maximization problem over a hyper-

cube is presented. It is based on simple matrix operations that can be performed very efficiently

and it is easy to implement in dedicated embedded control hardware. Within the MMMPC

context it can be used as a substitute for the worst case cost for systems in which there is no

computational power available to solve the LMI problems on line or in which it is difficult to

implement an LMI solver. Moreover, in different simulation examples the performance of this

strategy is very close to the one obtained using the LMIs and not very different from the one

corresponding to the exact worst case cost. On the other hand, as illustrated by the simulations

given in the paper, the computational burden of the proposed bound is much lower than that of

the LMIs and the one needed to compute the exact maximum.

The paper is organized as follows: section 2 presents the MMMPC controller. Section 3

presents the efficient upper bound on the quadratic maximization problem and section 4 presents

a performance analysis of the proposed bound compared to the LMI bound. A simulation

example is given in section 5. Finally, section 6 presents the conclusions.
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2 Min-Max MPC with bounded additive uncertainties

Consider the following state space model with bounded additive uncertainties [2]:

x(t +1) = Ax(t)+Bu(t)+Dθ(t) (1)

y(t) = Cx(t)

with x(t) ∈ R
dimx, u(t) ∈ R

dimu, θ(t) ∈ {θ ∈ R
dimθ : ‖θ‖∞ ≤ θm}, y(t) ∈ R

dimy. Here it will be

assumed (without loss of generality) that θm = 1. If this is not the case, matrix D can be scaled

to θmD. Consider a sequence u =
[

u(t)T · · ·u(t +Nu −1)T ]T of values of the control signal

over a control horizon Nu and θθθ =
[

θ(t)T · · ·θ(t +N −1)T ]T a sequence of future values of

θ(t) over a prediction horizon N. Furthermore, let J(θθθ ,u,x) be a quadratic performance index

of the form:

J(θθθ ,u,x) =
N

∑
j=0

x(t + j|t)T Q jx(t + j|t)+
Nu−1

∑
j=0

u(t + j|t)T R ju(t + j|t) (2)

where x(t + j|t) is the prediction of the state for t + j made at t when the future values of the

uncertainty are supposed to be given by the sequence θθθ ∈ Θ = {θθθ ∈ R
N·dimθ : ‖θθθ‖∞ ≤ 1}. On

the other hand Q j ∈ R
dimx×dimx, R j ∈ R

dimu×dimu are symmetric positive definite matrices used

as weighting parameters.

Min-Max MPC [1] is based on finding the control sequence u that minimizes J(θθθ ,u,x) for

the worst possible case of the predicted future evolution of the process state or output signal.

This is accomplished through the solution of a min-max problem like:

u∗(x) = arg min
u∈U

J∗(u,x)

s.t. Lu ≤ c+Fx
(3)

with

J∗(u,x) = max
θθθ∈Θ

J(θθθ ,u,x) (4)

with U ⊆ R
Nu·dimu, L ∈ R

nc×(Nu·dimu), F ∈ R
nc×dimx and c ∈ R

nc, (where nc is the number of

constraints). The linear constraints in (3) impose the robust fullfilment of the constraints on u
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and x [18]. As usual in all predictive control schemes, the solution of problem (3) is applied in a

feedback manner using a receding horizon strategy. Note that the results presented in this paper

are valid when using a semi-feedback approach [24, 25] in which the control input is given by

u(t) = −Kx(t)+ v(t) where the feedback matrix K is chosen to achieve some desired property

such as nominal stability or LQR optimality without constraints. The MMMPC controller will

compute the optimal sequence of correction control inputs v(t). Rewritting the state equation

of system (1) as

x(t +1) = ACLx(t)+Bv(t)+Dθ(t) (5)

it is clear that such semi-feedback MMMPC can be casted into problem (3) with ACL = (A−

BK).

Note that the model is linear on x, u, θθθ and the cost is a quadratic criterion. Therefore the

cost function can be rewritten as [2, 8]:

J(θθθ ,u,x) = uT Muuu+θθθ T Mθθ θθθ +2θθθ T Mθuu+2xT MT
u f u+2xT MT

θ f θθθ + xT M f f x (6)

where Mθθ is positive semidefinite. Therefore J(θθθ ,u,x) is convex on θθθ . As J∗(u,x) corresponds

to the maximization of a convex function on the hypercube Θ, the maximum is attained at least

at one of the vertices of Θ [26]. Thus, J∗(u,x) can be computed as

J∗(u,x) = max
θθθ∈vert{Θ}

J(θθθ ,u,x) (7)

In order to find the value of J∗(u,x) it is necessary to evaluate the function for all the vertices

of Θ. Taking into account that the number of vertices is 2N·dimθ it is clear that the problem can

only be solved in real time for small values of the prediction horizon and small dimensions of

θ (because this is a well known NP-hard problem).

A different strategy aimed to reduce the computational burden is proposed here. Instead of

minimizing J∗(u,x) in (3) an upper bound of J∗(u,x) is minimized. As it is shown in the follow-

ing sections this upper bound is computationally efficient as it is computed in polynomial time
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(the computational cost is O(n3) instead of O(2n)). The tradeoff is a slightly more conservative

control law, but, as illustrated in section 5, the performance will not be very different to that

obtained when computing J∗(u,x) exactly.

3 Upper bound for the quadratic maximization problem

In this section a procedure to efficiently compute an upper bound of the worst case cost is given.

It can be seen from (6) that

J∗(u,x) = max
θθθ∈vert{Θ}

θθθ T Sθθθ +2θθθ T p(u,x)+ r(u,x) (8)

where

S = Mθθ

p(u,x) = Mθuu+Mθ f x (9)

r(u,x) = uT Muuu+2xT MT
u f u+ xT M f f x (10)

Therefore, the problem of computing J∗(u,x) belongs to the following class of problems:

γ∗ = max
θ∈vert{Θ}

θ T Sθ +2θ T p+ r (11)

The following proposition introduces an equivalent quadratic maximization problem.

Proposition 1 Problem (11) is equivalent to the following augmented problem:

max




θe

θ



∈vert{ΘA}

[

θe

θ

]T [

r pT

p S

][

θe

θ

]

(12)

where θe ∈ R and ΘA is the augmented unitary hypercube, i.e.:

ΘA =

{[

θe

θ

]

, θe ∈ R, |θe| ≤ 1, θ ∈ Θ
}

.

6



Proof:

Problem (11) can be rewritten as :

γ∗ = max
θ∈vert{Θ}

[

1
θ

]T [

r pT

p S

][

1
θ

]

(13)

= max
θ∈vert{Θ}

[

−1
−θ

]T [

r pT

p S

][

−1
−θ

]

Note that if every vertex in vert{Θ} is multiplied by −1 then the resulting set of vertices does

not change (that is, vert{Θ} = {−θ : θ ∈ vert{Θ}}). Thus,

γ∗ = max
θ∈vert{Θ}

[

−1
−θ

]T [

r pT

p S

][

−1
−θ

]

= max
θ∈vert{Θ}

[

−1
θ

]T [

r pT

p S

][

−1
θ

]

(14)

The augmented problem (12) is equivalent to

max

{

max
θ∈vert{Θ}

[

1
θ

]T [

r pT

p S

][

1
θ

]

, max
θ∈vert{Θ}

[

−1
θ

]T [

r pT

p S

][

−1
θ

]

}

which taking into account equations (13) and (14) is equal to

max{γ∗,γ∗} = γ∗

therefore

max




θe

θ



∈vert{ΘA}

[

θe

θ

]T [

r pT

p S

][

θe

θ

]

= γ∗

Thus, the augmented problem (12) provides the same maximum as problem (11) and this com-

pletes the proof. �

The augmented problem can be rewritten as:

γ∗ = max
z∈vert{ΘA}

zT Hz (15)

where H ∈ R
n×n. Now suppose that T is a diagonal matrix such that T ≥ H, then:

zT Hz ≤ zT T z =
n

∑
i=1

Tiiz2
i ≤ trace(T )‖z‖2

∞ ≤ trace(T )

thus:

γ∗ ≤ trace(T )

7



Therefore a conservative upper bound of γ∗ can be found solving the following LMI problem:

σ∗ = min trace(T )

s.t.
T ≥ H
T diagonal

(16)

If H ≥ 0 this upper bound of γ∗ satisfies [27]:

γ∗ ≤ σ∗ ≤
π
2

γ∗

2σ∗

π
≤ γ∗ ≤ σ∗

This means that σ ∗ provides both an upper and lower bound. Moreover, the conservativeness of

the bound does not depend on the dimension of H. Thus, σ ∗ is an appropiate bound to be used

within a worst case MPC strategy as a conservative substitute of the worst case cost, i.e.:

J∗(u,x) ≤ min trace(T )

s.t.

T ≥

[

r(u,x) pT (u,x)
p(u,x) S

]

T diagonal

(17)

However, solving the LMI problem (17) is computationally demanding enough to pose a

problem when the sampling time is small and the dimension of H is moderately high. Further-

more, its implementation can be challenging in industrial hardware where complex numerical

libraries are seldom found. We propose another method to find a conservative upper bound of

J∗(u,x).

The goal here is to find the smallest (i.e. minimum trace) diagonal matrix T such that T ≥H.

The strategy is to obtain a diagonal matrix adding to H n− 1 semidefinite positive matrices of

the form vivT
i :

H + v1vT
1 + v2vT

2 + v3vT
3 + · · ·+ vn−1vT

n−1 = T

where T is a diagonal matrix. Thus the problem is to find vi, i = 1, · · · ,n − 1 such that T

is diagonal and the conservativeness of the bound is kept as low as possible. Suppose that

8



H =

[

a bT

b Hr

]

, a ∈ R and that we want to add v1vT
1 in such a way that:

[

a bT

b Hr

]

+ v1vT
1 =

[

d 0
0 Ĥr

]

, d ∈ R (18)

Once v1 is found, the process continues by choosing v2 such that Ĥr is also partially diagonalized

and so on. If v1 is chosen to be
[

α eT
]T

then v1vT
1 becomes:

[

α
e

]

[

α eT
]

=

[

α2 αeT

αe eeT

]

with α > 0. This implies that αe = −b thus e = −b
α , d = a+α2 and Ĥr = Hr + bbT

α2 .

The parameter α should be chosen to minimize the error introduced by the diagonalization

in the original augmented maximization problem. This error is:

zT v1vT
1 z = zT

[

α
− b

α

]

[

α −bT

α

]

z

The error is maximum when z turns out to be:

z∗ = sign
[

α
− b

α

]

(and also when it is of opposite sign). Taking into account that

[

α −bT

α

]

z∗ =

∥

∥

∥

∥

α
− b

α

∥

∥

∥

∥

1

(where ‖x‖1 is the 1-norm equal to the sum of the absolute values of the components of x), the

maximum error is
∥

∥

∥

∥

α
− b

α

∥

∥

∥

∥

2

1

The value of α that minimizes the maximum error can easily be computed by finding the value

that makes the derivative of
∥

∥

∥

∥

α
− b

α

∥

∥

∥

∥

1
= α +

1
α
‖b‖1

equal to zero. Such value is:

α =
√

‖b‖1 (19)

The procedure to compute the upper bound σu is summarized in the following steps:

9



Procedure 1 Procedure to compute σu(H) ≥ max
z∈vert{ΘA}

zT Hz.

1. Let T = H ∈ R
n×n.

2. for k = 1 to n−1

3. Let Hsub = [Ti j] for i, j = k · · ·n.

4. Compute α for Hsub =

[

a b
bT Hr

]

from (19).

5. Make vT
k =

[

α −bT

α

]

.

6. Make vT
e =

[

0 · · · 0 vT
k

]

∈ R
n

7. Update T by making T = T + vev′e.

8. endfor

9. Compute the upper bound from σu(H) =
n
∑

i=1
Tii.

By construction T ≥ H. Therefore, max
z∈vert{ΘA}

zT Hz ≤ max
z∈vert{ΘA}

zT T z = trace(T ) = σu(H).

That is, J∗(u,x) = max
z∈vert{ΘA}

zT
[

r(u,x) pT (u,x)
p(u,x) S

]

z ≤ σu

([

r(u,x) pT (u,x)
p(u,x) S

])

.

Note that only simple matrix operations are needed to compute the upper bound using the

procedure given before. This implies that the algorithm can be coded easily even in non math-

ematical oriented programming languages such as those found in industrial embedded control

hardware. This is relevant because a difficult implementation is a drawback when applying

complex control strategies in the industry.

Proposed strategy

The proposed control strategy will be to apply the solution of

u∗(x) = arg min
u∈U

σu

([

r(u,x) pT (u,x)
pT (u,x) S

])

s.t. Lu ≤ c+Fx
(20)

in a receding horizon manner, where p(u,x), r(u,x) and S are computed as in (9)-(10) and σu is

computed using procedure 1.

10



Note that procedure 1 runs for n−1 iterations each one with a computational complexity of

O(n2), thus it is an O(n3) algorithm. The matrix dimension n is in turn (N ·dimθ)+1, therefore

the number of necessary computations is roughly c1((N ·dimθ)+1)3. Instead of minimizing a

cost function that requires an exponential number of operations (roughly c2(2N·dimθ )), here it is

proposed to minimize an upper-bound of this cost function that can be evaluated in polynomial

time. The overall computational burden will be much lower as illustrated in the example given

in section 5.

Remark 1 Note that in procedure 1 the goal is to find a diagonal matrix T such that T ≥H ≥ 0.

The maximization problem max
z∈vert{ΘA}

zT T z will then be solved by σu =
n
∑

i=1
Tii. Suppose that at

a certain iteration of procedure 1 we have a partly diagonalizated matrix T ≥ H in which Hsub

of step 3 has all its elements nonnegative. Then max
z∈vert{ΘA}

zT T z = ‖T‖1 ≥ γ∗. Therefore, it

is not necessary to continue the diagonalization of T as max
z∈vert{ΘA}

zT T z is readily solved by

σu = ‖T‖1.

4 Performance analysis of the proposed bound

Here the accuracy of the proposed upper bound is discussed. The upper bound will be compared

with the LMI bound and the 1-norm of the matrix H, which is itself a very rough upper bound:

σ1 = ‖H‖1 =
N

∑
i=1

N

∑
j=1

|Hi j|

The 1-norm will be equal to the maximum when all the elements of z∗ are nonnegative. In the

following it will be shown that σu ≤ σ1.

Taking into account the block structure of H given in (18) the 1-norm of H can be computed

as

σ1 = ‖Hr‖1 +2‖b‖1 + |a|

11



On the other hand, the 1-norm after a diagonalization step can be computed as

σ2 =

∥

∥

∥

∥

∥

a+‖b‖1 0
0 Hr + bbT

‖b‖1

∥

∥

∥

∥

∥

1

≤ |a|+‖b‖1 +‖Hr‖1 +

∥

∥

∥

∥

bbT

‖b‖1

∥

∥

∥

∥

1
(21)

Taking into account that
∥

∥

∥

bbT

‖b‖1

∥

∥

∥

1
= ‖b‖1 it follows that

σ2 ≤ σ1 (22)

Thus, the diagonalization scheme proposed in section 3 provides a succession of improved

upper bounds.

Now both the proposed bound and the 1-norm will be compared with the LMI bound. Con-

sider figure 1 which shows the mean deviation of the proposed bound (solid plot) from the LMI

bound (computed as
( σu

σ∗ −1
)

× 100) as a function of the dimension of H. For this compar-

ison, a group of random positive definite matrices where the mean value of its non-diagonal

elements is zero have been generated1 (200 matrices for each dimension). It can be seen that

the deviation from the LMI bound grows with matrix dimension, as it can be expected from the

error introduced at each diagonalization step. Even though, it is noteworthy that for much of the

range needed in control applications (up to dim{H} = 30, which accounts for 1,073,741,824

vertices in Θ) the deviation from the LMI bound remains under 20%. Moreover, it can be seen

that the 1-norm is always worse (more conservative) than the proposed bound.

Another interesting property is that, taking into account remark 1, the deviation of the pro-

posed upper bound from the LMI bound depends on the mean value of the elements of H0, with

H = H ′
0H0. As illustrated by figure 2, the highest error is when the mean is around zero, quickly

dropping to very small values when the mean goes to positive or negative values. In MMMPC

control problems, as found by the authors through many simulations, the mean of the sum of the

elements of matrix H0 is generally neatly different from zero, although not all its entries share

the same sign. This means that the bound accuracy will be close to that of the LMI bound.
1These matrices are generated subtracting two uniformly distributed random matrices created using the Matlab

rand function. Then, every matrix is multiplied by itself transposed to make it positive semidefinite.
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Figure 1: Mean deviation from the LMI bound

plotted as a function of matrix dimension for

a group of randomly generated matrices (see

text for details). 1-norm dotted, proposed

bound solid.
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Figure 2: Mean deviation from the LMI bound

plotted as a function of the mean of the ele-

ments of H0 for a group of randomly generated

matrices of dimension between 20 and 50.

4.1 Computational burden of the upper bound

The proposed bound has lower computational burden than the LMI bound. Figure 3 shows the

speed-up factor (computed as flopsLMI
flopsproposed

, where flopsLMI and flopsproposed are the flops needed

to compute the LMI and proposed upper bounds respectively) for a group of random matrices

with different mean and dimensions2. Remark 1 has been taking into account when computing

the proposed bound. It can be seen that the proposed bound can be computed using many times

less floating point operations3 than the LMI bound. This can be exploited to apply worst case

control for systems with fast dynamics or to use hardware with low computational power.

2To make this comparison as fair as possible, the LMI bound has been obtained using the solver by F. Rendl that

can be downloaded from http://www.math.uni-klu.ac.at/or/Software. This solver, specific

for problem (16), proved to be very much efficient than the standard solver provided with the LMI Toolbox of

Matlab.
3The number of operations needed for computing each bound have been obtained using the Matlab flops func-

tion. The precision of the LMI solver was left to default.
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Figure 3: Speed-up factor (computed as flopsLMI
flopsproposed

) between the proposed upper bound and the

LMI bound for a group of randomly generated matrices with different mean and dimension.

It is noteworthy that as matrix dimension grows no clear trend is seen when the mean of

H0 is around zero. The computational cost for the proposed bound grows as O(n3) where n

is the matrix dimension. On the other hand, the interior point methods used for this class of

LMI problems are also O(n3) algorithms, hence the relatively constant speed-up factor seen in

figure 3 for zero mean matrices. Note however that the underlying constant in the number of

operations needed by the LMI solver is bigger, leading to the speed-up factor shown. On the

other hand, as illustrated in figure 3, the mean of the entries and the dimension of H0, where

H = H ′
oHo, affects the speed-up factor severely when this mean is different from zero. In this

case, in the light of remark 1, the proposed upper bound is computed much faster than the LMI

bound. In fact, when most of the entries of matrix H0 (and therefore H) share the same sign, the

speed-up factor between the proposed bound and the LMI bound grows progressively showing a

linear trend. This can be interpreted as an evidence that for those matrices, the proposed bound

tends to be O(n2) and not O(n3) which is the case when the mean is around zero.
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5 Simulation example

Consider the two-tank network shown in figure 4. For this process, liquid streams flow into

tanks 1 and 2 at respective volumetric rates F1, and F2; the outflow from each tank is assumed

to be proportional to the respective liquid levels h1 and h2 in each tank. The liquid leaving tank

2 is split into two with a fraction F exiting, and the remainder R pumped back to the first tank.

Thus, this is a two-input, two-output system, with the flow rates of the two inlet streams as the

two inputs, and the liquid level in each tank as the two output variables.

F
1


F
2


F
R


h
1


h
2


o
1
=a
1
h
1


o
2
=a
2
h
2


Figure 4: A two-tank network.

Let the section for tank 1 be 3 m2 and that of the second tank 2 m2. Moreover, assume

that the constants of proportionality are identical and given as a1 = a2 = 0.5 m2min−1 and that

40% of the amount of liquid leaving tank 2 is recycled back to tank 1. With these assumptions

the following continuous time state-space model can be obtained (see chapter 20 of [28] for

details):

ẋ =

[

−0.5
3

0.2
3

0.5
2 −0.5

2

]

x+

[ 1
3 0
0 1

2

]

u (23)

y =

[

1 0
0 1

]

x

15



A discrete time model has been obtained from (23) sampling at 0.2 minutes using a zero-

order holder. Figure 5 shows the results of the proposed controller applied to the two-tank

model. The set-point for the liquid level of each tank was 0.4 m and 0.5 m respectively. The

prediction and control horizons were N = 15 and Nu = 10 respectively. Note that being this

a two-input, two-output system the number of vertices to be considered is 230 instead of 215.

Furthermore, the number of decision variables in the optimization problem is doubled. The

weighting matrices were:

Q =

[

1 0
0 1

]

R =

[

12 0
0 12

]

An uncertainty of ±0.02 meters is considered to affect both liquid levels. Note that a random

noise of ±0.01 meters has been added to both levels. On the other hand, tank 1 suffers an

unexpected loss of liquid at sampling time t = 60 that reduces the level 0.1 meters. Finally, in

the simulation the following constraints were taken into account when computing the control

signal:

[

0
0

]

≤ x(k) ≤
[

0.6
0.7

]

,

[

0
0

]

≤ u(k) ≤
[

0.5
0.5

]

,

[

−0.05
−0.05

]

≤ ∆u(k) ≤
[

0.05
0.05

]

(24)

This example will be used to discuss how the increasing horizons affect the computational

burden of the proposed strategy compared to that of the original min-max problem4. Figure

6 shows the average, maximum and minimum speed-up (computed as
flopsoriginal
flopsproposed

) for different

values of the prediction horizon. It can be seen that even when the number of vertices is small

(i.e., N small) the speed-up is rather high. Moreover, as the prediction horizon grows the speed-

up increases exponentially. Thus, for a given hardware the user can pick the desired prediction

horizon from a wider range of admissible values. Note how the speed-up is clearly variable for

any given value of N. This is due to the different number of iterations of the numerical solver

4For both cases, the min-max problem was solved using the same numerical solver provided with fmincon

function of Matlab.
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Figure 5: Liquid levels and inlet flows for the proposed MMMPC (tank 1 solid plot, tank 2

dashed plot).

depending on the value of x and the constraints.

Furthermore, the computational burden of the minimization of the proposed upper bound is

lower than that of the minimization of the LMI bound. This is illustrated in figure 7 in which

the average, maximum and minimum speed-up over the LMI bound is plotted. Note that the

average speed-up grows in a linear trend that leads to a much lower computational burden for

typical values of the prediction horizon.

The accuracy of the proposed bound in the predictive control scheme proved to be very high.

Table 1 shows the deviation from the optimal cost obtained using the exact maximum and the

upper bound computed using the LMI solver. Different simulations using different values of

N have been made and the minimum, average and maximum deviations have been computed.

Whereas the maximum deviation from the real optimal cost can be noticeable for lower values

of N, it is quite remarkable that it tends to be smaller as the prediction horizon grows. Moreover,

the average deviation is much lower and also decreases with higher horizons. On the other hand,

the deviation from the optimal cost obtained with the LMI bound is always very small even at
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Figure 6: Maximum, average and minimum

speed-up over the original min-max problem

for different values of the prediction horizon.

Note that a logarithmic scale is used in the

vertical axis. Speed-up is computed at each

sampling time as
flopsoriginal
flopsproposed

.
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Figure 7: Maximum, average and minimum

speed-up over the minimization of the LMI

upper bound problem for different values of

the prediction horizon. Speed-up is computed

at each sampling time as flopsLMI
flopsproposed

.
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N Real (min) % Real (avg) % Real (max) % LMI (min) % LMI (avg) % LMI (max) %
4 2.88 19.3 44.2 0.00 0.44 4.74
5 1.69 17.8 43.9 0.00 1.22 4.76
6 1.07 14.7 42.7 0.00 2.18 4.77
7 1.19 11.1 36.97 0.00 2.5 5.47
8 1.03 12.2 27.1 0.00 2.76 7.21
9 0.27 5.59 25.5 0.00 2.21 7.44
10 n/a n/a n/a 0.00 2.17 7.7
15 n/a n/a n/a 0.00 2.43 9.71
20 n/a n/a n/a 0.00 1.88 10.3

Table 1: Deviation from the original MMMPC optimal cost and the LMI bound optimal cost

(minimum, average and maximum) for different values of the prediction horizon (N) in the

simulation example of section 5.

its maximum. Notice here that the deviation tends to grow with the prediction horizon. It is,

however, very small even for values of N = 20 (an average deviation under 5%, and a maximum

about 10%)5. Figures 8 and 9 illustrate the evolution of the deviation between the optimal costs

using the proposed bound and both the exact cost and the LMI bound cost. It can be seen that

the maximum deviation from the exact cost is when the state is very far from its desired value.

However, the optimal costs are very close when the state is nearer its desired state. On the other

hand, as expected from data in table 1, the optimal costs using the proposed bound and the

LMI bound are nearly the same through the entire simulation. Thus, from this example it can

be concluded that the proposed scheme is much more efficient, from a computational point of

view, than the original MMMPC and the LMI bound. Furthermore its accuracy is comparable

to that of the LMI bound. When the computational burden of the original min-max problem is

taken into account it seems that the little average deviation from the exact maximum is a price

very low for a much greater range of processes to which this type of control can be applied.

5Note that in this two input, two output system a prediction horizon N = 20 yields an augmented matrix of

dimension 41 in the maximization problem.
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Figure 8: Optimal cost for the original

MMMPC (dotted) and the proposed controller

(solid) for a simulation with Nu = 5, N = 9.
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Figure 9: Optimal cost when the upper bound

is computed using the LMI bound (dotted) and

the proposed bound (solid) for a simulation

with Nu = 5, N = 20.

6 Conclusions

An MMMPC based on an efficient upper bound of the worst case cost has been presented in

this paper. It has a much lower computational burden than other approaches based on LMI

techniques and can be implemented in dedicated industrial control hardware. The price to be

paid is a moderate increment in the conservativeness of the bounds obtained. However, its little

computational burden opens new fields of applications of MMMPC controllers.
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