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Abstract 
 
The traditional methods for the synthesis of reinforced alumina-based matrix composites with 

carbon nanotubes (CNTs) have presented serious difficulties for obtaining well dispersed and 

homogeneously distributed CNTs within the matrix. Besides this, the CNTs are typically found 

in the grain boundaries of the matrix. These features involve a non-optimal reinforcement role 

of the CNTs. With the aim of maximizing the efficiency of the reinforcement of the CNT, this 

work reconsiders a sol-gel based procedure for ceramic composites fabrication with a two-fold 

objective: to achieve a good dispersion of the CNTs and to promote the intragranular location of 

the CNTs. The mixing of precursors and CNTs has been developed under the presence of high 

power ultrasounds, followed by a rapid in-situ gelation that "freezed" the nanotubes inside the 

gel. The chemical and physical relationships between the ceramic matrix and the embedded 

reinforcing phase has been researched. First results confirm the success of the synthesis 

procedure for the preparation of alumina-based composite powders starting from a commercial 

boehmite sol and multiwalled carbon nanotubes. X-ray diffraction and Raman analyses 

confirmed the formation of the α-Al2O3 and the persistence of the non-damaged nanotube 

structure. N2 physisorption and electron microscopy were used to check the evolution of the 

nanostructure and to confirm the presence of intragranular carbon nanotube within the 
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polycrystalline powder. Therefore, the alumina-based composite powder prepared by this new 

procedure is a good candidate for the preparation of reinforced ceramic matrix composites. 

Graphical Abstract 

 

The new synthesis process based on the controlled gelation of 

boehmite and MWCNT achieves the intragranular location of 

the nanotubes inside the alumina grains 

 

Keywords Boehmite · MWCNT · α-Al2O3 · Ceramic Matrix Composite · Intragranular 
reinforcement 

Highlights 

• Boehmite sol was considered for α-Al2O3-based MWCNT composite powders 

• The average radii of the synthesized alumina grains are ~200 nm 

• The structure of the MWCNT is preserved throughout the synthesis process 

• A good and homogeneous dispersion of the MWCNT is achieved 

• The intragranular MWCNT can be found inside the alumina grains 

 

1 Introduction 

Ceramic materials have been a very fruitful field of research in the last decades due to their 

outstanding physical properties. Their high thermal stability, hardness and wear resistance, 

combined with their relative low densities and the chemical inertness upon a wide range of 

different environments promote applications for ceramic materials in a variety of technologies 

and in very different industrial sectors. Thus, they are currently present in high-temperature 

superconductors, gas sensors, thermal barriers, shields, cutting tools or tissue engineering, 

among other sectors [1–3]. However, the inherent fragility of ceramics has always hindered 

their use as structural materials, so most of the research efforts have been targeted to the 
increase of their mechanical properties, and especially, their fracture toughness. 

In this framework, the preparation of ceramic matrix composites (CMC) by the inclusion of 

fibers or particles or other embedded elements has been already tested as an strategy for 

toughening and mechanical enhancement [4, 5]. Besides, the development of low-dimensional 

carbon allotropes such as nanotubes, nanofibers or graphene nanoplatelets has motivated their 

consideration as reinforcing phase for the CMC.  Properties such as superior Young's modulus 

or tensile strength make them perfect candidates to be included into the ceramic matrix in order 

to overcome the previously mentioned mechanical constraint [6,7]. Hence, previous researches 
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have already reported an increase of the mechanical properties of CMC with carbon allotropes.  

[7–10]. Furthermore, it has been proved that embedded graphene nanoplatelets in CMC can act 

as bridges for the reduction of the crack propagation or as builders of tribofilms for wear 

protection [11–14]. 

However, there are also several reports questioning these claimed mechanical enhancements due 

to the introduction of these embedded phases in the CMC, where significant worsening of the 

mechanical behavior are remarked [15–18]. Basically, three are the features that cause the 

worsening of the mechanical properties, namely, (i) inhomogeneous distribution of the 

reinforcing phase at the nanometer scale, (ii) the inefficient location of the reinforcing phase 

within the matrix, and (iii) the weak link between them. Firstly, CNTs dispersion in stable 

suspensions is difficult due to their strong Van der Walls interaction that lead them to form 

bundles and entanglements [19]. This is an important point since a bad dispersion of the CNTs 

within the ceramic matrix leads to mechanical weakening. Besides, the presence of non-

dispersed graphene platelets forming aggregates in graphene-reinforced CMC have also 

exhibited residual pores and defects that reduced the mechanical resistance [20]. Secondly, if we 

take into account that grain boundaries play a major role in the physical properties of the 

ceramic materials, it is clear the paramount relevance of the type of junction between 

reinforcing phase and ceramic matrix [21]. In this regard, there are several investigations 

focused on how the reinforcing phases are embedded into the ceramic polycrystalline matrix. 

They concluded that the reinforcing phases are located around the grain boundaries [11, 13, 22] 

with the grain interiors being nearly completely depleted of CNTs. This feature severely limits 

the improvements achieved in fracture and wear properties. Finally, weak bonds between CNTs 

and ceramic matrix have been also stated as a reason for the unsuccessful CNT-based 

reinforcements [23], so the existence of close interactions between CNTs and alumina such as 

chemical bonds [24] is desirable. To sum up, a fully homogeneous dispersion of the reinforcing 

phase is not the only relevant structural feature for an efficient CMC reinforcement, but it is also 

of paramount importance where it is located and how it is bonded to the ceramic matrix.  

Up to now, colloidal processing, mixing powders or in situ growth are the most considered 

protocols for CMC fabrication. However, the fabrication of composites fulfilling the 

aforementioned structural pre-requisites deserves special attention to the preparation strategies, 

as it is, in fact, a major current challenge in the materials science. In this regard, large efforts are 

being invested in achieving homogeneous and stable liquid suspensions of low dimensional 

reinforcing phases [25, 26] to ensure homogeneous dispersion in the precursors. Moreover, 

though sol-gel method has been considered since decades for ceramic fabrication [27, 28], only 

very recently, it has been reconsidered for the fabrication of alumina-based CMC with CNTs  

[22] and some first hopeful evidences of the intragranular reinforcement have been already 

found [29].  The aim is now to achieve a good dispersion of the CNTs, thanks to the synthesis 

procedure based on liquid precursors with controlled pH and assisted by high-power ultrasounds 

[30], and to characterize the chemical and physical relationships between the ceramic matrix 

and the embedded reinforcing phase. In addition, this procedure may promote the intragranular 

location of the CNTs as they are present since the very first steps of the ceramic grain 

formation. Also, it may enhance the formation of chemical bonds between CNTs and the 

metallic oxide by using functionalized CNTs and the use of metallic hydroxides or alkoxides 

[22]. In this work, the structural features of the different steps of the fabrication of α-Al2O3 

matrix composites with CNTs by the sol-gel method are researched; that is, the nano- and 

microstructure of the as-prepared dry gel, the calcined aluminum oxide and the polycrystalline 

powder prior to the sintering were studied by X-ray diffraction, thermogravimetry, Raman 

spectroscopy, N2 physisorption and electron microscopy, to follow up the hybrid particle 
formation, and to confirm the intragranular inclusion of the CNTs into the alumina grains. 

 

2 Materials and Methods 
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2.1 Synthesis of the gels 

The preparation route is based on the procedure reported by Barrera-Solano et al. [28]. It started 

with the direct mixing of a commercial boehmite (AlOOH) sol (Nyacol Nano Technologies, 

Inc., density = 1.14 g/cm
3
) and the required amount of OH-functionalized multiwalled carbon 

nanotubes (MWCNT, Nanostructured & Amorphous Materials, Inc., purity > 95%, short length 

2.5 µm, inner diameter = 3-5 nm, outer diameter = 8-15 nm, specific surface area > 233 m
2
/g, 

bulk density 0.36-0.42 g/cm
3
) under the application of high power ultrasounds (15 min, 50 W) 

to achieve their maximum dispersion into the sol. The quality of dispersion was firstly estimated 

with the naked eye. Once MWCNT bundles cannot be optically distinguished, NH3
(aq)

 (Panreac, 

pH=11.6) was slowly added under sonication, and homogeneous gelation occurs in a matter of 

minutes. In this step we had a wet boehmite gel in which MWCNT were embedded in the 

porous structure. After two days at 40°C in a stove, we obtained a dry fractured xerogel which 

was milled in an agate mortar and sieved < 212 µm. Boehmite-MWCNT composite powders 

were labeled "BSEX", where X is the weight percentage of MWCNT in the final alumina 

composite powder. In Fig. 1, the complete process is sketched. 

Finally, the powders were calcined under an Ar atmosphere for 1 h (heating ramp: 10 ºC/min) at 

two different temperatures: 600 ºC, to promote the dehydroxylation temperature of the 

aluminum hydroxides and to remove moisture and other possible unwished traces present in the 

as-prepared gels; and 1200 ºC, the sintering temperature typically considered in the ceramic 

composite preparation procedure, above the crystallization temperature of the stable crystalline 

phase of the alumina (α-Al2O3). Calcined samples were labeled with the suffix "@600" or 

"@1200", respectively. The sintering of these powders by Spark Plasma Sintering (SPS) to 

fabricate ceramic composites and their mechanical characterization are out of the scope of this 
work and will be the subject of a future paper.  

2.2 Characterization techniques 

Crystalline phases present in the samples were identified by X-ray Diffraction (XRD Bruker 

diffractometer D8I-90 Cu-Kα) by standard powder method. Boehmite commercial sol was dried  

on a hot plate at 80 ºC for XRD characterization. Thermogravimetric analyses (TGA) in flowing 

Ar or oxidative atmosphere (air) were considered to evaluate the chemical composition of the 

samples. In a standard TGA procedure (STD Q600, TA Instruments), samples were heated at 10 
o
C/min from room temperature up to 1000 

o
C under an air flux (100 mL/min). Special attention 

was paid to the measurement of the mass losses within the thermal range corresponding to the 

dehydroxylation of the boehmite (200-450 ºC)  and within the thermal range in which MWCNT 

burn out under an oxidative atmosphere (450-650 ºC). Specific sample containing 10 wt.% of 

MWCNT was synthesized in order to check the reliability of the carbon contents. For the sake 

of comparison, TGA curves were normalized at the sample masses at 200 ºC for stoichiometric 

calculations. Micro-Raman spectra were collected at room temperature using a Horiba Jobin-

Yvon LabRam HR800 coupled with a CCD camera and excited by a Nd:YAG laser (λexc = 532 

nm). A microscope with a 100x objective lens (laser spot size of about 1 µm) was used to focus 

on the sample and its resolution was set to 0.35 cm
−1

. The Raman spectrometer was calibrated 

using the 520 cm
−1

 line of a Si wafer. Spectra were recorded in the 100-3000 cm
−1

 region. In 

typical measurements we used 3 seconds and 40 scans in extended mode. All spectra  were 

analyzed by using commercial software 

 

 

 
 

Fig. 1 Sketch of the sol-gel synthesis procedure, starting from 

commercial boehmite (AlOOH) sol and functionalized MWCNT. The 

controlled addition of aqueous NH3 prompts the fast gelation 
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The nanostructural features of the samples were investigated by N2 physisorption experiments 

(Micromeritics ASAP2010, working at 77 K and equipped with pressure transducer resolution 

of 10
-4

 mm Hg). Prior to N2 physisorption analyses, samples were degasified at 150 
o
C for 2 h 

under a N2 flux. Specific surface area, specific pore volume, pore size and pore size distribution 

(PSD) were determined considering standard models for the analysis (BET and BJH, 

respectively). Scanning electron microscopy (SEM-FEG, Hitachi S5200) using an acceleration 

voltage of 5 kV, and transmission electron microscopy (TEM, Philips CM-200) were also 

considered to research the nanostructure of the samples. Characteristic sizes from micrographs 

were measured after analyses of tenths of images with the help of ImageJ software and 
uncertainties are given by the standard deviations.  

  

3 Results and Discussion 

3.1 X-ray diffraction 

The considered precursors commercial boehmite sol and MWCNT were analyzed to resolve the 

structural evolution of the samples throughout the synthesis of the powders. Firstly, as-received 

MWCNT (Fig. 2) exhibited two broad bands at typical graphite reflections, corresponding to 

interplanar distances 3.40 Å and 2.06 Å, as expected for MWCNT. Besides, MWCNT@600 and 

MWCNT@1200 exhibited identical XRD patterns (not shown) along the calcination processes, 

which confirms that the structure of the MWCNT is kept constant upon the calcination 

treatments under inert atmosphere. In addition, the solely presence of crystalline boehmite 

(aluminum oxyhydroxide) in the boehmite commercial sol was also verified (pattern not 

shown). 

On the other hand, the diffraction patterns of all the gel powders signatures were overlapped, 

regardless the content of MWCNT. As an example, in Fig. 2 identical patterns corresponding 

samples BSE0 and BSE5 are plotted. Thus, the addition of the MWCNT to the liquid precursor 

of the gel did not alter the boehmite structure. The crystalline signatures were similar to the 

signature found in the solid phase present in the precursor boehmite sol, revealing boehmite as 

the only crystalline phase present in these samples. For the carbon contents considered in this 

work, the broad peaks observed in the pure MWCNT were not detected in neither as-prepared 
nor calcined composites because the amount of MWCNT was too low. 

 

 

 
Fig. 2 XRD patterns from samples series as- received (MWCNT), as-prepared 

(samples BSE0 and BSE5), and after calcination at the indicated temperatures 

(600 ºC and 1200 ºC). Major peaks were identified according to the following 

pattern diffraction files: Graphite (PDF: 00-003-0401); Boehmite (AlOOH, 

PDF: 00-005-0190); Aluminum oxide (γ-Al2O3, PDF: 01-077-0396); 

Corundum (α-Al2O3, PDF: 00-043-1484). From bottom to top, the evolution of 

the phases can be seen, from the starting Al-hydroxyde, to transition alumina, and 

to subsequent corundum formation. 
 

 

The calcined samples BSE0@600 and BSE3@600 also exhibited coincident patterns. In this 

case, poorly crystallized aluminum oxide could be identified. An estimation of the measured 

interplanar distances and the relative intensities gives the following values: 1.98 Å (100%), 1.40 

Å (96%), 2.28 Å (46%), 2,80 Å (22%), similar to the signature of the γ-Al2O3, as expected for 

boehmite calcined at 600 ºC [31]. These results confirmed the dehydroxylation of the starting 

boehmite below 600 ºC. Finally, the corresponding patterns of the samples calcined at 1200 ºC 
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presented a clear corundum (α-Al2O3) signature. In Fig. 2 the patterns of samples BSE0@1200 

and BSE5@1200 are plotted. Considering these results, the introduced synthesis procedure is 

confirmed as an easy strategy for the fabrication of powders of α-Al2O3-based ceramic matrix 

composites with embedded MWCNT.  

3.2 Thermogravimetric analyses  

Thermal analyses of the non-calcined samples were performed by TGA in flowing Ar (data not 

shown). The TGA curve of the as-prepared gels exhibited a major weight loss below 500 ºC 

corresponding to the dehydroxylation of the boehmite gel . The measured weight losses ranged 

from -17.0 %, in the case of the pure alumina sample, to -16.5 % and -16.0 % in the case of 

samples BSE5 and BSE10, respectively. Moreover, no significant weight loss was observed in 

the as-received MWCNT. These values matches stoichiometrically the weight loss due to the 

dehydroxylation of the pure boehmite (-15%), and those of the boehmite composites (within a 
margin of error below 2%), also according to the composition revealed by XRD (Fig. 2). 

 

Fig. 3 TGA analyses under oxidative atmosphere of samples loaded 

with 0 wt.%, 5 wt.% and 10 wt.% of MWCNT, previously calcined at 

600 ºC under inert atmosphere. Indicated weight losses due to the 

burnout of the carbon of the samples are in very close correspondence 

with the expected carbon contents. 

On the other hand, TGA analyses under oxidative atmosphere were performed to check the 

carbon content of the samples. To facilitate the quantification of the phases, a specific sample 

containing 10 wt.% of MWCNT was specifically prepared. The results of the TGA analyses in 

samples calcined at 600 ºC are plotted in Fig. 3. It should be kept in mind that calcinations of 

the samples were performed under inert atmosphere in all cases to remove water from boehmite, 

whereas in this case, TGA of calcined samples were performed in air (oxidative atmosphere) in 

order to permit carbon burnout. Thus, the absence of significant weight loss in the pure alumina 

sample (BSE0@600) between 400 ºC and 700 ºC, as a reference sample can be compared with 

the weight losses of the BSE5@600 and BSE10@600 samples, with a theoretical carbon 

content of 5 wt.% and 10 wt.%. These two samples exhibited well-defined 5.1 % and 10.2% 

weight losses, respectively, due to the carbon burnout, confirming the good reliability of the 
synthesis procedure regarding the MWCNT content.  

3.3 Raman spectroscopy  

Raman spectroscopy provides valuable information about the crystalline structures of the matrix 

and presence of possible disorder or defects in the carbonaceous phases. Firstly, Raman spectra 

for alumina sample series are shown in Fig. 4-top. The as-prepared sample (BSE0) shows the 

features typical of polycrystalline boehmite, with very well defined bands peaking at 369, 497, 

676 and 1053 cm
-1

 [32]. In contrast, the spectrum for the calcined BSE0@600 exhibited a flat 

spectrum with a very important background (and definitely related to the luminescence centers) 

[33]. At the same time, an occurrence of weak features merging up from the continuum is 

observed, which must be related to the presence of alumina transition phases such as γ-Al2O3, as 

revealed by XRD analysis (Fig. 2). Finally, for the BSE0@1200, the Raman signature 

correspond with that of well-crystallized disoriented polycrystalline α-Al2O3 with the major 

peaks located at the expected frequencies 378, 418, 432, 578, 645 and 751 cm
-1

 [22, 32, 34]. 

Again, this characterization is in complete coherence with XRD results (Fig. 2). 

Fig 4 Typical Raman spectra excited with a Nd:YAG laser (λ = 532 nm) 

for the sample series: top, alumina BSE0 samples; middle, MWCNT and 

bottom, composites BSE5, as-prepared and calcined in Ar atmosphere at 

indicated temperatures. The stars point the observed boehmite signature 

in the as-prepared BSE0 and BSE5 samples, and alumina signature in the 
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Ar-calcined composites BSE0@1200 and BSE@1200. Spectra were 

normalized and shifted along the vertical axis for clarity. Insets in bottom 

panel show magnifications of indicated low-frequency areas 

Secondly, the spectra shown in Fig. 4-middle correspond to the pure as-received MWCNT and 

after calcinations. All of them exhibit typical features of MWCNT, namely, (i) the absence of 

visible peaks at low frequencies corresponding to Radial Breathing Modes, as expected for 

MWCNT with inner radius above to 2 nm [33, 35–37]; (ii) the strong peak located around 1348 

cm
−1

 (called D band), which is assigned to the presence of disorder in graphitic materials and a 

measure of it; (iii) the strong peak located around 1588 cm
−1 

(called G band), which indicates 

high crystalline graphitic layers and is caused by the tangential stretching modes (in plane 

vibrational modes) and is often considered as a good measure of the graphitization of the 

sample; and (iv) the presence of a well-defined band around 2687 cm
-1

 (called G’), which is a 

second-order harmonic of the D-band. This band is often used as indicative of the presence of 

long-range order in the sample. Thus, considering the similarities between the set of three 

Raman spectra of the MWCNT samples, it can be stated that the structure of MWCNT is 
conserved during the whole thermal processes. 

Finally, on the Fig. 4-bottom, the typical Raman features of the boehmite-MWCNT and 

alumina-MWCNT composites can be observed. The strong signal of the MWCNT present in all 

the composites reveal identical features as observed for the MWCNT alone. Besides, the 

boehmite revealed by XRD gave a comparatively weak signature in the as-prepared sample at 

low frequencies (inset in Fig. 4-bottom, 359 cm
-1

), which is found slightly shifted as a 

consequence of a different environment surrounding the boehmite due to the presence of 

MWCNT. On the contrary, no signals of γ-Al2O3 or transition alumina were observed in sample 

BSE5@600, as expected. And, in the case of sample BSE5@1200, the Raman spectrum 

exhibits, comparatively, also a very weak peak attributable to the α-Al2O3 observed by XRD 

(418 cm
-1

, inset in Fig. 4-bottom), which confirms the phase transition from boehmite to α-
Al2O3 as a function the calcination [31, 34]. 

 

 
Table 1 Intensities ID/IG and IG’/IG ratios for 

Raman peaks in as produced and Ar annealed 

MWCNT and Alumina/MWCNT composites  

Sample ID/IG IG'/IG 

MWCNT 1.26 0.27 

MWCNT@600 1.29 0.32 

MWCNT@1200 1.10 0.37 

BSE5 1.19 0.29 

BSE5@600 1.37 0.32 

BSE5@1200 1.18 0.43 

 

 

Besides, it is worthy to remark that Raman spectra for all MWCNT samples show a relatively 

intense D band and a G band of lower intensity, which is a common feature of a highly 

defective carbon nanotubes [36], and typically observed in functionalized MWCNT. As 

reported in the literature, a decrease in the ID/IG ratio is often an indication of the quality of 

nanotubes, meaning less defective nanotubes or the presence of less amorphous carbon in the 

sample [37]. However, it has been found some differences in the position and intensities of the 

D band as a function of the excitation wavelength, which make difficult to standardize and 

compare ID/IG ratios. Actually, it turns out that the assessment of the IG’/IG ratio is a much better 

indicator of the crystallinity in MWCNT as the defects would reduce the double resonance 
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process resulting in the decrease of the G’ band. We have computed both ratios ID/IG and IG’/IG 

for all MWCNT and BSE5 samples (Table 1). In the case of the set of MWCNT, ID/IG ratio 

exhibits no defined trend, while IG’/IG ratio increases from 0.27 to 0.37 upon calcination, 

suggesting a decrease in the disorder in our carbonaceous structures. That is, the higher the 

temperature of the thermal treatment, the higher the growth of the crystallinity [37]. Finally, in 

the case of the set of BSE5 samples, while ID/IG shows no well-defined trend, IG’/IG behaves the 

same as MWCNT, confirming the decrease of defects in the MWCNT embedded in the 
composite powder.  

3.4 Nanostructural analyses by N2 physisorption 

As-prepared and calcined samples were analyzed by nitrogen physisorption experiments in 

order to reveal the representative nanostructural features. The values of the most relevant 

parameters are listed in Table 2. The analyses of the as-received MWCNT and calcined 

MWCNT confirmed that the calcination under inert atmosphere does not affect the 

nanostructure. Though SBET results are quite lower than the value supplied by the manufacturer, 

considering the nanotube dimensions and their uncertainties, they are close to the lower limit of 

the range of the estimated specific surface area (159 m
2
/g), and suggest that the average inner 

and outer diameters are close to 3 nm and 15 nm, respectively. Moreover, specific porosity 

values can be overestimated given that pure MWCNT powder may promote the agglomeration 

of single nanotubes and the formation of ropes or bundles with nanometric porosity in within. 

On the other hand, in the light of the results of the as-prepared sample series, it can be affirmed 

that the characteristic values of the nanostructure parameters of the boehmite gels remain almost 

constant regardless the MWCNT content. Adsorption-desorption isotherm plots revealed type 

IV isotherm curves in all cases, corresponding to mesoporous structures. Finally, the 

nanostructure parameters of the calcined composites exhibit a reduction of more than one order 

of magnitude in almost all parameters, coherently with the expected vanishing of the 

nanostructure due to thermal treatment of the gel. 

Regarding to the composite BSE5@1200, its expected values SBET and VP can be calculated by 

a weighted combination of the pure boehmite gel and pure MWCNT values (Table 2). In 

addition, the relative discrepancy between experimental values and expected values are also 

shown in Table 2. The very low discrepancy for as-prepared samples indicates that they can be 

described as a pure weighted combination of the pure alumina sample and the pure MWCNT. 

However, calcined composite BSE5@1200 cannot be described like that as the discrepancies 

are significantly much higher. Thus, regarding to the nanostructure, this calcined sample cannot 

be described as just the combination of the weighted combination of both involved phases. 

Instead, they suggest the existence of a closer structural relationship in such a way that nitrogen 

is not capable to access to some structural features that are available in the samples 

BSE0@1200 and MWCNT@1200.  

 

 

 

Table 2 Specific surface area obtained from BET analyses (SBET) and 

specific porous volume (VP) of the different sample series obtained by 

nitrogen physisorption experiments. The superscript “*” stands for 

expected values for composites, calculated from the weighted combination 

of pure alumina sample and pure MWCNT experimental results, and 

“discr.” stands for relative discrepancy between experimental data from 

composites and calculated expected data. “R
est

” stands for estimated 
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average radii of the basic building particles of the structure derived from 

SBET. (-) no relevant data. 

Samples SBET (m
2
/g) R

est
 (nm) VP (cm

3
/g) 

MWCNT 188 - 1.18 

BSE0 173 5.7 0.32 

BSE1 
BSE1* (discr.) 

168 
173 (3%) 

- 
0.31 

0.33 (6%) 
BSE3 
BSE3* (discr.) 

168 
174 (3%) 

- 
0.33 

0.35 (5%) 
BSE5 
BSE5* (discr.) 

177 
174 (2%) 

- 
0.34 

0.36 (7%) 

MWCNT@1200 174 - 1.00 

BSE0@1200 3.80 198 0.02 

BSE5@1200 
BSE5@1200*(discr.) 

16.9 
12 (27%) 

- 
0.15 

0.07 (53%) 

 

The PSD curves (Fig. 5) show the distribution of porosity measured by nitrogen in the samples 

calcined at 1200 ºC. Firstly, the bimodal distribution observed in MWCNT@1200, similar to as-

received MWCNT (not shown), reveals that the diameter of the inner space of the nanotubes is 

slightly higher than 3 nm in average (in coherence with estimation from SBET result, as 

explained before). In addition, the high porosity centered in the large pore range above 30 nm in 

size is an artifact due to the aggregation of the MWCNT. The alumina samples BSE0@1200 

and BSE5@1200 presented very low PSD curves due to the vanishing of the nanostructure by 

calcination, as expected. Moreover, the expected PSD of BSE5@1200*, obtained as a weighted 

combination of BSE0@1200 and MWCNT@1200 experimental curves, is also plotted in Fig. 5. 

Interestingly, the porosity below 5 nm corresponding to the inner space of the MWCNT that 

should be observed in BSE@1200* has almost disappeared in the actual BSE5@1200 

composite. This result suggests the idea that the extremes of the nanotubes are located inside 

alumina grains, making inner nanotube space inaccessible for nitrogen molecules. 
 

Fig 5 Pore Size Distributions (PSD) from nitrogen 

physisorption experiments, for sample series calcined 

at 1200 ºC, and expected PSD for composite 

BSE5@1200 calculated from weighted combination 

of BSE0@1200 and MWCNT@1200 
 

Finally, as a rough approach, the average particle size, assuming a very simplified model of 

spherical particles with radius R for the boehmite or alumina matrix, can be estimated. Thus, for 

a bulk sphere of density ρ, volume V, mass M and surface S, the specific surface area (SSA) is 

given by Eq. 1: 

SSA=
S
M=

S
ρV=

4 πR
2

ρ
4
3 πR

3

    [eq. 1] 

Assuming the experimental value SBET as the SSA, eq. 2 is obtained:  

       

Rest=
3

ρSBET     [eq. 2] 
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...where ρ corresponds to the boehmite density in the case of as-prepared samples, and to the 

alumina density for calcined samples. No R
est

 was calculated for composites given that the 

contribution of the embedded MWCNT has to be removed. The estimated values disclose an 

increase of almost two orders of magnitude of the particle radii, obtaining in the case of the 

calcined α-Al2O3 powder particles of ~ 400 nm in size. 

3.5 Electron microscopy 

The scanning and transmission electron microscopies helped us to find out the 

nano/micrometric and sub-micrometric structure of the samples and to assess the quality of the 

dispersion of the MWCNT population. The SEM micrographies of the as-prepared samples 

(Fig. 6-left, center) show typical wrinkled texture of the nanoporous gel where separated 

MWCNT can be clearly identified. The MWCNT are typically embedded in the boehmite gel 

(Fig. 6-center), which exhibit the nanosized features revealed by N2 physisorption. In the 

calcined sample BSE5@1200 (Fig. 6-right), a dendritic structure was observed with a 

characteristic size of hundreds of nm. In this sample,  a considerable amount of MWCNT could 

be found emerging from inside the alumina grains (pointed by the arrow in Fig. 6-right), 
confirming the intragranular location of many nanotubes. 

 

Fig 6 Scanning electron microscopy images for BSE5 as-prepared (left, 

center), and BSE5@1200 (right). Scale bar represents 500 nm in all 

cases. Arrows point to individual MWCNT  

On the other hand, TEM images (Fig. 7-left) accurately reveal the boehmite nanostructured gel 

in sample BSE5 (as-prepared), and the dispersed nanotubes within the nanoporous structure. 

Though bundles have been found, a reasonably good but also improvable dispersion has been 

achieved with this synthesis process. The basic building blocks of the boehmite gel exhibit the 

characteristic orthorhombic shape. The average size is 25 ± 8 nm x 7 ± 3 nm, yielding a 

characteristic radius of R = 7 ± 2 nm, in complete coherence with N2 physisorption estimations. 

Besides, the significant differences in the nanotube outer diameter of the nanotubes can be seen. 

An estimation of the average diameter could be directly performed in tenths of TEM images 

(e.g., Fig. 7-center) yielding an average outer diameter of 20 ± 7 nm, as typically reported in the 

literature [38]. 

 

Fig 7 Transmission electron microscopy images for BSE5 as-

prepared (left), BSE5@1200 (middle), and MWCNT (left) 

An apparent increase of the size of the particles is evident due to calcination. Thus, in calcined 

sample BSE5@1200 (Fig. 7-right), grains of typically 200 - 400 nm in size, are seen 

everywhere. Nevertheless, smaller particles are still present, suggesting that longer calcination 

process may be necessary in order to obtain a more homogeneous alumina grain size 

distribution. Finally, the main target of this research was to synthesize composite powders in 

which the intragranular location of the MWCNT inside the α-Al2O3 grains could be 

corroborated in order to encourage the intragranular reinforcement of the sintered alumina-

based ceramic. It was already explained how the nanotubes were embedded inside the fuzzy 

boehmite as-prepared gel. After calcination (Fig. 7-right), it can be confirmed that the 

coalescence of the boehmite gel particles promotes the embedding of the MWCNT inside the α-
Al2O3 grains.  
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4 Conclusions 

1. The synthesis procedure from boehmite sols is a cheap, simple and efficient route for the 

fabrication of alumina-based ceramic matrix composite powders.  

2. The MWCNT were freezed in the nanostructure of the boehmite gel. Nevertheless, the 
dispersion of the MWCNT has to be optimized. 

3. Calcination of the gel powders involved the formation and growth of alumina grains in 

presence of the MWCNT. The intragranular presence of a considerable amount of MWCNT was 

achieved, as shown by electron microscopy and nitrogen physisorption. 

4. The structure of the MWCNT was kept undamaged along the calcination processes. 

5. Therefore, the BSE route is confirmed as a solid candidate for the design of new efficient 
synthesis procedures of ceramic matrix composites CNT-based composites. 
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