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Abstract

The increasing demand for energy from renewable sources is entailing the development of technologies
oriented to increase the pro�tability of such projects and thus the attractiveness for potential investors.
Wind power constitutes one of the most relevant renewable energy sources; however, the costs of the wind
farms associated with Operations & Maintenance are prominent along the life-cycle. This paper proposes
an approach intended to reduce these costs and lower the Levelized Cost of Energy. In this context, it is
presented an opportunistic maintenance policy based on more accurate reliability estimates of the wind
turbines components. The reliability of the components is estimated through a model based on Arti�cial
Neural Networks that dynamically calculates the impact of operational conditions on the failures of the
wind turbines. The approach has been validated through a case study based on real �eld data which
proposes a multi-objective optimization of the maintenance strategy for the life-cycle of a wind farm.
The obtained results provide interesting �ndings from the perspective of wind farms investors, operators,
and owners.

Keywords: Wind energy, Maintenance management, Life-cycle, Arti�cial Neural Network, Operational
context

1. Introduction

The deteriorating environment along with global warming and the shortage of fossil fuels is a current10

issue rising pressure levels in governments around the world (and in the European Union, EU) [1]. These
concerns are propitiating policies like binding targets on greenhouse emissions and are urging a shift
towards renewable energy sources [2, 3]. The attention drawn by renewable energy has increased over
the recent years nurturing an important growth that has been especially prominent in the wind energy
sector [4, 5]. For instance, in the EU, wind power installed more capacity than any other form of power15

generation in 2018, rising from 12% in 2017 to 14% of covered energy demand [6]. However, to keep up
with the increasing demand for renewable and a�ordable energy, the pro�tability of wind energy projects
should be guaranteed by reducing the Levelized Cost of Energy (LCoE) to its minimum [7]. In the
literature, a considerable amount of works aimed at reducing the LCoE by addressing the Operations
and Maintenance costs (O&M), see for instance [8�10] among other works which will be later on reviewed.20

The costs associated with O&M are known to be prominent [11, 12]. They may account for 12-30%
of onshore wind farms (WFs) rising up to 32% in o�shore projects [13, 14]. These costs are uncertain
and in�uence the economic feasibility of wind energy projects; a potential investor will rather allocate
resources in a project not susceptible to risks [15]. In this context, to increase the cost-e�ectiveness of
WFs it is necessary to reduce the cost derived from O&M activities [16, 17]. Nonetheless, the prob-25

lem of the present objective of reducing the LCoE by cutting the O&M costs is a two-fold challenge
[18]. If maintenance activities are insu�cient, the failure rate will increase lowering system's reliability.
Otherwise, if maintenance activities are performed too often, the system's maintenance costs increase
to undesirable levels [16]. Besides, it is necessary to minimize the lost energy production at down-times
caused by failures or maintenance activities for the entire life-cycle [19], which oscillates around 20 years30

[20].
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1.1. Related works

Considering the data provided by the International Renewable Energy Agency and other works [21�23],
maintenance activities account for a considerable fraction of the LCoE. On these grounds, the optimization
of the O&M strategy acquires an important role [24]. The evolution of the models and approaches to35

optimize the maintenance strategy have evolved along with the steady technological development of the
wind turbines (WTs) [7]. The determination of WFs operators for maximizing the pro�tability of the
investment drives the development of new techniques and decision-support tools for optimal maintenance
strategies [18]. The maintenance management works are mainly focused on two main objectives, the
minimization of the costs whilst maximizing the availability of the WTs [7, 25].40

In this context, it is essential to consider and combine physical and statistical models with technical
know-how [26, 27]. The WFs operators are compelled to implant new techniques and decision-support
tools for optimal maintenance strategies if they seek to maximize the pro�tability of their investment
[18]. However, the reality nowadays is that the most applied strategies are corrective maintenance (CM)
and time-based minor preventive maintenance (PM) [28, 29]. Additionally, Condition Based Mainte-45

nance (CBM) is a popular method which has proven to be cost-e�ective [30, 31] and it has been widely
researched [32, 33]. Notwithstanding the e�ectiveness of CBM methods, it is crucial to consider in the
maintenance strategy that WTs are multi-components systems constituted by subsystems with depen-
dencies among them conditioning the adequacy of the maintenance strategy [34, 35]. These dependencies
have been classi�ed as (i) structural, when to perform maintenance actions on one system some actions50

are required on others [36]; (ii) economic, when performing simultaneous activities entails di�erent costs
than performing them separately [37] ; and (iii) stochastic, for those systems whose failure rates are not
independent [38].

The most studied maintenance policies dealing with the aforementioned dependencies of the WTs are
the opportunistic maintenance and group maintenance [34]. In the case of wind energy, the opportunistic55

maintenance is especially interesting since it takes advantage of short-term circumstances performing
maintenance actions on non-failed systems when failure happened in another one [25]. Traditionally,
this policy has not been implemented in the wind energy sector [39], however, some recent works have
demonstrated its potential for reaping important bene�ts due to economic dependencies among WTs, e.g.
[40�43].60

Among the reviewed publications, the work of Besnard et al. [40] focuses on reducing maintenance and
opportunity costs jointly performing corrective and preventive actions at low wind speed periods. The
work of Tian et al. [39] is a step forward in an opportunistic maintenance policy supported by condition
monitoring indicators, the work proposes a reliability threshold based on systems' remaining useful life.
Ding and Tian [35] consider perfect and imperfect maintenance actions in their work, these actions are65

triggered by an age indicator based on the Mean Time To Failure of the WTs systems. Another important
contribution of the same authors is an extension of the previous work [28] where they consider di�erent
age thresholds for systems belonging to failed and running WTs. It is interesting to consider as well
the work of Atashgar and Abdollahzadeh [44] in which they address the two-fold challenge previously
mentioned of reducing the costs and maximizing the energy production by implementing a multi-objective70

optimization of the opportunistic policy. And the work of Abdollahzadeh et al. [41] determines the
optimal maintenance activities according to reliability thresholds calculated for each component. Finally,
the work of Zhu et al. [43] is based on the study of three di�erent maintenance strategies consisting of
periodic routines, reactive maintenance, and opportunistic maintenance.

According to the reviewed works, it is important to notice that the decision of whether to maintain75

or to not maintain a system is taken according to di�erent thresholds regarding the system's age, relia-
bility or health condition. It is therefore essential to estimate those indicators as accurately as possible
[19]. In particular, reliability indicators are estimated with traditional models which involve assump-
tions and simpli�cations [45]; these are the reason underlying the inability of the reliability models to
properly describe the true behaviour of the systems [46]. An important assumption that induces consid-80

erable uncertainty is the consideration that the operational conditions and external factors in�uencing
the assets are constant [47]. It has been already stated in the literature that more realistic reliability
estimates, through a model integrating operational context information, will enable more e�ective and
better-customized maintenance strategies [48].

There have been several authors who have studied the a�ection that the operational context may have85

on reliability engineering and thus on maintenance management. The operational context is explicitly
taken into account in the work of Tang et al. [49] for cable failures, and so it is in the work of Lin et al.
[50] for traction transformers. More speci�cally in the wind energy sector, the operational context e�ect
has been considered to model the failure rate in WTs components [51]. Besides, the work of Mazidi et
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al. [52] explores how di�erent operational parameters a�ect the stress condition of the WTs.90

Whilst reviewing relevant related works, it is inevitable to encounter with research making use of
the Proportional Hazards Model to relate the reliability of the components with operational parameters,
e.g. [53, 54]. Another recurrent approach, which has attracted considerable attention lately (see [55]),
is the application of Arti�cial Neural Networks (ANN) due to their capabilities to represent non-linear
relationships [56], and also due to the fact that no "a priori" assumption of the model is required [57].95

Several authors present interesting research works in the application of ANN to determine components
reliability according to operational context; Al-Garni et al. [58] compare their performance against tra-
ditional Weibull regression model, Fink et al. [59] provides a time-series perspective to predict reliability
through ANN and in Beg et al. [60] several ANN-based models are compared. Besides, in the speci�c
context of wind energy the ANN methods have also proven very useful predicting reliability [33, 61].100

It is especially interesting for the scope of the present research the work of Izquierdo et al. [48] where
statistical models are combined with ANN methods to provide a novel model with dynamic capabilities.

1.2. Motivation and scienti�c contribution

It has been already stated the role that O&M activities have on the costs associated with a wind energy
project and therefore, the importance of optimizing the maintenance management in such scenarios. The105

literature review shows evidence that the opportunistic policy has the potential of minimizing mainte-
nance costs whilst maximizing energy production. However, this policy should be supported by estimates
which undoubtedly must be accurate in order to ensure the e�ectiveness of the maintenance actions.
Nevertheless, the traditional reliability models, which render the estimates that trigger maintenance ac-
tions, involve assumptions and simpli�cations which may jeopardize the accuracy of the estimates. An110

important assumption often found in traditional reliability models is the operation under constant work-
ing conditions, but recent works have provided tools, technologies, and methods capable of overcoming
the aforementioned simpli�cation. These works show how their proposals render better estimates than
traditional reliability models. However, to the best of authors' knowledge, the bene�ts of the proposed
models have not been integrated with the bene�ts of advanced maintenance policies such as opportunistic115

maintenance. The integration of opportunistic maintenance with models integrating the e�ect of working
conditions on assets' reliability is a novel proposition that should be compared with the same policy
supported by traditional reliability models to see if it provides any improvement. The research herein
presented provides considerable improvements that will set the foundations to explore the literature gap
of combining reliability models integrating the operational context with advanced maintenance policies.120

Accordingly, the research herein presented aims at unifying an operational-context aware reliability
model with an opportunistic maintenance policy. The present work contributes by demonstrating, through
a case study in the wind energy sector, that a maintenance policy should be supported by accurate
reliability estimates considering operational context; and vice versa, an advanced reliability model, which
takes into account the operational context, provides an important potential if it is integrated within an125

opportunistic maintenance policy. The link-up of an opportunistic maintenance policy with a reliability
model considering operational context is a novel proposal intended to provide less uncertainty for potential
investors in wind energy projects for two reasons:

• The opportunistic maintenance policy is optimized according to a multi-objective logic, i.e. the
costs are not optimized regardless of other business objectives, organizational goals such as the130

maximization of energy production are considered as well. Such multi-objective logic entails a
trade-o� among the objectives since they often imply competing scenarios. In such a context, the
multi-objective optimization of the opportunistic policy provides a wide spectrum of solutions so
di�erent trade-o�s may be considered and the one more suitable for the business goals selected.

• Since the reliability model assesses the WTs failure probability considering the operational context135

and the changes happening in it, the estimates are more accurate and re�ect better the real failure
behaviour of the di�erent components which may be in�uenced by di�erent parameters. The in-
�uence of the operational context is considered in the estimates that will trigger the maintenance
actions and this fact is remarkable because it provides a universality character to the maintenance
plans guaranteeing that the output of certain maintenance plans will not di�er for di�erent opera-140

tional contexts.

The research presented consist of theoretical and practical foundations which gather and combine
state-of-the-art contributions of the authors to the �elds of reliability engineering, asset management and
O&M in the wind energy sector. The scienti�c contribution of the work is the novel conjoint consideration
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of a recent opportunistic maintenance policy with a recent reliability model making use of ANN to consider145

the operational context. This combination is validated through a case study in which it is opposed to
the traditional approach based on the Weibull reliability model. In order to provide a solid validation,
the case study is based on real-�eld data and consists of extensive experimentation.

1.3. Overview

In order to provide a holistic and comprehensive overview of the contribution here presented, the clas-150

si�cation framework proposed by Sha�ee and Sørensen [3] is utilized. In the framework �ve classi�cation
criteria are decomposed into several categories, Table 1 contains the information positioning the research
here presented according to the framework's classi�cation criteria.

Table 1: Positioning of the research according to criteria in Sha�ee and Sørensen [3]

Criteria Description Present research positioning

System
con�guration

The type of wind power asset
and the level of system
modelling

WT at component level.

Decision-making
attribute

Planning horizon, the
decision-maker and the
availability of �eld data

Finite time horizon considering time as
continuous variable.
The decision-maker are considered to be the
WF owners and operators.
The data for the case study comes from �eld
failure data.

System failure
modelling

Include the type of
damage/failure and the failure
modelling approach

Both, minor and major failures are considered
with grey-box models.

Optimization
model

Optimality criterion and the
solution technique

Two optimally criteria are considered, the
minimization of cost and the maximization of
power output.
The solution technique is a multi-objective
model.

Maintenance
strategy

The maintenance policy and the
e�ectiveness of the repair
actions

The opportunistic maintenance is the chosen
policy considering both imperfect and perfect
repair e�ectiveness.

The remaining of the paper consists of several sections that cover the theoretical aspects, the case
study and the conclusions withdrawn from the obtained results. Section 2 depicts the theoretical aspects155

covering the maintenance strategy and the calculation of the life-cycle costs. This section explains the
opportunistic logic contemplated under a life-cycle perspective as opposed to current practices of optimiz-
ing the �rst years of the maintenance of the WTs. Then section 3 introduces the reliability model which
will support the maintenance strategy, in the section the strengths of the model are detailed. The case
study is described in section 4 which comprehends the description of the data utilized and the adopted160

approach along with the obtained results. Finally, section 5 comprises the key conclusions obtained from
the study and its results.

2. Maintenance strategy

Considering the insights provided by the literature review, an opportunistic maintenance policy is
proposed to make optimal maintenance decisions bene�ting from the economic dependencies among the165

WTs' components. This maintenance strategy is intended to maximize the energy outcome of the WF
whilst minimizing the costs not only for the �rst operating years but the whole life-cycle. The maintenance
model has been adapted from recent literature, and while the interested readers are addressed to see the
original model in [25], the essential aspects and characteristics of the proposed policy are hereunder
presented.170

The generic problem to be considered can be de�ned as a WF involving the maintenance of the WTs
(h = 1, 2, ...,H) and their systems (i = 1, 2, ..., N) arranged in a serial disposition for failing purposes.
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Each of the systems may fail in k di�erent failure modes (FMs) entailing di�erent consequences, and
therefore requiring di�erent CM actions (k = 1, 2, ...,K). A FM in this study is considered according to
the de�nition introduced by Rausand and Høyland [62] and by Crespo [63] in which it is the manifestation175

of a failure entailing the termination of one or more functions. Besides, not only the WF managers can
decide to preventively maintain the WTs' systems before failure occurs, but it is possible to perform PM
at di�erent levels (j = 1, 2, ..., J) depending on the restoration factor (q). If the preventive action restores
the system to a state as-good-as-new it is considered as a perfect maintenance; on the contrary, if the
PM action leaves the system in a better state than before but still worse than new, it is considered to be180

an imperfect maintenance being j = 1 for the present model the most imperfect maintenance and j = J
the perfect one (see [64] for further details).

The opportunistic maintenance is intended to address the previously described problem and it is
optimized according to two main objectives, these objectives consider business implications and have a
life-cycle perspective. For wind energy projects, it is essential to optimize the operational costs of the185

WF whilst also minimizing the lost energy production due to downtimes in the WTs. To mathematically
describe these objectives it is important to de�ne corrective and preventive costs, subject to the restoration
e�ect (q). The corrective cost (CC) and the preventive cost (PC) can be seen in Equation 1 and Equation
2 respectively, they consider the materials and tools needed to perform the actions (ccik, c

pr
ik ), energy-

production opportunity cost (cna) and penalty cost (cp) in case the supplied energy does not meet the190

committed level. Also, it is important to consider some binary decision variables associated to the model
in order to understand the model: zhikt determines if CM action k is performed in system i of WT h

in period t, yhikjt does the same with PM actions but the subindex j determines the type of preventive
action, θt establishes if a maintenance team is correctively dispatched to the WF in period t and γt
determines identical action but for a preventive dispatch.195

CC =
∑
h

∑
i

∑
k

∑
t

zhikt

[
ccik (q

c
ik)

2
+mc

ik ·GPt (cna + cp)
]

(1)

PC =
∑
h

∑
i

∑
k

∑
j

∑
t

yhikjt

[
cprik

(
qprikj

)2
+mpr

ikj ·GPt · c
na

]
(2)

Another major cost element related to the costs-minimization objective is derived from the main-
tenance resources (MC) required to attend the WF, see Equation 3. They consider the number of
maintenance teams (NT), their �xed costs (cteam), and the costs associated with their dispatches(cdisp)
either preventively (γt) or correctively (θt).

MC = NT · cteam +
∑
t

(γt + θt) · cdisp (3)

According to the second objective of the maintenance strategy optimization, the lost production (LP)200

is calculated as described in Equation 4. To calculate the lost in every period, the maintainability of CM
and PM (mc

ik and m
pr
ik respectively) are considered along with the power that would have been generated

in that time (GPt calculated as in [65]).

LP =
∑
t

GPt

∑
h

∑
i

∑
k

mc
ik · zhikt +

∑
h

∑
i

∑
k

∑
j

mpr
ikj · yhikjt

 (4)

Having de�ned the components of the two objective functions of the optimization, it is vital to also
de�ne the constraints. The decision of whether preventively maintain or not a non-failed system is taken
according to reliability thresholds: DRTikt is the threshold that compulsory dispatches a maintenance
team to perform PM and SRTikjt is the threshold to determine certain PM action (according to j) once
there is at least one maintenance team in the WF. Every SRTj threshold must be higher than the DRT,
and they should be sorted according to their level, being the lowest the most imperfect action threshold
(see constraint in Equation 7). Another important constraint is the availability and working time of the
maintenance teams de�ned as Twt and regarded in Equation 8. Finally, it is important to consider in the
model that only one maintenance action in the same WT is allowed for a single time period (see Equation
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9). Therefore, having de�ned the terms comprising the objectives functions, as well as the ones in the
constraints, the formulation of the model is expressed by the following equations, where ka is the rate of
the time value for money:

OFOpex = min
(
([MC + CC ++PC] · (1 + ka)

−t) (5)

OFLP = min (LP ) (6)

S.T.

0 ≤ DRTikt ≤ SRTik1t ≤ ... ≤ SRTikjt ≤≤ ... ≤ SRTikJt ≤ 1 iεI, kεK, jεJ ; tεT (7)

∑
i

∑
k

∑
j

mpr
ikj · yikjt +

∑
i

∑
k

mc
ik · zikt ≤ NT · Twt ∀tεT (8)

∑
j

yhikjt + zhikt ≤ 1hεH, iεI, kεK, tεT (9)

zhikt, yhikjtε {0, 1} hεH, iεI, kεK, tεT,∀j = 1, 2

3. Reliability model

The ultimate goal of the optimization process is to �nd the values of the reliability thresholds (i.e.205

DRTikt and SRTikjt) that maximizes the energy production and minimizes the maintenance costs. As
the optimized thresholds will launch maintenance activities, it is vital to ensure that the estimates of
components' reliability are as accurate as possible. Therefore, as stated by several authors mentioned in
the literature review, it is required to integrate operational context information in the reliability models.
To such aim, a dynamic ANN-based reliability model is adopted from the work by Izquierdo et al. [48].210

The present model is characterized by a failure rate decomposed in two terms, a baseline hazard dependent
on time and an exponential part in which the operational context variables are considered as inputs of
an ANN. The mathematical formulation of the hazard function can be seen in Equation 10; the h0(t)
term corresponds to the baseline hazard; and the neural network is denoted as the function G(X,W,B)
where X is the input covariates vector, W are the weights of the connections between the nodes and B215

collects the bias parameters of the ANN.

h(t,X) = h0(t) · exp (G(X,W,B)) (10)

The ANN embedded in the hazard function employs as activation function the hyperbolic tangent de-
scribed by Equation 11, and the input values of the operational context are normalized through Equation
12. As the ANN is integrated into a statistical model, the traditional training methods are of no use in
this case; however, in order to obtain the optimal weights (W) and bias (B) values, the concept of max-220

imum partial likelihood (introduced by Cox [66]) is employed. The optimization consists of �nding the
values that maximize the partial likelihood (L) described by Equation 13 in which p are all the historical
failure data. As the complex architecture of ANN involves numerous parameters and thus considerably
complicates the optimization process, a genetic algorithm is employed in order to �nd the optimal weights
(W) and bias (B).225

g(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

(11)

xnorm =
2(x− xmin)

(xmax − xmin)
− 1 (12)
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L =

p∏
i=1

exp(G(Xi,W,B))∑
l εRi

exp(G(Xl,W,B))
(13)

Once the optimal parameters of the ANN have been obtained, if the baseline hazard rate is considered
to follow a Weibull distribution, the reliability may be expressed by Equation 14 in which α is the scale
parameter and β is the shape parameter. If the integration is solved for an asset operating with changes in
the operational parameters, the reliability model is expressed by Equation 15 in which Ci is the integration
constant for the di�erent i operational contexts in which the asset works.230

R(t,Xi) = exp

(
−
ˆ

β

α

(
t

α

)β−1

exp(G(X,W,B))dt

)
(14)

R(t,Xi) = exp

(
−
(
t

α

)γ
exp(G(Xi,W,B)) + Ci

)
(15)

Paying special attention at the integration constant Ci and assuming that the reliability is a continuous
function with a value of 1 at t = 0, i.e. no failure probability before start operating, the value of the
constant can be described by Equation 16. It is important to notice that the value of the constant
Ci∀i 6= 0, can be decomposed into three terms:

•
(
ti
α

)γ
. It is reasonable to reckon that the changes in the operational context do not a�ect the asset235

equally along the span of its operating time. This term explains such logic, the a�ection that a
change may have on the asset depends on its technical characteristics, thus the scale (α) and shape
(β) parameters, and on the moment at which the changes happen (ti).

• (exp(G(Xi,W,B))− exp(G(Xi−1,W,B)) . The impact that an operational context change may
have on an asset is going to depend on how di�erent the new conditions are from the previous, such240

information is integrated into this term.

• Ci−1 . By the recurrence of taking into account its previous value, the model is integrating infor-
mation from previous operational context changes. It means that the system's current probability
of failure is also a�ected by the operational changes su�ered in its past operating time.

Ci =


0 ∀i = 0(

ti
α

)γ
(exp(G(Xi,W,B))− exp(G(Xi−1,W,B))) + Ci−1 ∀i 6= 0

(16)

As can be seen, the model integrates the changes in the operational context, which are not speci�ed245

but de�ned according to time periods allowing dynamic calculation of reliability in di�erent time intervals,
which don't have to be of the same length. Besides, by embedding into a statistical model the architecture
of ANN it is possible to integrate information regarding interactions among operational context's variables
and some other hidden phenomena without 'a priori' de�ning them.

4. Wind energy case study250

To test if the integration of the operational context-aware reliability model with opportunistic mainte-
nance policy provides a solid approach to maintenance management, a case study based on real �eld data
is proposed. However, due to the stochastic processes entailed by maintenance management, it is di�cult
to adopt an analytical resolution method. Therefore a simulation-based is here presented since it has
proven to e�ectively characterize the maintenance processes and its optimization [41, 42, 67]. The logic255

underlying the simulation is represented in the �owchart of Figure 1. It can be seen how the dynamic
ANN-based reliability models calculate the reliability of the components in every period and then the
values are compared with the opportunistic threshold to trigger maintenance actions if necessary.

Considering that the research pursues more than one objective, i.e. minimization of costs and lost
energy production, a multi-objective algorithm must be implemented. To this aim, the Non-Sorted260
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Figure 1: Simulation chart

Genetic Algorithm II (NSGA-II) has been implemented as it has proven to be useful for providing high-
quality non-dominated solutions on the Pareto front [19, 25, 68]. Accordingly, the optimal maintenance
strategies will be obtained by the joint use of the simulation and the optimization. On the one hand,
The simulation allows evaluating in every iteration of the NSGA-II algorithm the results of certain
maintenance strategies in terms of cost key performance indicator (KPI) and energy lost KPI. Whilst, on265

the other hand, the optimization will guide the maintenance thresholds towards their optimal according
to the NSGA-II logic.

Since the scope of this research is to demonstrate the added value provided by a reliability model with
operational context information integrated into the maintenance policy, this scenario has been compared
with one applying a traditional Weibull reliability model. Besides, this research is also intended to270

evidence that the optimization should be done considering the whole life-cycle of the project as opposed
to current practices of optimizing the �rst 5-10 years of the project as a part of the warranty plans.
Therefore, according to these aims the case study described in Figure 2 presents the optimization of 4
scenarios:

Scenario A - Weibull reliability model and 7 years optimization. In this scenario, a traditional275

two-parameter Weibull model is adjusted for the failure data of every FM of the WTs studied. Having
the parameters of the Weibull models, the opportunistic policy is optimized for the �rst years of the
WF operating time. Then it is evaluated how the optimal strategy for the 7 years behaves in a life-
cycle, i.e. 20 years, perspective, obtaining several cost and energy lost KPIs for the di�erent strategies
which comprehend the Pareto-front.280

Scenario B - Weibull reliability model and 20 years optimization. In this scenario, a Pareto
front is obtained from the optimization of the maintenance strategy for 20 years. The reliability
estimates triggering maintenance actions are calculated with the adjusted Weibull models for every
FM.

Scenario C - Dynamic ANN-based reliability model and 7 years optimization. In this285

scenario, a dynamic ANN-based reliability model is adjusted for every FM and then embedded in the
simulation to optimize the maintenance for 7 years. Having optimized the reliability thresholds for 7
years, it is tested the output these thresholds render in a 20 years life period.

Scenario D - Dynamic ANN-based reliability model and 20 years optimization. In this
scenario, the simulation is with the same models of Scenario C but optimizing the thresholds for 20290

years ensuring that the maintenance policy is not optimal for �rst years of operating time but for the
life-cycle of the project.

The comparison of the four scenarios will be later on presented. Firstly, the optimizations for the
7 years are compared (scenarios A and C) to see if in the short term the model integrating the opera-
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tional context provides better solutions than the Weibull model. The strategies provided by these two295

optimizations then are projected in the long term to see their performance in spite of not being optimal.
Then, the optimizations for 20 years (scenarios B and D) are compared among them and with the 20
years projections of the previous 7-years optimizations.

It is done so it can be seen how a life-cycle perspective provides better solutions even with a traditional
reliability model (scenario B compared with scenario A). Then both are compared with a maintenance300

plan optimized for the early years but with a model integrating operational context information (scenario
C compared with B and A). Finally, scenario D will be compared with the previous to see how the
dynamic ANN-based model in a life-cycle perspective provides the best results in terms of costs and
energy loss.

Figure 2: Case study procedure chart

4.1. Case description and data considerations305

The case study presented in Figure 2 is based on real �eld data provided by a wind energy OEM and
comes from over 300 onshore WTs of 1.67 megawatts(MW) which are operating in di�erent locations in the
north of Spain, and therefore they are exposed to multiple operational conditions. The �eld data comprises
a period of over 12 years and includes two databases coming from the historic maintenance records and
the SCADA information. The SCADA data contained information regarding the alarms and states of310

the WTs along with sensors information, and the maintenance records contained the carried maintenance
activities with the corresponding associated costs. Both databases were combined by identifying the
patterns of the failures in the alarms and states and linking them with the corresponding maintenance
actions in order to build a single RAM (Reliability, Availability, and Maintainability) database containing
the di�erent Times Between Failure (TBFs), the associated costs and the operational conditions. The315

obtained RAM database was validated and contrasted with the know-how and opinion of experts in WTs
operators and WTs OEM, and it is nowadays used to support data-driven decision-making processes.

For the simulation, a WF consisting of 62 WTs is considered. Every WT consist of four main com-
ponents (N=4) and each one of the components has minor and major failures (K=2). The considered
components correspond to four critical systems from the maintenance perspective: gearbox, blades, yaw,320

and pitch. Therefore there are two FMs for every component, and for every of them it is considered per-
fect and imperfect maintenance levels with corresponding restoration factors of qprik2 = 1 and qprik1 = 0.75
respectively.

Regarding the cost structure, the costs considered in the simulation are those regarded as relevant
to analyse the maintenance management from a life-cycle perspective. The cost of a maintenance team325

consisting of 2 workers is considered to be 800e/day, 105e/MWh as an opportunity cost and 35e/MWh
as the penalization cost. Likewise, each component has its corresponding material cost for which the
interested readers are addressed to [69]. The cost of PM is considered to be 30% lower than CM and a
discount rate of 5% is considered for the annualized life-cycle cost analysis.
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4.2. Dynamic ANN-based reliability models �tting330

According to the reliability model description in Section 3, before embedding the models in the
simulation it is necessary to select the optimal ANN architecture for the di�erent FMs. To this aim,
several architectures have been proposed and optimized, up to twelve di�erent models have been �tted
for every one of the FMs, each one of the models consisting of two hidden layers from 1 up to 4 neurons
in each layer. The maximization of the value obtained for the partial likelihood has been the criterion335

adopted as a basis to choose the most appropriate con�guration of hidden layers and nodes. In Figure 3,
it can be seen for every FM the obtained values of the partial likelihood in every model with a speci�c
ANN architecture. As it can be seen in Figure 3, in most of the cases, even the simpler models of ANN
are able to consider the impact the operational context considering that in most of the failure modes
every con�guration reaches similar values of the partial likelihood value and being that the reason for not340

increasing the complexity of the neural networks. Nonetheless, from these values, the optimal dynamic
ANN-based models are selected to be embedded in every WT of the simulation.

Figure 3: Partial likelihood values for all ANN models

Once the best architectures of the ANNs in the models have been selected for every FM, with their
corresponding parameters optimized, the following step is to �t the baseline parameters. Therefore for
every FM, there is one dynamic ANN-based reliability model with a speci�c ANN architecture and speci�c345

shape parameters, this information is detailed in Table 2. These will be the models that are embedded
in the simulation, for every agent corresponding to a WT eight ANNs are calculating the daily impact of
operational context on each FM's probability of failure.

Table 2: Optimal Dynamic ANN-based models details for every FM

Failure Mode
ANN

Architecture

ANN Number

of parameters

Partial

Likelihood

Shape

parameter

Scale

Parameter

Blades Major 2-3 21 -4476.486 6.27 3259.3
Blades Minor 3-4 30 -4414.759 3.28 3410.4
Gearbox Major 2-2 15 -4477.709 7.53 3122.8
Gearbox Minor 3-3 28 -4434.685 5.42 1148.4
Pitch Major 3-4 33 -4201.663 8.41 604.4
Pitch Minor 4-4 37 -4294.931 4.99 408.9
Yaw Major 4-4 41 -4313.041 8.11 1707.6
Yaw Minor 4-4 37 -4250.076 5.30 1750.8

4.3. Simulation results

With the dynamic ANN-based reliability models adjusted, it is possible to optimize the opportunistic350

maintenance strategies according to the two previously de�ned objectives, minimization of costs and lost
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energy production. The optimization for each of the scenarios previously de�ned will provide a set of
solutions consisting of maintenance thresholds which lead to a Pareto front of the solutions trade-o�
among the two competing objectives. These two competing objectives, as it can be seen in Figures 4 and
5, are the Cost (in e) and the Loss of Power (in Mw/h). The costs considered are the ones stated before355

in subsection 4.1 and the Loss of Power indicator measures the production of energy lost due to downtime
in the WTs caused by failures or maintenance activities. The Loss of Power is calculated according to
the average wind speed in each period following the method proposed in [25, 65]. Accordingly, Figures 4
and 5 represent the possible trade-o� of these objectives as a Pareto front of the maintenance strategy
optimization for 7 and 20 years correspondingly.360

Firstly, the scenarios for 7 years have been optimized and represented in Figure 4, in that period the
traditional Weibull reliability and the dynamic ANN-based reliability provide sets of 4 and 6 optimal
solutions respectively as it can be seen in Figure 4. As it was expected, in a 7 years projection of the
optimal strategies using both reliability models, the dynamic ANN-based model provides better results
(see Figure 4a). Besides, not only the results are better, but the model integrating the operational365

context allows to o�er levels in terms of costs and lost energy levels otherwise unreachable for traditional
reliability models (see strategies C2 and C4 in Figure 4a).

However, to explore how the strategies optimized for 7 years perform in a life-cycle scenario, they
have been projected to 20 years (see Figure 4b). The obtained results for the 20 years projections have
been surprising, yet they provide enlightening �ndings. As it can be observed in Figure 4b, the strategies370

following a Weibull model still provide worse results in general than the ones of the dynamic ANN-based
reliability, but for certain strategies the results are quite similar (see strategies A4 and C2 in Figure 4b).
The remarkable fact underlying this �nding is that an optimal strategy for a di�erent span misbehaves
in a di�erent time scenario in spite of relying on better the reliability estimates.

Figure 4: Optimal Strategies for 7 years

(a) 7years projection (b) 20 years projection*

* It is important to note that in Figure 4b the dots are not connected because as the optimal strategies have
been projected to a 20 years scenario they are not optimal and thus, they do not conform a Pareto front.

Turning now to scenarios B and D represented in Figure 5, where the optimization of the opportunistic375

maintenance strategy for 20 years is considered with both reliability models, Weibull model and dynamic
ANN-based model respectively. It can be seen how the optimization for the Weibull model provides a set
of 7 solutions whilst the optimization for the dynamic ANN-based model provides a set of 3 solutions. It
is important to observe the results in Figure 5a, as it happened in the 7 years scenarios, the solutions of
the dynamic ANN-based model reach levels of costs and lost energy production which are unreachable for380

the Weibull model. In Figure 5b it can be seen that the optimization for 20 years performs considerably
better.

As it can be seen in both scenarios, 7 years and 20 years, the model based on ANN renders better
reliability estimates resulting in improved strategies in term of costs and loss of power. By further
exploration of the reliability estimates of both models, the Weibull model and the dynamic reliability385

based on ANN, the better results of the latter model can be explained by two reasons. In the �rst place, as
the model based on ANN considers the operational conditions, it takes into account both, low and high-
stress periods and in�uences the calculation of the reliability accordingly ensuring that the maintenance
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Figure 5: Optimal Strategies for 20 years

(a) Pareto fronts for 20 years (b) All scenarios comparison for 20 years*

* It is important to note that in Figure 5b the dots of strategies C and A are not connected because as the
optimal strategies have been projected to a 20 years scenario they are not optimal and thus, they do not
conform a Pareto front.

actions are actually performed in the optimal threshold, however, the Weibull model only considers the
operational time rendering less accurate estimates. The second reason behind the better performance of390

the ANN model is derived from the �rst reason and the e�ect of imperfect maintenance since the Weibull
model provides inaccurate estimates, the e�ect of the imperfect maintenance action cannot be properly
addressed (i.e. if the state before the maintenance is not properly assessed, the state after will hardly
be) and this provokes the error in the estimates to widen and propagate over time.

Besides, a remarkable �nding is how the optimal strategies for dynamic ANN-model yield substantially395

better results in a 20 years scenario in comparison with the Pareto front in the 7 years (see Figure 4a).
The reason leading to these di�erences to be more signi�cant in a 20 years scenario is the fact that
inaccurate estimates accumulate undue costs for a longer span. The conjoint application of opportunistic
maintenance and the dynamic ANN-based model ensures that the maintenance actions are performed
in the most suitable moment. Besides, Figure 5b shows evidence of the importance of optimizing the400

maintenance strategy for the life-cycle since the 20-years optimized strategy based on a Weibull model
outperforms the 7-years optimal strategies based on the dynamic ANN-based model.

5. Concluding remarks

The research presented in the paper was intended to provide an approach to reduce not only the O&M
costs of wind energy projects but the associated uncertainty as well, in order to increase the attractive-405

ness of wind energy projects for possible investors. The approach proposes to optimize the maintenance
strategy according to several objectives by means of two state-of-the-art technologies: i) an opportunistic
maintenance policy which allows considering the economic dependencies of the WTs performing main-
tenance actions in the most suitable moments; and ii) more accurate reliability estimates of the WTs'
components through a dynamic model considering operational context through the capabilities of ANN.410

Besides, the research also intended to provide a scienti�c basis to con�rm that maintenance optimizations
for the early years of the WFs are misaligned with the best strategies for the life-cycle.

The proposed approach has been validated with a case study that is based on real-�eld data and
consists of intensive experimentation. Thought the case-study validation, interesting results have been
presented, these results entail relevant conclusions from the research and the practical perspectives. It415

has been seen how the integration of the opportunistic maintenance with the dynamic ANN-based model
provides the best results in the long term when the strategy has been optimized for the life-cycle. Not
merely does it provide the best results, but this conjunction of technologies enables to reach a wider
solutions space and therefore o�ers in terms of costs and availability otherwise unreachable. Besides, the
importance of optimizing the strategy for a life-cycle span has been also proven, since 20-years optimized420

strategy based on traditional reliability estimates shows better results than the one optimized for a shorter
period but with better estimates. And more importantly, by considering the operational context in the
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reliability estimates the de�nition of the optimal maintenance strategy is disentangled of the working
environment and therefore acquires a more universal character whilst maintaining its optimality nature.

Nonetheless, the work and the case study give rise to interesting questions and thus promising lines to425

further develop the research. The current application comprises a WF in which every turbine is identical
to each other; however in practice, this is not always true, so it would be interesting to explore the problem
when several WT models are considered. Moreover, it would be appealing to study the performance of
optimal maintenance strategies for di�erent sizes of WFs. The future research lines show evidence that
there is still margin to keep increasing pro�tability not only of wind energy projects but other energy430

sources as well if these technologies are extrapolated.
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