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Abstract
Background: Triclustering has shown to be a valuable tool for the analysis of
microarray data since its appearance as an improvement of classical clustering and
biclustering techniques. The standard for validation of triclustering is based on three
different measures: correlation, graphic similarity of the patterns and functional
annotations for the genes extracted from the Gene Ontology project (GO).

Results: We propose TRIQ, a single evaluation measure that combines the three
measures previously described: correlation, graphic validation and functional
annotation, providing a single value as result of the validation of a tricluster solution
and therefore simplifying the steps inherent to research of comparison and selection of
solutions. TRIQ has been applied to three datasets already studied and evaluated with
single measures based on correlation, graphic similarity and GO terms. Triclusters have
been extracted from this three datasets using two different algorithms: TriGen and
OPTricluster.

Conclusions: TRIQ has successfully provided the same results as a the three single
evaluation measures. Furthermore, we have applied TRIQ to results from another
algorithm, OPTRicluster, and we have shown how TRIQ has been a valid tool to
compare results from different algorithms in a quantitative straightforward manner.
Therefore, it appears as a valid measure to represent and summarize the quality of
tricluster solutions. It is also feasible for evaluation of non biological triclusters, due to
the parametrization of each component of TRIQ.

Keywords: Triclustering, Quality measure, Genetic algorithms, Biological quality,
Graphical quality, Correlation

Background
Analysis of data structured in 3D manner is becoming an essential task in fields such
as biomedical research, for instance in experiments studying gene expression data tak-
ing time into account. There is a lot of interest in this type of longitudinal experiments
because they allow an in-depth analysis of molecular processes in which the time evolu-
tion is important, for example, cell cycles, development at themolecular level or evolution
of diseases [1]. Therefore, the use of specific tools for data analysis in which genes are
evaluated under certain conditions considering the time factor becomes necessary. In this
sense, triclustering [2] appears as a valuable tool since it allows for the assessment of genes
under a subset of the conditions of the experiment and under a subset of time points.
The evaluation of solutions obtained by triclustering algorithms is challenging by the

fact that there is no ground truth to describe triclusters present in real 3D data. In
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literature, the standard measures to evaluate tricluster solutions are based on three areas
as can be seen in the triclustering publications [3–7]. First, correlation measures such as
Pearson [8] or Spearman [9]. Second, graphic validation of the patterns extracted based
on the graphic representation, i.e., how similar the genes from a tricluster are based on
the graphic representation of the genes across conditions and time points. Third, func-
tional annotations extracted from the Gene Ontology project (GO) [10] for the genes in
the tricluster.
However, we consider that providing a single evaluation measure capable of combin-

ing the information from the three aforementioned sources of validation is a neccesary
task. Therefore, in this work we propose TRIQ, a validation measure which combines
the three previously proposed validation mechanisms (correlation, graphic validation and
functional annotation of the genes).
The application of clustering and biclustering techniques to gene expression data

has been broadly studied in the literature [11, 12]. Although triclustering is the result
from the natural evolution of the clustering and biclustering techniques, is still a very
recent concept. However, nowadays, these techniques are arousing a great interest
from the scientific community, which has caused a notable increase of the num-
ber of researches focused on finding new triclustering approaches. This section is
to provide a general overview of triclustering published in literature. We particu-
larly focus on the validation methods applied to assess the quality of the triclusters
obtained.
In 2005, Zhao and Zaki [3] introduced the triCluster algorithm to extract patterns

in 3D gene expression data. They presented a measure to assess triclusters’s qual-
ity based on the symmetry property. They validated their triclusters based on their
graphical representation and Gene Ontology (GO) results. g-triCluster, an extended
and generalized version of Zhao and Zaki’s proposal, was published one year later
[4]. The authors claimed that the symmetry property is not suitable for all patterns
present in biological data and proposed the Spearman rank correlation [9] as a more
appropriate tricluster evaluation measure. They also showed validation results based
on GO.
An evolutionary computation proposal was made in [13]. The fitness function defined

is a multi-objective measure which tries to optimize three conflicting objectives: clus-
ters size, homogeneity and gene-dimension variance of the 3D cluster. The tricluster
quality validation was based on GO. LagMiner was introduced in [6] to find time-
lagged 3D clusters, what allows to find regulatory relationships among genes. It is
based on a novel 3D cluster model called S2D3 Cluster. They evaluated their triclus-
ters on homogeneity, regulation, minimum gene number, sample subspace size and
time periods length. Their validation was based on graphical representation and GO
results. Hu et al. presented an approach focusing on the concept of Low-Variance
3-Cluster [5], which obeys the constraint of a low-variance distribution of cell val-
ues. This proposal uses a different functional enrichment tool called CLEAN [14],
which uses GO as one of their components. The work in [7] was focused on find-
ing Temporal Dependency Association Rules, which relate patterns of behavior among
genes. The rules obtained are used to represent regulated relations among genes.
They also validated their triclusters based on their graphical representation and GO
results.
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Tchagang et al. [15] proposed OPTricluster, a triclustering algorithm which obtains 3D
short time series gene expression datasets by applying a statistical methodology. In this
case, the authors carried out an in-depth biological validation based on GO, but they
tested the robustness of OPTricluster to noise using the Adjusted Rand Index (ARI) [16],
which also was used by aforementioned g-tricluster.
In 2013, two new and very interesting approaches were proposed. On the one hand, the

δ − TRIMAX algorithm [17], which applies a variant of the MSR adapted to 3D datasets
and yields triclusters that have a MSR score below a threshold δ. This algorithm has a ver-
sion based on evolutionary multi-objective optimization, named EMOA − δ − TRIMAX
[18], which aims at optimizing the use of δ − TRIMAX by adding the capabilities of
evolutionary algorithms to retrieve overlapping triclusters. On the other hand, OAC-
Triclustering was also proposed by Gnatyshak et al. in [19]. In the following years, the
authors developed improvements and extensions of this algorithm [20–22].
More recent works have extended the capabilities of the tricluster algorithms by com-

bination of several approaches. Thereby, Liu et al. [23] mixed fuzzy clustering and
fuzzy biclustering algorithms in order to expands them to support 3D data and they
used the F-Measure and Entropy as criteria to evaluate the performance. Also, Kakati
et al. [24] combined parallel biclustering and distributed triclustering approaches to
obtain improvements on the computational cost. In this work, the authors use a qual-
ity measure based on shifting and scaling patterns [25] to optimize the triclusters
obtained.
Most of the methods studied base the quality of the triclusters on the graphic represen-

tation or on metrics aimed at measuring diverse characteristics of such representation.
From a biological point of view, the standard for validation of triclusters quality is based
on GO functional annotations.

Methods
This section presents the TRIQ (TRIcluster Quality) validation measure [26], a novel
method to evaluate the quality of triclusters extracted from gene expression datasets.
From an overall perspective, TRIQ takes into account the three principal components

of a tricluster, i.e. the genes, experimental conditions and time points, in order to measure
its quality from three approaches: the level of biological notoriety of the cluster (biological
quality), the graphic quality of the patterns of the genes in the tricluster (graphic quality),
and the level of correlation of the genes in the tricluster by means of the Pearson [8]
and the Spearman [9] indexes. Therefore, TRIQ is composed by a combination of four
indexes: BIOQ (BIOlogical Quality), GRQ (GRaphic Quality), PEQ (PEarson Quality) and
SPQ (SPearman Quality).
In Eq. 1 we define TRIQ as the weighted sum of each of the four aforementioned terms.

Therefore, four associated weightsmust be defined: the weight for BIOQ, denoted asWbio;
the weight for GRQ, denoted asWgr ; the weight for PEQ, denoted asWpe; and the weight
for SPQ, denoted asWsp.

TRIQ(TRI) = 1
Wbio + Wgr + Wpe + Wsp

∗ [Wbio ∗ BIOQ(TRI)

+Wgr ∗ GRQ(TRI) + Wpe ∗ PEQ(TRI) + Wsp ∗ SPQ(TRI)
]

(1)
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This is a general definition of TRIQ. In order to obtain a TRIQ index as balanced
as possible among the four quality indexes BIOQ, GRQ, PEQ, and SPQ we performed
an exhaustive testing procedure with well known datasets. Several combinations of val-
ues of BIOQ, GRQ, PEQ, and SPQ were tested, and in Fig. 1 we show the results
obtained.
We see that that the value of TRIQ is slightly directly dependent on the weights related

to correlation, PEQ, and SPQ. This is due to the fact that these values rank in the [0-1]
interval, being usually high, from 0.7 to 1. The value of TRIQ has a higher level of depen-
dence to the graphical quality, GRQ, and reverse strong dependence to the biological
quality, BIOQ, due to the fact that BIOQ ranks in low values, usually around 10−3 to
10−5. Based on this experiments, we have configured the TRIQmeasure with the weights
showed in Eq. 2 in order to obtain a balanced value of TRIQ.

Wbio = 0.5, Wgr = 0.4, Wpe = 0.05, Wsp = 0.05 (2)

Next, we describe in depth each of the terms involved in the TRIQmeasure.

Correlation measures: PEQ and SPQ

The correlation measures involved in TRIQ are Pearson’s PEQ [8] and Spearman’s SPQ
[9] correlations. They have been chosen since they are the standard correlation measures
and they are widely used in literature [4]. The correlation provides a numerical estimation
of the dependence among the genes, conditions and times in the tricluster solutions.
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Fig. 1 Representation of BIOQ, GRQ, PEQ, and SPQ influence on TRIQ
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Given a tricluster TRI, we compute PEQ and SPQ by the following mechanism. Given
the subset of genes (see Eq. 3a), conditions (see Eq. 3b) and time stamps (see Eq. 3c), we
obtain a value of expression for each combination gene, condition and time. For instance,
for a tricluster consisting of four genes, two conditions and three time points, we have
twenty four expression values. We then compute the Pearson correlation for each pair
of values, and compute PEQ as the average of the absolute values to avoid negative and
positive correlations canceling each other (see Eq. 4). Furthermore, for this measure we
do not care if the correlation is positive or negative between values, we only want to know
the level of correlation. The SPQ value is the equivalent using the Spearman correlation
(see Eq. 5).

TRIG = < g0, g1, . . . , gG > (3a)

TRIC = < c0, c1, . . . , cC > (3b)

TRIT = < t0, t1, . . . , tT > (3c)

PEQ(TRI) =
∑#exp

i=0,j=0
∣
∣Pearsoni�=j

(
expi, expj

)∣∣

#pairs of exp
(4)

SPQ(TRI) =
∑#exp

i=0,j=0
∣
∣Spearmani�=j

(
expi, expj

)∣∣

#pairs of exp
(5)

with exp representing the expressions in each tricluster TRI.

Graphical validation: GRQ

The GRQ member of Eq. 1 measures the graphical quality of the tricluster. This graph-
ical quality of a tricluster is a quantitative representation of a qualitative measure: how
homogeneous the members of the tricluster are. This method is widely used in literature
for visual validation of the results by means of graphically representing the triclusters on
their three components: genes, conditions and time points [3, 6, 7].
The GRQ index is described in Eq. 6. This measure is defined based on the normaliza-

tion of the angle value given by MSL. The Multi SLope (MSL) evaluation function was
defined in [27] and, given a tricluster TRI, provides a numerical value of the similarity
among the angles of the slopes formed by each profile shaped by the genes, conditions,
and times of the tricluster.

GRQ(TRI) = 1 − MSL(TRI)
2π

(6)

The MSL measure considers the three graphical views of a tricluster, also defined in
[27]: TRIgct , TRIgtc, and TRItgc. These three terms are generally defined as TRIxop, with
the expression levels of the tricluster represented in the Y axis, x represents the triclus-
ter component in the X axis (genes or time points), o represents the lines plotted in the
graph (genes, conditions or time lines) and p the type of facets or panels represented (time
points or conditions). We can observe an example of the TRItgc view of a tricluster with
the genes g1, g4, g7 and g10, the experimental conditions c2, c5 and c8 and the time points
t0, t2, t11 in Fig. 2 and see how each line or gene forms a set of angles (two for this par-
ticular example) defined by each time point in the X axis for every panel or experimental
condition. Thus,MSL measures the differences among the angles formed by every series
traced on each of the three graphic representations taking into account TRIgct , TRIgtc,
and TRItgc. A near to zero value of MSL implies a better graphical quality of a tricluster
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Fig. 2 Representation of how theMSLmeasure is calculated. This figure shows three graphics containing
four lines each one with a representation of their slopes

therefore, according to GRQ formulation in Eq. 6, a tricluster is graphically better the
smaller the value ofMSL.

Biological validation: BIOQ

The BIOQ member of Eq. 1 measures the biological quality of the tricluster. Specifically,
BIOQ uses the genes (TRIG) of the input tricluster TRI to compute this index. As you
can see in Eq. 7, the biological quality of a tricluster TRI is defined as the biological
significance, SIGbio, of the set of genes TRIG divided by the Smax value.

BIOQ(TRI) = SIGbio (TRIG)

Smax
(7)

The SIGbio and Smax elements of the BIOQ index have been designed in order to rep-
resent, by means of a quantitative score, the value of the Gene Ontology analysis of the
genes that compose the measured tricluster.
The Gene Ontology Project (GO) [10] is a major bioinformatics initiative with the aim

of standardizing the representation of gene and gene product attributes across species
and databases, besides identifying the annotated terms, performs the statistical analysis
for the over-representation of those terms, also providing a statistical significance p-value.
However, it is also important to take into account how deep in the ontology the terms are
annotated, with the deeper terms being more specific than the superficial ones [28]. The
SIGbio and Smax elements are calculated based on the GO analysis that identifies, for a set
of genes in a tricluster, the terms listed in each of the three available ontologies: biological
processes, cellular components, and molecular functions. This GO analysis is performed
with the software Ontologizer [29].
The computation of SIGbio consists on counting howmany terms of the annotated genes

of the tricluster in the GO analysis are in a particular intervals of p-value. Table 1 repre-
sents the ah-hoc designed system of intervals of p-value and scoring system. The intervals
and the scoring system are defined in Eq. 8 where for a given level, Interl is defined by a
weight value wl for the level, and by the lower and upper bounds (infl and supl, respec-
tively), being an open-closed p-values interval (Eq. 8a). The set of existing LV consists of
all levels with Infl smaller or equal to a minimum p-value, th. For each interval of each
level Interl, the weight value wl is defined in Eq. 8c; Infl is defined in Eq. 8d, and supl is
defined in Eq. 8e.
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Table 1 Biological significance intervals

Level (l) Weight (wl) Interval (interl)

41 401 (0.0E-00,1.0E-40]

40 391 (1.0E-40,1.0E-39]

39 381 (1.0E-39,1.0E-38]

38 371 (1.0E-38,1.0E-37]

37 361 (1.0E-37,1.0E-36]

36 351 (1.0E-36,1.0E-35]

35 341 (1.0E-35,1.0E-34]

34 331 (1.0E-34,1.0E-33]

33 321 (1.0E-33,1.0E-32]

32 311 (1.0E-32,1.0E-31]

31 301 (1.0E-31,1.0E-30]

30 291 (1.0E-30,1.0E-29]

29 281 (1.0E-29,1.0E-28]

28 271 (1.0E-28,1.0E-27]

27 261 (1.0E-27,1.0E-26]

26 251 (1.0E-26,1.0E-25]

25 241 (1.0E-25,1.0E-24]

24 231 (1.0E-24,1.0E-23]

23 221 (1.0E-23,1.0E-22]

22 211 (1.0E-22,1.0E-21]

21 201 (1.0E-21,1.0E-20]

20 191 (1.0E-20,1.0E-19]

19 181 (1.0E-19,1.0E-18]

18 171 (1.0E-18,1.0E-17]

17 161 (1.0E-17,1.0E-16]

16 151 (1.0E-16,1.0E-15]

15 141 (1.0E-15,1.0E-14]

14 131 (1.0E-14,1.0E-13]

13 121 (1.0E-13,1.0E-12]

12 111 (1.0E-12,1.0E-11]

11 101 (1.0E-11,1.0E-10]

10 91 (1.0E-10,1.0E-09]

9 81 (1.0E-09,1.0E-08]

8 71 (1.0E-08,1.0E-07]

7 61 (1.0E-07,1.0E-06]

6 51 (1.0E-06,1.0E-05]

5 41 (1.0E-05,1.0E-04]

4 31 (1.0E-04,1.0E-03]

3 21 (1.0E-03,1.0E-02]

2 11 (1.0E-02,1.0E-01]

1 1 (1.0E-01,1.0E-00]

interl = 〈
wl,

(
infl, supl

]〉
(8a)

LV = ∀ l ∈ N : infl ≤ th (8b)

wl = [(l − 1) ∗ d]+1 (8c)

infl = s
bl

(8d)

supl = s
b(l−1) (8e)
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This definition is made in order to establish a general interval system dependent on the
parameters described above. For our purpose, we have settled these parameters as shown
in Eq. 9; this configuration produces the intervals of Table 1, furthermore, it describes
all the biological significance intervals for the configuration detailed in Eq. 9. For each
row, weight (wl) and range (interl) for each level (L) sorted in ascending order are shown.
Each interval provides a set of p-values where their significance is directly related to the
corresponding level, that is, a p-value is better the higher the level to which it belongs,
and a p-value is better the closer to zero it is.

th = 1.0 × 10−40 (9a)

d = 10.0 (9b)

b = 10.0 (9c)

s = 1.0 (9d)

LV = {1, . . . , 41} (9e)

Taking into account each level l and each predefined interval interl, the biological sig-
nificance for the genes of the measured tricluster is defined in Eq. 10a as the addition of
all scores for each level l from the LV level set Eq. 9e. The score function S for a level l
(Eq. 10b) is defined by the multiplication of the concentration of terms for this level C(l),
defined in Eq. 10c as the number of terms of the level l divided by the total number of
terms, by the weight of the level, and by the level plus a bonus function fbonus, defined
in Eq. 10d as the sum of the level plus a bonus value Vbonus if the current level is the
maximum level of LV or zero in any another case.

SIGbio(TRIG) =
∑

l∈LV
S(l) (10a)

S(l) = C(l) ∗ wl ∗ l + fbonus(l) (10b)

C(l) = #terms(l)
#total terms

(10c)

fbonus(l) = if (l equal to lmax) then l + Vbonus else 0 (10d)

Again, this definition is made in order to establish a general system of SIGbio. For our
purpose and as a result of an exhaustive testing, the Vbonus parameter has been settled to
0; this fact produces Smax as the maximum achievable score for the interval configuration
as you can see in Eq. (11), that has been used to the SIGbio normalization in Eq. 7.

Smax = (
Cmax ∗ wl41 ∗ l41

) + fbonus(41) = (1 ∗ 401 ∗ 41) + (41 + 0) = 16482 (11)

Results
In this section, we present how TRIQ works in an experimental environment. To reach
this goal, we have used the TriGen algorithm [2] and the OPTricluster algorithm [15] in
order to analyze the datasets, find triclusters and measure them with TRIQ.
TriGen is based on an heuristic, genetic algorithm, and its performance greatly depends

on the fitness function used to find the triclusters. There are three fitness functions avail-
able in TriGen: Mean Squared Residue 3D (MSR3D) [30], Least Squared Lines (LSL) [31]
and Multi SLope Measure (MSL) [27]. OPTricluster identifies triclusters of genes with
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expression levels having the same direction across the time point experiments in subsets
of samples taking into consideration the sequential nature of the time-series.
The three datasets analyzed that involve genes and experimental conditions examined

under certain time points are:

• Delu3D : The yeast cell cycle (Saccharomyces Cerevisiae) [32], in particular, the
elutriation experiment.

• DGDS45103D : The GDS4510 dataset from an experiment with mice (Mus Musculus)
[33].

• DGSD44723D : The GDS4472 dataset from an experiments with humans (Homo
Sapiens) [34].

The first dataset is available at the Stanford University website. The last two datasets
have been retrieved fromGene Expression Omnibus [35], a repository of high throughput
gene expression data.
For each dataset, we have performed four algorithm executions: TriGen with MSR3D

(hereonMSR3D), TriGenwith LSL (hereon LSL), TriGenwithMSL and (hereonMSL) and
OPTricluster (hereon OPT).
For each algorithm execution and dataset, we have yielded 10 triclusters and the TRIQ

measure has been used to evaluate their quality. We have found 10 triclusters for each
execution in order to have a high number of solutions where TRIQ can show its suitability.
In the case ofMSR3D, LSL, andMSL executions the number of triclusters has been chosen
as one of the TriGen algorithm parameters and for OPT executions, the tricluster have
been randomly selected from the wide collection of triclusters yielded.
Summarizing, we present three experimental batches (Yeast Elutriation Dataset,Mouse

GDS4510 Dataset and, Human GDS4472 Dataset) with four experiments each one:
MSR3D, LSL,MSL and OPT.

Yeast elutriation dataset

This batch corresponds to the yeast (Saccharomyces Cerevisiae) cell cycle problem [32].
The yeast cell cycle analysis project’s goal is to identify all genes whose mRNA levels are
regulated by the cell cycle. The resources used are public and available in http://genome-
www.stanford.edu/cellcycle/. There, we can find information relative to gene expression
values obtained from different experiments using microarrays.
For our purpose, we have created a dataset Delu3D from the elutriation experiment with

7744 genes, 13 experimental conditions, and 14 time points. Experimental conditions cor-
respond to different statistical measures of the Cy3 and Cy5 channels while time points
represent different moments of taking measures from 0 to 390 min.
Delu3D has been used as the input of the TriGen and the OPTtricluster algorithm in four

experiments:MSR3D, LSL,MSL and, OPT.

ElutriationMSR3D experiment

We can verify in Table 2 how TRI9 has the best values of BIOQ, PEQ and SPQ whereas
TRI10 has the best value of GRQ. The GRQ, PEQ and SPQ values are stabilized from
TRI2 to TRI8 until TRI9 −TRI10 when these values reach the maximum. Regarding BIOQ
values, these vary around 0.0012. Furthermore, TRIQ values are stable for all solutions
except TRI9 − TRI10 due to the genetic algorithms nature. In conclusion, TRI9 is the best
solution since it has the best value of TRIQ, closely followed by TRI10.

http://genome-www.stanford.edu/cellcycle/
http://genome-www.stanford.edu/cellcycle/
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Table 2MSR3D Elutriation solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.289957861 0.001180518 0.627911696 0.400860192 0.363198285

TRI2 0.283154367 0.001118227 0.610190268 0.397890126 0.372492792

TRI3 0.292658244 0.001217404 0.632360796 0.39778358 0.384320901

TRI4 0.283891286 0.001085482 0.614807027 0.38713593 0.36137875

TRI5 0.282839356 0.001224203 0.613862367 0.379462124 0.354184014

TRI6 0.290639052 0.001129778 0.625267377 0.4293412 0.370003051

TRI7 0.259777538 0.001208157 0.553613841 0.382072259 0.372486191

TRI8 0.281909708 0.001215203 0.606726347 0.407953984 0.36427737

TRI9 0.453932884 0.001330144 0.896650615 0.986952953 0.905198358

TRI10 0.45152166 0.001148045 0.934659815 0.776480244 0.765193987

Elutriation LSL experiment

In Table 3 you can see how TRI3 has the best value of BIOQ, TRI2 has the best value of
GRQ, TRI6 has the best value of PEQ and, TRI1 has the best value of SPQ. In general,
the GRQ, PEQ and SPQ values vary around an average value from TRI1 until TRI8. Then,
these values decrease in TRI9−TRI10 solutions due to the fact that the algorithm reached
a local minimum in this two solutions; the BIOQ values fluctuate around 0.0012 value
reaching a maximum in TRI3 and a minimum in TRI4. The values of TRIQ reach the
maximum values at the first two solutions, then remain stable and finally fall in local
minimum in the last two solutions. In conclusion, TRI1 is the best solution since it has
the best value of TRIQ.

ElutriationMSL experiment

We can observe in Table 4 how TRI2 has the best value of BIOQ, PEQ and SPQ whereas
TRI1 has the best value of GRQ. The GRQ, PEQ and SPQ have a stable fluctuation
throughout the solutions whilst BIOQ varying around the central value 0.0011. The
TRIQ values reach their maximum value at TRI2, the minimum at TRI3 and the rest are
stabilized. In conclusion, TRI2 is the best solution since it has the best value of TRIQ.

Elutriation OPT experiment

We can verify in Table 5 how all triclusters have the same value of BIOQ since all tri-
clusters grouped the same collection of genes. Regarding GRQ index, the triclusters have
values between 0.70 and 0.86 with the exception of TRI1, TRI9 and, TRI8 being TRI4 the
solution with better GRQ. The PEQ and SPQ indexes have fluctuating values being TRI7

Table 3 LSL Elutriation solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.444841672 0.001147115 0.925741144 0.737449684 0.741983455

TRI2 0.444050729 0.001217804 0.927628308 0.725178526 0.722631553

TRI3 0.434940552 0.001327826 0.912385527 0.697309668 0.689138899

TRI4 0.431591352 0.001071675 0.905144571 0.692097513 0.6878562

TRI5 0.433960732 0.001125858 0.913689264 0.683063155 0.675378795

TRI6 0.440497687 0.001192667 0.916680329 0.743684691 0.720899755

TRI7 0.437721769 0.001143537 0.916956452 0.702066665 0.705281726

TRI8 0.441054484 0.001233014 0.919127603 0.730818495 0.724920229

TRI9 0.41970611 0.001200657 0.894690897 0.629273489 0.595314967

TRI10 0.399331119 0.001102605 0.848695823 0.597009139 0.589020606
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Table 4MSL Elutriation solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.492819589 0.001051563 0.999519361 0.929642164 0.9200791

TRI2 0.493539244 0.001240807 0.997800501 0.930758605 0.945214193

TRI3 0.476117422 0.001118134 0.991760508 0.78527775 0.791805282

TRI4 0.478990452 0.001166044 0.991627468 0.813400974 0.821727882

TRI5 0.480938627 0.001090473 0.995151057 0.820019348 0.826640002

TRI6 0.475974935 0.001085123 0.992527638 0.779644523 0.788781847

TRI7 0.478754345 0.00100258 0.994551592 0.806892319 0.801756043

TRI8 0.478200414 0.001199622 0.993176848 0.804634565 0.801962727

TRI9 0.477639873 0.001147773 0.991707562 0.805881226 0.801778004

TRI10 0.475505918 0.001132268 0.989937077 0.788265502 0.791033557

the tricluster with the better PEQ and SPQ. In conclusion, TRI7 is the best solution since
it has the best value of TRIQ.

Elutriation summary

We can see in Fig. 3 how the solutions are distributed regarding BIOQ and GRQ
for each experiment. We observe that all points are concentrated in a BIOQ interval
of [ 0.000728, 0.0013] for each experiment meanwhile the MSL experiment stands out
because all its solutions have a GRQ near to 1. Regarding the PEQ and SPQ solutions
distribution, we can see in Fig. 4 how the majority of the solutions are concentrated
around the point PEQ = 0.325, SPQ = 0.325 in the MSR3D experiment, all solutions are
concentrated in [ 0.50, 0.75] interval for PEQ and SPQ in the LSL experiment, all solu-
tions are concentrated in [ 0.75, 1.00] interval for PEQ and SPQ in the MSL experiment
and, all solutions are concentrated in [ 0.30, 0.70] interval for PEQ and SPQ in the OPT
experiment.
The global TRIQ-based ranking of solutions is showed in Table 6; we can see how

the solutions of the MSL experiment are placed on the first positions followed by two
outstanding solutions of the MSR3D experiment, all solutions of the LSL experiment, all
solutions of the OPT experiment and, the remaining solutions of theMSR3D experiment.
TheMSL experiment has the best average values of TRIQ and the lowest standard devi-

ation of TRIQ as seen in Table 7. This fact is reflected in Fig. 5 wherein the MSL point is
located on the bottom-right side of the graph which implies that theMSL experiment has

Table 5 OPT Elutriation solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.25439082 0.000728 0.55556687 0.32575013 0.31025512

TRI2 0.31786223 0.000728 0.7005279 0.36494172 0.38080349

TRI3 0.38238284 0.000728 0.84763736 0.40215787 0.45712372

TRI4 0.39914764 0.000728 0.86882797 0.49884203 0.52621082

TRI5 0.39749144 0.000728 0.86565058 0.50040614 0.51694181

TRI6 0.40017866 0.000728 0.86455717 0.53452807 0.5453116

TRI7 0.40707391 0.000728 0.84656685 0.66128956 0.70037758

TRI8 0.25896921 0.000728 0.56897207 0.31626703 0.30406432

TRI9 0.25904229 0.000728 0.56900655 0.31749708 0.30402

TRI10 0.32249076 0.000728 0.72222718 0.33095502 0.33376653



Gutiérrez-Avilés et al. BioDataMining  (2018) 11:15 Page 12 of 29

MSR3D LSL MSL OPT

0.0008 0.0010 0.0012 0.0008 0.0010 0.0012 0.0008 0.0010 0.0012 0.0008 0.0010 0.0012

0.6

0.7

0.8

0.9

1.0

BIOQ

G
R

Q

Elutriation experiment: BIOQ v GRQ

Fig. 3 BIOQ vs GRQ dispersion graph for each Elutriation solution of each experiment

the highest values of TRIQ and a sparsely dispersed distribution, thus this is a high-quality
experiment.
The most valuable solution of all experiments is the tricluster TRI2 of the MSL exper-

iment. We can see in Fig. 6 its three graphic views showing that its high value of GRQ
is reflected in the patterns depicted. Furthermore, in Table 8 we observe terms with
moderately low p-value as fermentation, vesicle fusion to plasma membrane and exo-
cytosis. Fermentation is a biological process that is part of the process called energy
derivation by oxidation of organic compounds and, in turn, belongs to the generation
of precursor metabolites and energy process and the oxidation-reduction process; Vesicle
fusion to plasma membrane is a biological process that is part of the exocytosis proccess;
the first term is a process of cellular component organization whereas the second is an
establishment of localization process.
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Fig. 4 PEQ vs SPQ dispersion graph for each Elutriation solution of each experiment
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Table 6 Elutriation ranking table

EXPERIMENT SOLUTION TRIQ BIOQ GRQ PEQ SPQ

MSL TRI2 0.493539244 0.001240807 0.997800501 0.930758605 0.945214193

MSL TRI1 0.492819589 0.001051563 0.999519361 0.929642164 0.9200791

MSL TRI5 0.480938627 0.001090473 0.995151057 0.820019348 0.826640002

MSL TRI4 0.478990452 0.001166044 0.991627468 0.813400974 0.821727882

MSL TRI7 0.478754345 0.00100258 0.994551592 0.806892319 0.801756043

MSL TRI8 0.478200414 0.001199622 0.993176848 0.804634565 0.801962727

MSL TRI9 0.477639873 0.001147773 0.991707562 0.805881226 0.801778004

MSL TRI3 0.476117422 0.001118134 0.991760508 0.78527775 0.791805282

MSL TRI6 0.475974935 0.001085123 0.992527638 0.779644523 0.788781847

MSL TRI10 0.475505918 0.001132268 0.989937077 0.788265502 0.791033557

MSR3D TRI9 0.453932884 0.001330144 0.896650615 0.986952953 0.905198358

MSR3D TRI10 0.45152166 0.001148045 0.934659815 0.776480244 0.765193987

LSL TRI1 0.444841672 0.001147115 0.925741144 0.737449684 0.741983455

LSL TRI2 0.444050729 0.001217804 0.927628308 0.725178526 0.722631553

LSL TRI8 0.441054484 0.001233014 0.919127603 0.730818495 0.724920229

LSL TRI6 0.440497687 0.001192667 0.916680329 0.743684691 0.720899755

LSL TRI7 0.437721769 0.001143537 0.916956452 0.702066665 0.705281726

LSL TRI3 0.434940552 0.001327826 0.912385527 0.697309668 0.689138899

LSL TRI5 0.433960732 0.001125858 0.913689264 0.683063155 0.675378795

LSL TRI4 0.431591352 0.001071675 0.905144571 0.692097513 0.6878562

LSL TRI9 0.41970611 0.001200657 0.894690897 0.629273489 0.595314967

OPT TRI7 0.40707391 0.000728 0.84656685 0.66128956 0.70037758

OPT TRI6 0.40017866 0.000728 0.86455717 0.53452807 0.5453116

LSL TRI10 0.399331119 0.001102605 0.848695823 0.597009139 0.589020606

OPT TRI4 0.39914764 0.000728 0.86882797 0.49884203 0.52621082

OPT TRI5 0.39749144 0.000728 0.86565058 0.50040614 0.51694181

OPT TRI3 0.38238284 0.000728 0.84763736 0.40215787 0.45712372

OPT TRI10 0.32249076 0.000728 0.72222718 0.33095502 0.33376653

OPT TRI2 0.31786223 0.000728 0.7005279 0.36494172 0.38080349

MSR3D TRI3 0.292658244 0.001217404 0.632360796 0.39778358 0.384320901

MSR3D TRI6 0.290639052 0.001129778 0.625267377 0.4293412 0.370003051

MSR3D TRI1 0.289957861 0.001180518 0.627911696 0.400860192 0.363198285

MSR3D TRI4 0.283891286 0.001085482 0.614807027 0.38713593 0.36137875

MSR3D TRI2 0.283154367 0.001118227 0.610190268 0.397890126 0.372492792

MSR3D TRI5 0.282839356 0.001224203 0.613862367 0.379462124 0.354184014

MSR3D TRI8 0.281909708 0.001215203 0.606726347 0.407953984 0.36427737

MSR3D TRI7 0.259777538 0.001208157 0.553613841 0.382072259 0.372486191

OPT TRI9 0.25904229 0.000728 0.56900655 0.31749708 0.30402

OPT TRI8 0.25896921 0.000728 0.56897207 0.31626703 0.30406432

OPT TRI1 0.25439082 0.000728 0.55556687 0.32575013 0.31025512

Table 7 Elutriation summary table

EXPERIMENT BEST SOLUTION BEST TRIQ MEAN STDEV

MSR3D TRI9 0.453932884 0.317028196 0.072095449

LSL TRI1 0.444841672 0.432769621 0.013833102

MSL TRI2 0.493539244 0.480848082 0.006701521

OPT TRI7 0.40707391 0.33990298 0.064949576
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Fig. 5 MEAN vs STDEV dispersion graph for each Elutriation experiment

Mouse GDS4510 dataset

This batch corresponds to the mouse GDS4510 dataset. This dataset was obtained from
GEO [35] with accession code GDS4510 and title rd1 model of retinal degeneration: time
course [33]. In this experiment, the degeneration of retinal cells in different individuals of
home mouse (Mus musculus) is analyzed over 4 days just after birth, specifically on days
2, 4, 6 and 8.
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Table 8 TRI2 GO table of theMSL Elutriation experiment

TERM ID TERM P-VALUE

GO:0006113 Fermentation 7.39E-04

GO:0099500 Vesicle fusion to plasma membrane 0.001183063

GO:0006887 Exocytosis 0.001183063

GO:0140029 Exocytic process 0.001183063

GO:0045026 Plasma membrane fusion 0.00141327

GO:0000145 Exocyst 0.001794132

GO:0048193 Golgi vesicle transport 0.002271213

GO:0061025 Membrane fusion 0.002444417

GO:0051039 Positive regulation of transcription involved in meiotic cell cycle 0.002483587

GO:0051436 Negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 0.002483587

GO:0051439 Regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 0.002483587

GO:1904667 Negative regulation of ubiquitin protein ligase activity 0.002483587

GO:0032940 Secretion by cell 0.00251212

GO:0046903 Secretion 0.00251212

GO:0051049 Regulation of transport 0.002574368

GO:0061024 Membrane organization 0.002785422

GO:0051321 Meiotic cell cycle 0.003307558

GO:1903046 Meiotic cell cycle process 0.003307558

GO:0140013 Meiotic nuclear division 0.003307558

GO:0044275 Cellular carbohydrate catabolic process 0.004058262

For our purpose, we have created a dataset DGDS45103D composed of 22690 genes,
8 experimental conditions (one for each individual involved in the biological experiment)
and 4 time points.
DGDS45103D has been used as the input of the TriGen and theOPTtricluster algorithm in

four experiments:MSR3D, LSL,MSL and, OPT.

GDS4510MSR3D experiment

We can verify in Table 9 how TRI7 has the best value of BIOQ,GRQ, PEQ, SPQ. TheGRQ,
PEQ and SPQ indexes vary uniformly among all the solutions. BIOQ has a peak of TRI7
which has the maximum value. The TRIQ values oscillate between 0.385 and 0.4 with the
exception of TRI7, therefore this is the best solution since it has the best value of TRIQ.

GDS4510 LSL experiment

In Table 10 we can see howTRI1 has the best value of BIOQ andGRQmeanwhileTRI2 has
the best values of PEQ and SPQ. The GRQ, PEQ and SPQ values vary uniformly around

Table 9MSR3D GDS4510 solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.399937853 0.001348086 0.870211819 0.516112583 0.507469069

TRI2 0.397972383 0.001177971 0.866535835 0.511042941 0.504338338

TRI3 0.391066411 0.001255371 0.849235889 0.508613518 0.506273874

TRI4 0.397028323 0.0014405 0.863853884 0.512208068 0.503122322

TRI5 0.388644055 0.001187588 0.842929885 0.511734835 0.505831309

TRI6 0.392316477 0.00190466 0.850869722 0.513791033 0.506534134

TRI7 0.40677296 0.004479209 0.882477468 0.520330064 0.510517317

TRI8 0.3851186 0.001240227 0.834606686 0.508323861 0.504792392

TRI9 0.390891083 0.001281294 0.848296937 0.510926324 0.507706903

TRI10 0.390730352 0.001137925 0.8484396 0.50930819 0.506402803
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Table 10 LSL GDS4510 solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.435171938 0.005902591 0.902662935 0.6949723 0.728137064

TRI2 0.427168871 0.002676716 0.885320349 0.700788434 0.733259027

TRI3 0.422560787 0.002909652 0.887599773 0.648196371 0.673124663

TRI4 0.42987221 0.004218243 0.901813346 0.657798589 0.68295641

TRI5 0.416008121 0.002006917 0.869706286 0.658784335 0.683658641

TRI6 0.41490654 0.001678815 0.866767983 0.661174595 0.686024185

TRI7 0.417068507 0.001262531 0.87574877 0.648950843 0.673803828

TRI8 0.40861261 0.001179271 0.854772399 0.649739272 0.672541022

TRI9 0.42454573 0.001683951 0.890635412 0.663209255 0.68578253

TRI10 0.417718487 0.002071672 0.874308872 0.657210052 0.681971994

a central value among the triclusters whereas BIOQ has peak values in TRI1 and TRI4.
The TRIQ values oscillates between 0.40 and 0.43 being TRI1, TRI4 and TRI9 the most
outstanding solutions. We can conclude that TRI1 is the best solution since it has the best
value of TRIQ.

GDS4510MSL experiment

For this experiment, we can observe in Table 11 how TRI1 has the best value of BIOQ
and GRQmeanwhile TRI2 has the best value of PEQ and TRI8 has the best value of SPQ.
The PEQ and SPQ indexes of all solutions vary uniformly around 0.5 whereas all the GRQ
values are close to 0.9. The BIOQ values oscillate between 0.0012 and 0.0019 reaching
its higher value in the TRI1 solution. The TRIQ values are in the [ 0.42, 0.44] interval,
therefore we can conclude that they are good results for this experiment. The highest
value of TRIQ is reached by TRI1, hence it is the best solution for this experiment.

GDS4510 OPT experiment

In Table 12 we can see how TRI2 has the best value of BIOQ, TRI4 has the best value of
GRQ and, TRI9 and TRI1 have the best value of PEQ and SPQ respectively. The BIOQ
values vary among [ 0.0012, 0.0016] interval with the exception of TRI2 and TRI3 whilst
the GRQ values vary uniformly around the 0.80 value excepting TRI4. The PEQ and SPQ
values oscillate among the [ 0.5, 0.8] interval.The highest value ofTRIQ is reached byTRI4,
thus it is the best solution for this experiment.

Table 11MSL GDS4510 solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.446289279 0.003624207 0.990551544 0.496833632 0.468297522

TRI2 0.430638622 0.001399471 0.945717127 0.515568434 0.51747227

TRI3 0.429698209 0.00149303 0.943951098 0.506740977 0.520684131

TRI4 0.425844616 0.001388422 0.935696236 0.506485147 0.510953062

TRI5 0.431185402 0.001224915 0.948344121 0.507510722 0.517195194

TRI6 0.422692807 0.001367523 0.927464145 0.507112049 0.513355693

TRI7 0.429129078 0.001401202 0.944156645 0.501640545 0.513675839

TRI8 0.436192976 0.001999141 0.958438573 0.512285251 0.524074273

TRI9 0.433173322 0.001604555 0.95182792 0.510885656 0.521911883

TRI10 0.422409162 0.001390319 0.928018397 0.501351072 0.508781791
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Table 12 OPT GDS4510 solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.42009257 0.00134246 0.83749772 0.8574642 0.8309809

TRI2 0.42005895 0.00356033 0.85404927 0.82019206 0.71298946

TRI3 0.42901805 0.00256279 0.87133294 0.85498273 0.72908679

TRI4 0.44490172 0.00136003 0.93478154 0.77222529 0.63395639

TRI5 0.37648925 0.00128696 0.81223451 0.51226675 0.50677264

TRI6 0.37500834 0.00122195 0.80916885 0.50865504 0.50594149

TRI7 0.37783613 0.00125442 0.81768005 0.50153608 0.50120198

TRI8 0.37545313 0.00144891 0.80990327 0.50841987 0.50692736

TRI9 0.43860855 0.00167827 0.89471647 0.86719834 0.73045828

TRI10 0.37115418 0.00120689 0.80002563 0.50727999 0.50352975

GDS4510 summary

We can see how the solutions are distributed regarding BIOQ and GRQ in Fig. 7;
we observe that all points of all experiments are concentrated in a BIOQ interval of
[ 0.0011, 0.0059]. Regarding the GRQ values, the MSR3D and LSL experiments have all
the solutions in the [ 0.83, 0.90] interval, the MSL experiment has all the solutions in the
[ 0.92, 0.99] interval and, theOPT experiment has all the solutions in the [ 0.80, 0.95] inter-
val. Regarding the PEQ and SPQ distribution we can see in Fig. 8 how the majority of
solutions are concentrated around the point PEQ = 0.5, SPQ = 0.5 in the MSR3D and
MSL experiments, meanwhile the solutions of LSL experiment are concentrated in the
interval [ 0.625, 0.75] for PEQ and SPQ values and, the OPT experiment has his solutions
dispersed in two groups: one group around the PEQ = 0.5, SPQ = 0.5 point and the other
in an interval of [ 0.60, 0.83] for both PEQ and SPQ values.
A global TRIQ-based ranking of solutions is shown in Table 13. The MSL, LSL and a

part of OPT solutions are placed alternatively on the first positions and the MSR3D and
the remaining of OPT solutions are in the last positions.
We can see in Table 14 how the GDS4510 MSL experiment has the best value of the

mean of TRIQ and the four experiments have low values of standard deviation having
the MSR3D experiment the lowest value but very close to the MSL one. This fact implies
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Fig. 7 BIOQ vs GRQ dispersion graph for each GDS4510 solution of each experiment
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Fig. 8 PEQ vs SPQ dispersion graph for each GDS4510 solution of each experiment

that the four experiments have a low sparse distribution and solutions with high quality.
We can see in Fig. 9 how the MSR3D, LSL and, MSL points are located on the bottom
side of the graph meanwhile the OPT point is located in a high level of the standard
deviation axis; on the other hand, LSL and, MSL points are located on the right side of
the graph meanwhile theMSR3D and OPT points are located in a left level of the average
axis. Hence, in terms of standard deviation and average, we can conclude thatMSL is the
best experiment.
The most valuable solution of all experiments is the tricluster TRI1 of the MSL exper-

iment. We can see in Fig. 10 how this solution depicts very uniform patterns consistent
with the GRQ value. Also, we can see in Table 15 that this solution has Gene Ontol-
ogy terms with low p-value such as sensory perception of chemical stimulus, olfactory
receptor activity or detection of chemical stimulus involved in sensory perception of smell.
The term olfactory receptor activity is a molecular function that combining with an
odorant and transmitting the signal from one side of the membrane to the other to ini-
tiate a change in cell activity in response to detection of smell; this function is part
of the biological process detection of chemical stimulus involved in sensory perception
of smell that is the series of events involved in the perception of smell in which an
olfactory chemical stimulus is received and converted into a molecular signal. Finally,
that process is framed in a more general biological process called sensory perception of
chemical stimulus that is the series of events required for an organism to receive a sen-
sory chemical stimulus, convert it to a molecular signal, and recognize and characterize
the signal.

Human GDS4472 dataset

The dataset, corresponding to this batch, has been obtained from GEO [35] under code
GDS4472 titled Transcription factor oncogene OTX2 silencing effect on D425 medul-
loblastoma cell line: time course [34]. In this experiment, the effect of doxycycline on
medulloblastoma cancerous cells at six times after induction (0, 8, 16, 24, 48 and 96 h)
had been studied.
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Table 13 GDS4510 ranking table

EXPERIMENT SOLUTION TRIQ BIOQ GRQ PEQ SPQ

MSL TRI1 0.446289279 0.003624207 0.990551544 0.496833632 0.468297522

OPT TRI4 0.44490172 0.00136003 0.93478154 0.77222529 0.63395639

OPT TRI9 0.43860855 0.00167827 0.89471647 0.86719834 0.73045828

MSL TRI8 0.436192976 0.001999141 0.958438573 0.512285251 0.524074273

LSL TRI1 0.435171938 0.005902591 0.902662935 0.6949723 0.728137064

MSL TRI9 0.433173322 0.001604555 0.95182792 0.510885656 0.521911883

MSL TRI5 0.431185402 0.001224915 0.948344121 0.507510722 0.517195194

MSL TRI2 0.430638622 0.001399471 0.945717127 0.515568434 0.51747227

LSL TRI4 0.42987221 0.004218243 0.901813346 0.657798589 0.68295641

MSL TRI3 0.429698209 0.00149303 0.943951098 0.506740977 0.520684131

MSL TRI7 0.429129078 0.001401202 0.944156645 0.501640545 0.513675839

OPT TRI3 0.42901805 0.00256279 0.87133294 0.85498273 0.72908679

LSL TRI2 0.427168871 0.002676716 0.885320349 0.700788434 0.733259027

MSL TRI4 0.425844616 0.001388422 0.935696236 0.506485147 0.510953062

LSL TRI9 0.42454573 0.001683951 0.890635412 0.663209255 0.68578253

MSL TRI6 0.422692807 0.001367523 0.927464145 0.507112049 0.513355693

LSL TRI3 0.422560787 0.002909652 0.887599773 0.648196371 0.673124663

MSL TRI10 0.422409162 0.001390319 0.928018397 0.501351072 0.508781791

OPT TRI1 0.42009257 0.00134246 0.83749772 0.8574642 0.8309809

OPT TRI2 0.42005895 0.00356033 0.85404927 0.82019206 0.71298946

LSL TRI10 0.417718487 0.002071672 0.874308872 0.657210052 0.681971994

LSL TRI7 0.417068507 0.001262531 0.87574877 0.648950843 0.673803828

LSL TRI5 0.416008121 0.002006917 0.869706286 0.658784335 0.683658641

LSL TRI6 0.41490654 0.001678815 0.866767983 0.661174595 0.686024185

LSL TRI8 0.40861261 0.001179271 0.854772399 0.649739272 0.672541022

MSR3D TRI7 0.40677296 0.004479209 0.882477468 0.520330064 0.510517317

MSR3D TRI1 0.399937853 0.001348086 0.870211819 0.516112583 0.507469069

MSR3D TRI2 0.397972383 0.001177971 0.866535835 0.511042941 0.504338338

MSR3D TRI4 0.397028323 0.0014405 0.863853884 0.512208068 0.503122322

MSR3D TRI6 0.392316477 0.00190466 0.850869722 0.513791033 0.506534134

MSR3D TRI3 0.391066411 0.001255371 0.849235889 0.508613518 0.506273874

MSR3D TRI9 0.390891083 0.001281294 0.848296937 0.510926324 0.507706903

MSR3D TRI10 0.390730352 0.001137925 0.8484396 0.50930819 0.506402803

MSR3D TRI5 0.388644055 0.001187588 0.842929885 0.511734835 0.505831309

MSR3D TRI8 0.3851186 0.001240227 0.834606686 0.508323861 0.504792392

OPT TRI7 0.37783613 0.00125442 0.81768005 0.50153608 0.50120198

OPT TRI5 0.37648925 0.00128696 0.81223451 0.51226675 0.50677264

OPT TRI8 0.37545313 0.00144891 0.80990327 0.50841987 0.50692736

OPT TRI6 0.37500834 0.00122195 0.80916885 0.50865504 0.50594149

OPT TRI10 0.37115418 0.00120689 0.80002563 0.50727999 0.50352975

Table 14 GDS4510 summary table

EXPERIMENT BEST SOLUTION BEST TRIQ MEAN STDEV

MSR3D TRI7 0.40677296 0.39404785 0.006348192

LSL TRI1 0.435171938 0.42136338 0.007979308

MSL TRI1 0.446289279 0.430725347 0.006987671

OPT TRI4 0.44490172 0.402862087 0.030140772
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Fig. 9 MEAN vs STDEV dispersion graph for each GDS4510 experiment

Our input dataset DGSD44723D is composed of 54675 genes, 4 conditions (one for each
individual involved) and 6 time points (one per hour) and has been used as the input of the
TriGen and theOPTtricluster algorithm in four experiments:MSR3D, LSL,MSL and,OPT.

GDS4472MSR3D experiment

For this experiment, TRI4 has the best value of BIOQ, TRI6 has the best value of PEQ,
TRI3 has the best value of SPQ andTRI5 has the best value ofGRQ as you can see Table 16.
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Table 15 TRI1 GO table of theMSL GDS4510 experiment

TERM ID TERM P-VALUE

GO:0007606 Sensory perception of chemical stimulus 1.68E-25

GO:0004984 Olfactory receptor activity 6.56E-19

GO:0050911 Detection of chemical stimulus involved in sensory perception of smell 6.56E-19

GO:0050907 Detection of chemical stimulus involved in sensory perception 2.97E-18

GO:0004930 G-protein coupled receptor activity 4.68E-17

GO:0007186 G-protein coupled receptor signaling pathway 4.68E-17

GO:0007608 Sensory perception of smell 6.93E-16

GO:0009593 Detection of chemical stimulus 1.16E-15

GO:0007600 Sensory perception 5.28E-15

GO:0050906 Detection of stimulus involved in sensory perception 8.32E-14

GO:0004872 Receptor activity 9.34E-14

GO:0060089 Molecular transducer activity 6.27E-13

GO:0004888 Transmembrane signaling receptor activity 8.08E-13

GO:0050877 Nervous system process 1.07E-12

GO:0099600 Transmembrane receptor activity 2.01E-12

GO:0038023 Signaling receptor activity 1.43E-11

GO:0004871 Signal transducer activity 2.69E-11

GO:0051606 Detection of stimulus 1.64E-10

GO:0003008 System process 1.09E-09

GO:0005549 Odorant binding 1.85E-08

The PEQ and SPQ values of the solutions oscillate around 0.64 and the GRQ values vary
between 0.76 and 0.64; the BIOQ index oscillates around 0.0014 reaching two peaks at
TRI4 and TRI8. In general, the TRIQ value of solutions are in [ 0.32, 0.37] having TRI3 and
TRI7 as outstanding ones and TRI5 as the best solution in this experiment.

GDS4472 LSL experiment

We can verify in Table 17 how TRI1 has the best values of BIOQ, GRQ, PEQ and SPQ.
In general, the GRQ, PEQ and SPQ indexes of the solutions depicts homogeneous values
with the exception of TRI1 where they reach their maximum; regarding BIOQ values,
those reach three peaks at TRI1, TRI4 and TRI10. The TRIQ values vary between 0.39 and
0.44 being TRI1 the best solution of this experiment.

GDS4472MSL experiment

In Table 18 we can see how TRI9 has the best values of BIOQ andGRQwhile TRI7 has the
best value of PEQ and TRI10 has the best value of SPQ. The PEQ values of the solutions

Table 16MSR3D GDS4472 solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.339109333 0.001444791 0.696219908 0.596698979 0.601280513

TRI2 0.321761941 0.001591523 0.645157719 0.633303534 0.624758294

TRI3 0.363970471 0.001440455 0.742093089 0.650828401 0.677431755

TRI4 0.343765956 0.001732664 0.69802844 0.623399523 0.650365438

TRI5 0.370128492 0.001337649 0.761586904 0.637388072 0.659110049

TRI6 0.360725206 0.001406179 0.730735981 0.688724917 0.665829566

TRI7 0.366252916 0.001263468 0.750692098 0.655100071 0.651786783

TRI8 0.351001074 0.00159526 0.709109493 0.674238924 0.656954002

TRI9 0.327754495 0.001401494 0.664697595 0.606214508 0.617279679

TRI10 0.360821995 0.001434449 0.743345617 0.631027541 0.624302919
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Table 17 LSL GDS4472 solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.447346181 0.027287612 0.923852614 0.69377633 0.589450252

TRI2 0.392576223 0.004031468 0.862302229 0.468881448 0.443910489

TRI3 0.409737004 0.002294049 0.886097803 0.570674741 0.512342415

TRI4 0.421749212 0.00967779 0.895313993 0.60768017 0.568014215

TRI5 0.402016193 0.002568856 0.869691073 0.55912722 0.497979503

TRI6 0.394065329 0.00467901 0.864596579 0.474398477 0.443345363

TRI7 0.39497655 0.005644179 0.865341762 0.477395239 0.442959875

TRI8 0.397055929 0.005748916 0.868777413 0.482543181 0.450866935

TRI9 0.40510461 0.007434596 0.881069048 0.514114336 0.465079524

TRI10 0.411954946 0.019662416 0.89416486 0.458207225 0.430948663

vary in the [ 0.43, 0.46] interval and the SEQ values are in the [ 0.40, 0.44] interval while all
solutions have high GRQ values close to 0.90; the BIOQ values have three peaks at TRI5,
TRI7 and TRI9. Regarding TRIQ values, they vary in [ 0.40, 0.42] interval being TRI1, TRI5
and TRI7 the outstanding solutions and being TRI9 the best solution.

GDS4472 OPT experiment

For this experiment,TRI5 has the best value of BIOQ,TRI10 has the best value ofGRQ and
SPQ and, TRI8 has the best value of PEQ as you can see Table 19. The BIOQ index oscil-
lates around 0.0015 reaching three peaks at TRI5, TRI9 and, TRI10. The GRQ index vary
in the [ 0.6, 07] interval reaching an outstanding value in the TRI10 solution. Regarding
the PEQ values they vary in a interval of [ 0.42, 0.86] and the SPQ values in the [ 0.34, 0.76]
interval. The TRIQ values vary between 0.28 and 0.44 being TRI10 the best solution of
this experiment.

GDS4472 summary

We can observe in Fig. 11 how the solutions of the four experiments are in a BIOQ
interval of [ 0.0012, 0.0272] meanwhile the GRQ values of the solutions of MSR3D are
in the [ 0.6451, 0.7615] interval, the solutions of LSL are in the [ 0.8623, 0.8953] inter-
val, the solutions of MSL are in the [ 0.8964, 0.9238] interval and, the solutions of OPT
are in the [ 0.6, 0.7] interval with an outstanding point near to GRQ = 0.92. Regarding
the PEQ and SPQ solutions distribution we can see in Fig. 12 how the PEQ and SPQ
of MSR3D are concentrated in the [ 0.50, 0.75] interval, the values PEQ and SPQ of LSL
are in the [ 0.325, 0.75] interval, the values PEQ and SPQ of MSL are in the [ 0.325, 0.50]

Table 18MSL GDS4472 solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.413005918 0.008623332 0.909739803 0.463874665 0.432091958

TRI2 0.406682712 0.005351847 0.901242812 0.449739986 0.420453301

TRI3 0.404078935 0.004069221 0.896447319 0.445616204 0.423691724

TRI4 0.409123273 0.004869646 0.9053715 0.456215467 0.43458153

TRI5 0.410786658 0.011209144 0.903088937 0.453954127 0.424976095

TRI6 0.404207143 0.004999521 0.896798986 0.44398627 0.415769491

TRI7 0.411937377 0.012628523 0.901459314 0.468134175 0.432653616

TRI8 0.405644251 0.0030952 0.902252364 0.445061054 0.418853066

TRI9 0.42006885 0.025664213 0.912118818 0.439476488 0.408307841

TRI10 0.41078403 0.006450477 0.90556104 0.465916366 0.440771152
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Table 19 OPT GDS4472 solution table

SOLUTION TRIQ BIOQ GRQ PEQ SPQ

TRI1 0.361091084 0.001165855 0.728642443 0.841096481 0.539927104

TRI2 0.302530473 0.001445096 0.649190316 0.42227834 0.420357627

TRI3 0.298417139 0.001567996 0.639083858 0.421848063 0.418143898

TRI4 0.290997577 0.0013925 0.620125263 0.423388521 0.421635907

TRI5 0.353327655 0.00233497 0.7175687 0.832938328 0.469715461

TRI6 0.298612766 0.001430159 0.640127397 0.421427176 0.415507376

TRI7 0.282392223 0.0018726 0.610369316 0.397933947 0.348229987

TRI8 0.35196608 0.00159536 0.707996999 0.865220464 0.49417155

TRI9 0.328919371 0.001916523 0.649746035 0.838138155 0.523115758

TRI10 0.446233789 0.002289266 0.924944835 0.740548556 0.761675883

interval and, the values PEQ and SPQ of OPT are dispersed in three groups: the first in
the [ 0.42, 0.45] interval for PEQ and SPQ, the second in the [ 0.70, 0.85] interval for PEQ
and the [ 0.46, 0.54] interval for SPQ and the third, that is a single point, in PEQ = 0.74,
SPQ = 0.76.
We can see the global TRIQ-based ranking of solutions in Table 20; theMSL solutions,

oneOPT solution and, the LSL solutions are placed alternatively on the first positions and
theMSR3D and the remaining of OPT solutions are on the last positions.
We can see in Table 21 how the MSL experiment has the best value of the average

and standard deviation of TRIQ, however, the LSL experiment has the best tricluster
closely followed by the OPT experiment. In Fig. 13 we can see how the MSL is placed in
the bottom-right position being the best experiment in terms of standard deviation and
average.
The most valuable solution of all experiments is the tricluster TRI1 of the LSL

experiment. This solution depicts very uniform patterns since has a very high GRQ value,
we can check this fact in Fig. 14. Also, we can see in Table 22 that this solution has Gene
Ontology terms with very low p-value such as SRP-dependent cotranslational protein
targeting to membrane, nuclear-transcribed mRNA catabolic process, nonsense-mediated
decay or ribonucleoprotein complex.
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Fig. 11 BIOQ vs GRQ dispersion graph for each GDS4472 solution of each experiment
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Fig. 12 PEQ vs SPQ dispersion graph for each GDS4472 solution of each experiment

The SRP-dependent cotranslational protein targeting to membrane process is described
as the targeting of proteins to a membrane that occurs during translation and is depen-
dent upon two key components, the signal-recognition particle (SRP) and the SRP
receptor. SRP is a cytosolic particle that transiently binds to the endoplasmic reticu-
lum (ER) signal sequence in a nascent protein, to the large ribosomal unit, and to the
SRP receptor in the ER membrane; it is a protein targeting process that occurs in the
intracellular component and is part of the cellular protein localization process. The
nuclear-transcribed mRNA catabolic process, nonsense-mediated decay is a biological
process that describes the nonsense-mediated decay pathway for nuclear-transcribed
mRNAs degrades mRNAs in which an amino-acid codon has changed to a nonsense
codon; this prevents the translation of such mRNAs into truncated, and potentially harm-
ful, proteins; it is a negative regulation of gene expression process that negatively regulates
the macromolecule metabolic process. Finally the ribonucleoprotein complex is a cellu-
lar component that is defined as a macromolecular complex containing both protein and
RNA molecules.

Conclusions and discussion
Although triclustering has emerged as an essential task to study 3D datasets, there
is no consensus on how to evaluate tricluster solutions obtained from each data
set. Different authors validate their triclusters on different measures, with correla-
tion, graphic validation and Gene Ontology terms being the most common ones. In
this work we have presented a tricluster validation measure, TRIQ, a single evalua-
tion measure that combines the information from the three aforementioned sources of
validation.
We have applied TRIQ to three different datasets: the yeast cell cycle (Saccharomyces

Cerevisiae), in particular the elutriation experiment, an experiment with mice (MusMus-
culus) called GDS4510 and data from an experiments with humans (Homo Sapiens) called
GDS4472.
We have shown that TRIQ has successfully resumed the three validation measures (cor-

relation, graphic validation andGeneOntology terms) yielding the same validation results
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Table 20 GDS4472 ranking table

EXPERIMENT SOLUTION TRIQ BIOQ GRQ PEQ SPQ

LSL TRI1 0.447346181 0.027287612 0.923852614 0.69377633 0.589450252

OPT TRI10 0.446233789 0.002289266 0.924944835 0.740548556 0.761675883

LSL TRI4 0.421749212 0.00967779 0.895313993 0.60768017 0.568014215

MSL TRI9 0.42006885 0.025664213 0.912118818 0.439476488 0.408307841

MSL TRI1 0.413005918 0.008623332 0.909739803 0.463874665 0.432091958

LSL TRI10 0.411954946 0.019662416 0.89416486 0.458207225 0.430948663

MSL TRI7 0.411937377 0.012628523 0.901459314 0.468134175 0.432653616

MSL TRI5 0.410786658 0.011209144 0.903088937 0.453954127 0.424976095

MSL TRI10 0.41078403 0.006450477 0.90556104 0.465916366 0.440771152

LSL TRI3 0.409737004 0.002294049 0.886097803 0.570674741 0.512342415

MSL TRI4 0.409123273 0.004869646 0.9053715 0.456215467 0.43458153

MSL TRI2 0.406682712 0.005351847 0.901242812 0.449739986 0.420453301

MSL TRI8 0.405644251 0.0030952 0.902252364 0.445061054 0.418853066

LSL TRI9 0.40510461 0.007434596 0.881069048 0.514114336 0.465079524

MSL TRI6 0.404207143 0.004999521 0.896798986 0.44398627 0.415769491

MSL TRI3 0.404078935 0.004069221 0.896447319 0.445616204 0.423691724

LSL TRI5 0.402016193 0.002568856 0.869691073 0.55912722 0.497979503

LSL TRI8 0.397055929 0.005748916 0.868777413 0.482543181 0.450866935

LSL TRI7 0.39497655 0.005644179 0.865341762 0.477395239 0.442959875

LSL TRI6 0.394065329 0.00467901 0.864596579 0.474398477 0.443345363

LSL TRI2 0.392576223 0.004031468 0.862302229 0.468881448 0.443910489

MSR3D TRI5 0.370128492 0.001337649 0.761586904 0.637388072 0.659110049

MSR3D TRI7 0.366252916 0.001263468 0.750692098 0.655100071 0.651786783

MSR3D TRI3 0.363970471 0.001440455 0.742093089 0.650828401 0.677431755

OPT TRI1 0.361091084 0.001165855 0.728642443 0.841096481 0.539927104

MSR3D TRI10 0.360821995 0.001434449 0.743345617 0.631027541 0.624302919

MSR3D TRI6 0.360725206 0.001406179 0.730735981 0.688724917 0.665829566

OPT TRI5 0.353327655 0.00233497 0.7175687 0.832938328 0.469715461

OPT TRI8 0.35196608 0.00159536 0.707996999 0.865220464 0.49417155

MSR3D TRI8 0.351001074 0.00159526 0.709109493 0.674238924 0.656954002

MSR3D TRI4 0.343765956 0.001732664 0.69802844 0.623399523 0.650365438

MSR3D TRI1 0.339109333 0.001444791 0.696219908 0.596698979 0.601280513

OPT TRI9 0.328919371 0.001916523 0.649746035 0.838138155 0.523115758

MSR3D TRI9 0.327754495 0.001401494 0.664697595 0.606214508 0.617279679

MSR3D TRI2 0.321761941 0.001591523 0.645157719 0.633303534 0.624758294

OPT TRI2 0.302530473 0.001445096 0.649190316 0.42227834 0.420357627

OPT TRI6 0.298612766 0.001430159 0.640127397 0.421427176 0.415507376

OPT TRI3 0.298417139 0.001567996 0.639083858 0.421848063 0.418143898

OPT TRI4 0.290997577 0.0013925 0.620125263 0.423388521 0.421635907

OPT TRI7 0.282392223 0.0018726 0.610369316 0.397933947 0.348229987

Table 21 GDS4472 summary table

EXPERIMENT BEST SOLUTION BEST TRIQ MEAN STDEV

MSR3D TRI5 0.370128492 0.350529188 0.016814529

LSL TRI1 0.447346181 0.407658218 0.016734175

MSL TRI9 0.42006885 0.409631915 0.004869533

OPT TRI10 0.446233789 0.331448816 0.049451114
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Fig. 13 MEAN vs STDEV dispersion graph for each GDS4472 experiment

as in [27] where each of the components of TRIQ (BIOQ, GRQ, PEQ, and SPQ) where
applied separately. In that publication we presented the MSL measure, comparing it to
MSR3D and LSL, with the same datasets used in this article. We concluded thatMSL was
the best fitness function. In this publication, we have seen how MSL has obtained the
best general results, with high values of TRIQ and low standard deviation for all solutions
presented. Therefore, we can conclude that TRIQ has been successful in representing
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Fig. 14 TRI1 graphic views of the GDS4472 LSL experiment
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Table 22 TRI1 GO table of the LSL GDS4472 experiment

TERM ID TERM P-VALUE

GO:1990904 Ribonucleoprotein complex 1.52E-41

GO:0030529 Intracellular ribonucleoprotein complex 1.52E-41

GO:0044403 Symbiosis, encompassing mutualism through parasitism 6.40E-40

GO:0044419 Interspecies interaction between organisms 1.52E-39

GO:0016032 Viral process 2.20E-39

GO:0045047 Protein targeting to ER 2.91E-38

GO:0006613 Cotranslational protein targeting to membrane 3.78E-38

GO:0072599 Establishment of protein localization to endoplasmic reticulum 8.16E-38

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 8.33E-37

GO:0070972 Protein localization to endoplasmic reticulum 6.26E-36

GO:0005840 Ribosome 6.47E-36

GO:0022626 Cytosolic ribosome 2.56E-35

GO:0019080 Viral gene expression 1.03E-34

GO:0043624 Cellular protein complex disassembly 1.10E-34

GO:0022618 Ribonucleoprotein complex assembly 1.54E-34

GO:0071826 Ribonucleoprotein complex subunit organization 1.96E-34

GO:0000184 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 4.39E-34

GO:0044391 Ribosomal subunit 5.80E-34

GO:0001677 Formation of translation initiation ternary complex 6.45E-34

GO:0006412 Translation 6.45E-34

and summarizing the individual values provided by BIOQ, GRQ, PEQ, and SPQ. Further-
more, we have applied TRIQ to results from another algorithm, OPTRicluster, and we
have shown how TRIQ has been a valid tool to compare results from different algorithms
in a quantitative straightforward manner.
For the case of triclustering being applied to not biologically related fields as in [36],

TRIQ can also cope with the analysis of the tricluster solutions thanks to the weighting
system (see “Methods” section), which allows for each term to be included or removed in
the final measure.
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