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Abstract 

This document will be concerned with the study of the radiation as a mechanism of energy transfer. Several 

unsteady, one-dimensional problems will be described, focusing in radiation atmospheric problems. 

The governing equations are derived taking as theoretical base the general principles of the physics of 

radiation. In addition, a simplified, one-dimensional model of the atmosphere is described. 

The governing equations are written in an appropriate form in order to solve them by a numerical collocation 

method which is based on a finite difference discretization of the non-linear algebraic-integro-differential 

unsteady radiation equations. The resulting non-linear set of algebraic equations are solved using a Newton-

Raphson’s method which yields the temperature field within the domain at each instant of time. The method is 

verified by comparing the results obtained with those of the literature. 

Finally, implementation of the atmospheric model in the numerical method is checked and validated. The 

method is then used to study the evolution and steady state of different kinds of atmospheres. Lastly, to have a 

complete model of the energy transfer, convection is included and, again results for different atmospheres are 

calculated. 
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1 INTRODUCTION TO RADIATION PHYSICS 

1.1. Fundamentals of thermal radiation and its applications 

Every piece of matter whose temperature is greater than absolute zero emits electromagnetic energy which 

propagates away from it in all directions at the speed of light. This energy, when due only to the temperature of 

the body, is called thermal radiation. It has its origin in the rapidly varying electric and magnetic fields created 

by the accelerations and, in general, transitions between quantum energy levels of the body's atomic charges 

(electrons and protons) due to their thermal motion.  A body can not only emit thermal radiation, but also 

absorb, scatter (deflect without absorption) or transmit that coming from other bodies.  When the atomic 

charges absorb radiation, they tend to increase the thermal energy of the body, and it is an experimental fact 

that an isolated system of bodies exchanging thermal radiation eventually reach the same temperature. Observe 

that, because of its electromagnetic nature, radiation permits the transfer of thermal energy between two bodies 

at different temperatures to take place through vacuum, which is a feature that distinguish thermal radiation 

from thermal  conduction and thermal convection, since the latter require the presence of a material medium to 

occur. 

Electromagnetic energy can be considered to be transported by waves obeying Maxwell's equations or, from 

the quantum point of view, by photons.  In accordance with the wave-particle duality principle of quantum 

mechanics, each electromagnetic wave has an associated photon. The wave and its photon travel at the speed 

of light, 𝑐, and are characterized by their frequency, 𝜈. Their corresponding wavelength is defined as 

 𝜆 =
𝑐

𝜈
 (1.1) 

and, according to Quantum Mechanics, the energy of the photon is 

 𝜖𝜈 = ℎ𝜈 = ℎ
𝑐

𝜆
 (1.2) 

where ℎ = 6.627𝑒 · 10−34 is the Planck's constant. Therefore, radiation can be characterized either by 𝜈 or 𝜆, 

although 𝜈 has the advantage that does not change when radiation travels from a medium to another. The 

speed of light 𝑐 and the wavelength within a given medium are related to those in vacuum, 𝑐0 and𝜆0 = 𝑐0 𝜈⁄ , 

by 

 𝑐 =
𝑐0
𝑛
    𝑎𝑛𝑑    𝜆 =

𝜆0
𝑛

 (1.3) 

where 𝑛 is the index of refraction. In what follows radiation will be characterized by 𝑐 and 𝜆 and from the 

photon point of view. 

Thermal radiation is a volumetric phenomenon, although for bodies called opaque is often conveniently 

treated as a surface phenomenon. This is due to the fact that most photons emitted by  the  body are reabsorbed  

within  its  interior except  those emitted in a very narrow layer adjacent to  its surface,  while photons received 
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by  the body  are absorbed or scattered (reflected) in that layer before penetrating deep into the interior1. 

However, some other materials, such as glass, water or radiating gases, allow radiation to travel a considerable 

distance within them and are called semitransparent, or participative, media.  Due to the random character of 

the thermal motions of the atomic charges within its volume, a body emits radiation by sending photons across 

each element of its surface with a wide range of wavelengths and traveling in all directions within the 

hemispherical space above the element. Therefore, the thermal radiation leaving the body through each unit 

surface area has both a spectral distribution and a directional distribution.  If the number of photons of a given 

wavelength crossing per unit time a given surface element is independent of direction, the thermal radiation 

through that element is called diffuse. Some elementary aspects of the spectral distribution will be next 

considered, leaving a more complete characterization of the radiant energy for later in this chapter. 

Consider an element of the surface of a radiating body. The amount of radiation that crosses the element's unit 

area per unit time within a wavelength interval  𝑑𝜆 and integrated over all directions within the hemisphere 

above the element will be denoted by 𝐸𝜆𝑑𝜆2. The quantity 𝐸𝜆 is called the spectral (or monochromatic) 

emissive power of the body through the surface element. It depends on 𝜆, the temperature and the radiative 

properties of the body sufficiently near its surface3, as well as of the index of refraction of the bounding 

medium4. The body emissive power is obtained by integrating 𝐸𝜆 over the whole range of walenghts as 

 𝐸 = ∫ 𝐸𝜆

∞

0

𝑑𝜆 (1.4) 

and the emissive power in the wavelength range between 𝜆1 and 𝜆2 is given by 

 𝐸𝜆1−𝜆2 = ∫ 𝐸𝜆

𝜆2

𝜆1

𝑑𝜆 (1.5) 

For a body with uniform both temperature and superficial properties and emitting to a bounding medium 

whose index of refraction is also uniform,  the spectral emissive power is constant on the surface,  and the total 

emitted power in a wavelength interval 𝑑𝜆 is 𝐸𝜆𝐴, where 𝐴 is the body's surface area. 

 An idea of how 𝐸𝜆 depends on 𝜆 and the temperature for a given body can be gotten by considering the so-

called black body radiation. A black body is an idealized opaque body that absorbs all incident radiation and 

emits diffusely the maximum amount of radiant power per unit surface area at a given surface temperature 

medium and to a given bounding5. The existence of black body radiation can be demonstrated by application 

 
1 The thickness of this layer is usually a few microns.  This is why applying very thin coating layers on the surface of a body can change so 
much its radiation characteristics 
2 In this section, quantities subscripted by 𝜆 are meant to be integrated over all directions within the hemisphere above a surface element. 
They are also known in the literature as hemispherical quantities. 
3 This statement must be taken with caution. As previously mentioned, for bodies which can be considered as opaque the term "sufficiently 
near" usually means a very thin layer adjacent to the surface, but for a participative, or semitransparent, medium, the emissive power 
generally depends on the temperature distribution and the properties of the whole body. In general, the opaque or semitransparent 
behavior of a body may depend on the wavelength of radiation. In fact, water and glass are semitransparent to visible radiation while 
practically opaque to infrared radiation. 
4 For most applications the index of refraction can be taken as 𝑛 = 1, corresponding to vacuum and low density gases such as ordinary air, 
but there are some other common media for which the value of 𝑛 differs appreciably from unity, such as glass (𝑛 = 1.5) and water (𝑛 =
1.33). 
5 An approximate realization of a black body is a cavity with a small hole in its wall. Photons incident on  the hole are absorbed or scattered 
(reflected) many times at the internal surfaces and they are unlikely to reemerge, so that the cavity acts as a nearly perfect absorber (this is 
what makes it difficult to see the interior a cave from the outside). Also, photons reaching the hole from the interior will be equally likely to 
arrive in any direction, making the radiation through the hole to be emitted diffusely 
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of the second law of thermodynamics and, using quantum statistics arguments, Planck calculated the spectral 

emissive power of a black body whose surface is at an absolute temperature T emitting  radiation of 

wavelength lambda to a medium whose index of refraction equals unity as 

 𝐸𝑏𝜆 =
2𝜋ℎ𝑐2

𝜆5[𝑒ℎ𝑐 (𝑘𝜆𝑇)⁄ − 1]
 (1.6) 

where 𝑘 = 1.38 · 10−23  𝐽 𝐾⁄  is the Boltzmann's constant. Note that, since it has been assumed 𝑛 = 1, this 

expression is appropriate if the body's bounding medium is vacuum or a low density gas (i.e. ordinary air).  For 

other mediums, such as glasses or liquids, this equation  should be modified by replacing  𝑐 by 𝑐0 𝑛⁄  and, if the 

index of refraction depends of the wavelength, by multiplying it by the factor (1 + 𝜆 𝑛⁄ · 𝑑𝑛 𝑑𝜆)⁄ . For 

simplicity, in the rest of this work only the case 𝑛 = 1 will be considered. 

Figure 1 shows the spectral emissive power as a function of the wavelength for black bodies at different 

temperatures. Observe that the emitted radiation at a given wavelength increases with the body's temperature, 

while for a given temperature it presents a maximum at a certain wavelength, 𝜆𝑚, and decays for wavelengths 

which are either large or small compared to 𝜆𝑚.  The dominant wavelength decreases with the absolute 

temperature in accordance to the Wien's displacement law 

 𝜆𝑚 =
2897.8

𝑇
 𝜇𝑚 (1.7) 

This law explains, for example, why when a metallic body is heated its surface color changes gradually from 

dull red to orange to yellow and eventually to white.  It can be seen in Figure 1 that the maximun spectral 

emissive power of the solar radiation occurs at 𝜆𝑚 = 0.5 𝜇𝑚, which is about the middle of the visible range 

(0.4 𝜇𝑚 < 𝜆 < 0.8 𝜇𝑚),  while the peak of the radiation emitted by the earth - at an ambient temperature of 

about 300 𝐾-  takes place at 𝜆𝑚 = 9.7 𝜇𝑚, which is well in the infrared region of the spectrum (0.8 𝜇𝑚 <

𝜆 < 100 𝜇𝑚). 

 

Figure 1: Blackbody spectral emissive power. Taken from [Lillesand et al. (2008)] 

The total emissive power of a black body whose surface is at a given temperature 𝑇 is obtained by inserting 

(1.6) into (1.4), which yields the Stefan-Boltzmann law 

 𝐸𝑏 = 𝜎𝑇
4 (1.8) 
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where 𝜎 = 2𝜋5𝑘4 (15ℎ3𝑐2)⁄ = 5.67 · 10−8 𝑊/(𝑚2𝐾4) is the Stefan-Boltmann constant. From the Stefan-

Boltzmann law can be inferred the strong, non-linear dependence of a body's radiated power on its 

temperature. By using an approximate value of 𝑇 = 6000 𝐾 for the temperature of the solar surface, (1.8) 

yields the value 𝐸𝑏 = 7.35 · 10
6 𝑊/𝑚2 for the Sun's emissive power.  The fractions of the emissive power in 

the visible, infrared and ultraviolet (0 < 𝜆 < 0.4 𝜇𝑚) can be found by substituting in equation (1.5) the 

corresponding wavelength ranges, resulting around 43%, 54% and 4% respectively. 

Real bodies are not perfectly black and, therefore, their spectral emissive power is only a fraction of that of a 

black body at the same temperature. The emission of radiation by a real surface is characterized by its spectral 

emissivity, ε𝜆 (𝑇), which defined as the ratio of the spectral emissive power of the real surface at a given 

temperature to that of a black body at the same temperature. Therefore, the emissive power of a real surface 

can be expressed as 

 𝐸𝜆(𝑇) = 휀𝜆(𝑇)𝐸𝑏𝜆(𝑇)  (1.9) 

where, for surfaces of different materials, 휀𝜆 (𝑇) ≤ 1 must be determined experimentally. The total emissivity 

is defined as the ratio of the emissive power of the real body to that of a black body at the same temperature, 

 휀(𝑇) =
𝐸(𝑇)

𝐸𝑏(𝑇)
=
∫ 휀(𝑇)𝐸𝑏𝜆(𝑇)
∞

0

𝜎𝑇4
 (1.10) 

which, as 휀𝜆(𝑇), is also a property of the material. According to Kirchoff's law, if 𝐻𝜆 denotes the total power 

falling on a surface element of an opaque body per unit area and unit wavelength, which is called spectral 

irradiance, the surface element must absorb a fraction 휀𝜆(𝑇)𝐻𝜆 and reflect the remaining [1 − 휀𝜆(𝑇)]𝐻𝜆. The 

total radiant power per unit area and wavelength emanating from the surface element is, therefore, 

 𝐵𝜆 = 휀𝜆(𝑇)𝐸𝑏𝜆(𝑇) + [1 − 휀𝜆(𝑇)]𝐻𝜆 (1.11) 

a quantity which is defined as the spectral radiosity of the surface element. A body whose radiative properties 

can be considered to be independent of the wavelength is called gray. Thus, for a gray surface element of an 

opaque body one has that 휀𝜆(𝑇)  = 휀(𝑇), and (1.11) can be integrated over the wavelength to yield 

 𝐵 = 휀(𝑇)𝜎𝑇4 + [1 − 휀(𝑇)]𝐻 (1.12) 

where 𝐵 = ∫ 𝐵𝜆
∞

0
𝑑𝜆 and 𝐻 = ∫ 𝐻𝜆

∞

0
𝑑𝜆 are the (total) radiosity y (total) irradiance, respectively. The relation 

(12) can be pictorially represented as in Figure 2. 

 

Figure 2: Pictorial representation of equation (1.12) for a Surface element. 
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Thermal radiation is present in numerous engineering and natural phenomena. Of special interest in this work 

is the study of radiation in participating media - that is, that which takes place in nontransparent media, such as 

gases, that can absorb, emit and scatter radiation throughout their interiors. As will be shown in the next 

section, the mathematical treatment of these phenomena is inherently complicated since emission, absorption 

and scattering of radiation occur at every point within the medium - not just near the system boundaries - and, 

in addition, these processes generally show very marked both directional and spectral dependencies. Therefore, 

the solution of the problem requires the knowledge of the temperature (from which radiant energy depends in 

strongly nonlinear way) and the physical properties at every point within the medium. This yields a spectral 

and directional dependent, nonlinear, system of integro-diferential equations whose solution is often worked 

out in the literature with the use of sensible approximations. A common, and often drastic, approximation -

which will also be extensively employed in this work- is to assume a gray medium and use radiative properties 

conveniently averaged over the wavelength. 

 

Figure 3: Hypersonic shock and boundary layers. 

Important engineering applications of radiative heat transfer in participative media appear in the areas of 

combustion in furnaces and engine combustion chambers, where the temperatures can reach a few thousand 

degrees and the emission and absorption of radiation by the products of combustion - essentially carbon 

dioxide and water vapor- play an important role carrying the heat liberated by the combustion of the fuel to the 

chamber walls.  Another interesting phenomenon in which thermal radiation in a participative medium plays a 

very important role is in the hypersonic shock layers formed during the atmospheric reentry of spatial vehicles 

(see Figure 3), where radiation is a very efficient mechanism in the transferring of the high thermal energy 

originated in the shock to the vehicle's surface which, therefore, must be protected by a radiation shield. 

In nature, thermal radiation plays a great role in the structure of stellar interiors such as that of the Sun (Figure 

4), where the thermal energy generated by the fusion of hydrogen in the solar core is transported outwards 

solely by radiation up to the convection zone, which is a convectively unstable envelope of about one third of 

the solar radius where the energy transport takes place by both radiation and turbulent convection. 
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Figure 4: Schematics of the solar interior. 

Finally, another important application of thermal radiation in nature, and to which an important part of this 

work will be devoted, is the analysis of the global-mean thermal structure of the Earth's atmosphere. The 

ultimate source of all atmospheric phenomena is the solar radiant energy absorbed by the Earth's surface.  As 

schematized in Figure 5, the global averaged amount of SW solar radiation reaching the top of the atmosphere 

(341 𝑊 𝑚2⁄ ) is partly absorbed by the Earth's surface and atmosphere (due to clouds, 𝐻2𝑂, 𝑂3 and aerosols) 

and partly reflected and scattered by the Earth's surface, clouds and air. 

 

Figure 5: Schematics of the Earth’s atmospheric energy budget. 

For times long compared to those taken by the redistributions of the latent heat - which enters the atmosphere 

due to evaporation - and of the kinetic energy of the atmospheric motions, the atmosphere shows a state 

thermal quasi-equilibrium in a global-mean sense. This requires (see Figure 5) that the global averaged amount 

of SW radiant energy absorbed by the Earth's surface and atmosphere (161 + 78 = 239 𝑊 𝑚2⁄ ) must be 

equal to that of LW energy (189 + 40 + 10 = 239 𝑊 𝑚2⁄ ) that they emit to outer space.  Observe that the 

Earth's surface emits 396 𝑊 𝑚2⁄  of LW radiation -as can be estimated from (1.8) assuming that it emits as a 

blackbody with a global-mean surface temperature of 288 𝐾-, but only 40 𝑊 𝑚2⁄  pass directly to outer space 

through the atmospheric window. The rest (356 𝑊 𝑚2⁄ ) is absorbed by the atmosphere (108 𝑊 𝑚2⁄  by 

clouds and 248 𝑊 𝑚2⁄  by the greenhouse gases, mainly by water vapor and, to a lesser extent, by 𝐶𝑂2). The 
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atmosphere emits 199 𝑊 𝑚2⁄  to outer space (74 𝑊 𝑚2⁄  emitted by clouds and 125 𝑊 𝑚2⁄  emitted by 

water vapor and other minor constituents) and 333 𝑊 𝑚2⁄  of LW radiation to the Earth's surface. The latter 

constitutes the well known greenhouse effect, which maintains the Earth's global-mean surface temperature at 

288 𝐾, well above the value 254 𝐾 which would have in the absence of clouds and greenhouse gases (mainly 

water vapor). The role of the greenhouse effect in determining the global-mean atmospheric thermal structure 

will be considered more fully in Section 1.3 and in Chapter 3. 

1.2. Description of the radiation field: radiant intensity and the equation of radiative 
transfer 

As stated in the previous section, the radiation field possesses both a spectral and a directional distribution. 

Thus, a complete description of the thermal radiation field requires to specify at each point of space the 

number of photons per unit volume, wavelength and solid angle and to establish the law that governs the 

changes of this quantity changes in space and time. In this section the radiant intensity will be first defined, and 

the radiative heat flux vector field expressed in terms of it. Next, the so-called radiative transfer equation for 

the radiant intensity will be formulated. 

1.2.1 Radiant intensity 

Consider the volume element 𝑑𝑉 around the point 𝒓 shown in Figure 6. Let 𝑛𝑃(𝒓, 𝑡) be the number of photons 

per unit of volume at 𝒓 at time 𝑡 and 𝑓(𝑟, 𝑡, 𝜆, 𝒏) the fraction of that number whose wavelengths are contained 

within a unit interval around 𝜆 and whose directions are contained within a unit solid angle around direction 

defined by the unit vector �̂�(𝜃, 𝜙), where 𝜃 and 𝜙 are the angular spherical coordinates shown in Figure 6. 

Then, the numbers of photons in 𝑑𝑉 with wavelengths in the interval (𝜆, 𝜆 + 𝑑𝜆) and whose directions are 

contained within the solid angle 𝑑Ω = 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 around �̂�- such as the directions of the two photons 

schematized in Figure 6- is given by 

 𝑛𝑃(𝒓, 𝒕) 𝑓(𝒓, 𝑡, 𝜆, �̂�) 𝑑𝜆 𝑑Ω 𝑑𝑉 (1.13) 

 

Figure 6: Schematics of a volume element 𝑑𝑉 around a point 𝒓 (left) showing photons A, B and C whose 

directions are contained within the solid angle 𝑑Ω = sin𝜃 𝑑𝜑 𝑑𝜃 around the unit vector �̂�(𝜃, 𝜑) (right). 

Consider next the energy carried by photons crossing a surface element of area 𝑑𝐴 and unit normal 𝒏 around 

the point 𝒓. It is clear from Figure 7 that the photons with wavelengths in the interval (𝜆, 𝜆 + 𝑑𝜆) and 

directions within the solid angle 𝑑Ω around �̂� that cross the element in a small time 𝑑𝑡 are, to first 
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approximation, contained in the oblique prism of volume 𝑐𝑑𝑡𝑐𝑜𝑠𝜃𝑑𝐴, where 𝜃 is the angle between �̂� and 𝒏. 

This number can be obtained by simply replacing 𝑑𝑉 by the prism's volume as 

 𝑐𝑛𝑃(𝒓, 𝑡)𝑓(𝒓, 𝑡, 𝜆, �̂�) cos 𝜃 𝑑𝐴 𝑑𝜆 𝑑Ω 𝑑𝑡 (1.14) 

 

Figure 7: Photons crossing during a time interval 𝑑𝑡 a surface element 𝑑𝐴 (left) with directions contained with 

the solid angle 𝑑Ω around the unit vector �̂� (right) are, to first approximation, contained in an oblique cylinder 

of base 𝑑𝐴, generatrix parallel to �̂� and volume 𝑐𝑑𝑡 𝑐𝑜𝑠 𝜃. 

The radiant energy that crosses the surface element per unit time due to photons with wavelengths in the 

interval (𝜆, 𝜆 + 𝑑𝜆) and directions within the solid angle 𝑑Ω around �̂� follows by multiplying (1.14) by ℎ𝑐 𝜆⁄  

and dividing the result by 𝑑𝑡 as 

 
ℎ𝑐2

𝜆
𝑛𝑃(𝒓, 𝑡)𝑓(𝒓, 𝑡, 𝜆, �̂�) cos 𝜃 𝑑𝐴 𝑑𝜆 𝑑Ω  (1.15) 

In thermal radiation studies, the spectral radiant intensity, defined as 

 𝐼𝜆(𝒓, 𝑡, �̂�) ≡
ℎ𝑐2

𝜆
𝑛𝑃(𝒓, 𝑡)𝑓(𝒓, 𝑡, 𝜆, �̂�) (1.16) 

is taken as the fundamental quantity to describe the radiation field. As can be inferred from (1.15) and (1.16) 

the spectral radiant intensity represents the radiant energy in the direction �̂� that crosses per unit time, unit 

wavelength and unit solid angle the unit surface normal to �̂�. The radiant intensity is obtained by integrating 

the spectral radiant intensity over the wavelength as  

 𝐼𝜆(𝒓, 𝑡, �̂�) = ∫ 𝐼𝜆(𝒓, 𝑡, �̂�)
∞

0

𝑑𝜆 (1.17) 

Photons crossing an infinitely small surface element 𝑑𝐴 whose directions are within an infinitesimal solid 

angle 𝑑Ω around a unit vector �̂� (see Figure 7) constitute what is called a ray in the direction �̂� through 𝑑𝐴. 

Pictorically, a ray of photons of wavelength 𝜆 through a surface element and its associated energy transport is 

usually represented in the literature as in Figure 8. On using (1.16) in (1.15), the radiant heat flux per unit 

wavelength, or spectral radiant heat flux, through 𝑑𝐴 is obtained in term of the spectral radiant intensity by 

integrating over the unit sphere centered at 𝒓 as 
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 𝑑𝑄𝑅𝜆(𝒓, 𝑡) = 𝑑𝐴∫ cos 𝜃 𝐼𝜆(𝒓, 𝑡, �̂�)
 

4𝜋

𝑑Ω = 𝑑𝐴 𝒏 · 𝒒𝑅𝜆(𝒓, 𝑡) (1.18) 

where has been taken into account that cos 𝜃 = 𝒏 · �̂� and spectral radiative heat flux density vector, has been 

defined as 

 𝒒𝑅𝜆(𝒓, 𝑡) = ∫ �̂� 𝐼𝜆(𝒓, 𝑡, �̂�)
 

4𝜋

𝑑Ω (1.19) 

 

Figure 8: Schematic representation of a ray in the direction represented by the unit vector �̂� through a surface 

element of unit normal 𝒏. The path length along the ray is denoted by 𝑠. 

The radiative heat flux vector field is obtained in term of the radiant intensity by integrating (1.19) over the 

wavelength as 

 𝒒𝑅(𝒓, 𝑡) = ∫ �̂� 𝐼(𝒓, 𝑡, �̂�)
 

4𝜋

𝑑Ω (1.20) 

Observe that, on integrating (1.18) over the wavelength, the total radiant heat flux through any surface element 

centererd at 𝒓 of unit normal 𝒏 is obtained from the field 𝒒𝑅(𝒓, 𝑡) as 

 𝑑𝑄𝑅(𝒓, 𝑡) = 𝑑𝐴 𝒏 · 𝒒𝑅(𝒓, 𝑡) (1.21) 

Also, by integrating (1.21) over the surface of small volume element 𝑑𝑉 centered at 𝒓 and applying Gauss's 

theorem, the radiant heat leaving the unit volume located at 𝒓 per unit time can be obtained as 

 ∇ · 𝒒𝑅(𝒓, 𝑡) = ∫ �̂� · ∇𝐼(𝒓, 𝑡, �̂�)
 

4𝜋

𝑑Ω (1.22) 

which is the quantity representing thermal radiation effects in the energy conservation equation of a continuum 

medium. 

It is often convenient to separate in (1.19) the contribution from photons through 𝑑𝐴 passing to the 

hemispherical space above the element (𝜃 ≤ 𝜋 2⁄  in Figure 8) from that due to photons passing to the 

hemispherical space below it (𝜃 ≥ 𝜋 2⁄ ). Thus, if �̂�(𝜃, 𝜙) is restricted to vary on the upper hemisphere (𝜃 ≤

𝜋 2⁄ , 0 ≤ 𝜙 ≤ 2𝜋) and ∫ 𝑑Ω
 

2𝜋
 denotes ∫ ∫ 𝑑𝜙𝑑𝜃 sin 𝜃

𝜋 2⁄

0

2𝜋

0
, (1.19) can be written as 

 𝒒𝑅𝜆(𝒓, 𝑡) = 𝒒𝑅𝜆
+ (𝒓, 𝑡) − 𝒒𝑅𝜆

− (𝒓, 𝑡) (1.23) 



 

 Introduction to radiation physics 

20 

 

20 

where we have defined the spectral heat flux density vectors for the upper and the lower hemispheres as 

 𝒒𝑅𝜆
+ (𝒓, 𝑡) = ∫ �̂� 𝐼𝜆(𝒓, 𝑡, �̂�)

 

2𝜋

𝑑Ω       𝑎𝑛𝑑     𝒒𝑅𝜆
− (𝒓, 𝑡) = ∫ �̂� 𝐼𝜆(𝒓, 𝑡, −�̂�)

 

2𝜋

𝑑Ω (1.24) 

respectively. Observe that spectral radiant heat flux per unit area entering the hemisphere above the element is 

given by 

 𝒏 · 𝒒𝑅𝜆
+ (𝒓, 𝑡) = ∫ cos𝜃  𝐼𝜆(𝒓, 𝑡, �̂�)

 

2𝜋

𝑑Ω (1.25) 

In particular, if the radiation emanating from the element towards the upper hemisphere is diffuse, 𝐼𝜆 =

𝐼𝜆(𝒓, 𝑡), the RHS of (1.25) yields 𝐼𝜆(𝒓, 𝑡) ∫ cos 𝜃
 

2𝜋
𝑑Ω = 𝜋𝐼𝜆(𝒓, 𝑡). Therefore, for the important case of a 

black body on has from (1.25) and (1.6) provide the relationship between its spectral emissive power and the 

spectral radiant intensity as 

 𝐼𝑏𝜆(𝑇) =
𝐸𝑏𝜆
𝜋
=

2𝜋ℎ𝑐2

𝜋𝜆5[𝑒ℎ𝑐 (𝑘𝜆𝑇)⁄ − 1]
 (1.26) 

And, integrating (1.26) over the wavelength using (1.8), the relationship between the radiant intensity and 

temperature 

 𝐼𝑏(𝑇) =
𝜎𝑇4

𝜋
 (1.27) 

is obtained. In general, the heat flux density vectors for the upper and the lower hemispheres are obtained in 

terms of the radiant intensity by integrating (1.24) over the wavelength as 

 𝒒𝑅
+(𝒓, 𝑡) = ∫ �̂� 𝐼(𝒓, 𝑡, �̂�)

 

2𝜋

𝑑Ω       𝑎𝑛𝑑     𝒒𝑅
−(𝒓, 𝑡) = ∫ �̂� 𝐼(𝒓, 𝑡, −�̂�)

 

2𝜋

𝑑Ω (1.28) 

1.2.2 The equation of radiative transfer 

According to (1.22), the heat leaving by radiation the unit volume per unit time depends on the radiant 

intensity, which, in turn, depends on the spectral radiant intensity through (1.17). Therefore, in order to solve 

the energy equation for a continuum medium in the presence of radiation, it is necessary to know how 𝐼𝜆(𝒓, 𝑡) 

depends on the temperature field 𝑇(𝒓, 𝑡). This is achieved by solving the so-called equation of radiative 

transfer to be considered next. 

The equation of radiative transfer essentially states that the variations of the spectral radiant intensity along a 

ray is due to the emission, absorption and scattering of radiation. In order to establish this equation, consider 

the ray of spectral radiant intensity 𝐼𝜆(𝒓, 𝑡, �̂�) schematized in Figure 9. Then, the variation of 𝐼𝜆 along a ray 

path length 𝑑𝑠 can symbolically be written as 

 (𝑑𝐼𝜆)𝑎𝑏𝑠 = (𝑑𝐼𝜆)𝑎𝑏𝑠 + (𝑑𝐼𝜆)𝑒𝑚𝑖𝑠 + (𝑑𝐼𝜆)𝑠𝑐𝑎𝑡 (1.29) 
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Figure 9: Emission, absorption and scattering of radiation along a ray. 

It will be assumed that the attenuation experienced by the ray intensity across 𝑑𝑠 follows the Beer-Lambert 

law 

 (𝑑𝐼𝜆)𝑎𝑏𝑠 = −𝜅𝜆(𝒓, 𝑡)𝐼𝜆(𝒓, 𝑡, �̂�)𝑑𝑠 (1.30) 

where 𝜅𝜆(𝒓, 𝑡) is the monochromatic volumetric absorption coefficient. A medium in local thermodynamic 

equilibrium -in which the energy transitions are controlled by molecular collisions- will be considered 

throughout this work and, therefore 𝜅𝜆 can be taken as a property of the medium which may depend on 𝒓 and 𝑡 

through the local pressure a temperature. For such a medium, Kirchoff's law shows that the attenuation of 

radiant intensity by absorption is given by 

 (𝑑𝐼𝜆)𝑎𝑏𝑠 = 𝜅𝜆𝐼𝑏𝜆(𝑇)𝑑𝑠 (1.31) 

where 𝐼𝑏𝜆(𝑇) is the blackbody spectral radiant intensity introduced in (1.26) which may depend on 𝒓 and 𝑡 

through the local temperature.  

Finally, in order to compute the variation of spectral radiant intensity due to scattering one must take into 

account both the attenuation of the ray intensity due to scattering into directions �̂�′ different from �̂� as well as 

its augmentation due to scattering of radiation from rays in directions �̂�′ into the direction �̂� (see Figure 9). 

Analogously to absorption, the ray attenuation due to scattering into other directions contribution can be 

modelled as −𝛾𝜆(𝒓, 𝑡)𝐼𝜆(𝒓, 𝑡, �̂�)𝑑𝑠, where 𝛾𝜆 is the monochromatic volumetric scattering coefficient. Since 

rays in other directions also attenuate according to this law, the augmentation of the intensity of the ray in the 

direction �̂� due to scattering from a ray in the direction �̂�′ can be modelled as 𝛾𝜆𝐼𝜆(𝒓, 𝑡, �̂�′)𝑃(�̂�, �̂�′)𝑑Ω
′/4𝜋, 

where 𝑃(�̂�, �̂�′) is called the scattering function and 𝑃(�̂�, �̂�′)𝑑Ω′ 4𝜋⁄  represents the fraction of the total energy 

which arrives to the ray in the direction �̂� from other directions which is due to the scattering from rays within 

the solid angle 𝑑Ω′ around �̂�′. Observe that 𝑃(�̂�, �̂�′) must be symmetric, 𝑃(�̂�, �̂�′) = 𝑃(�̂�′, �̂�) and satisfy 

that1 = ∫ 𝑃(�̂�, �̂�′) 4𝜋⁄
 

4𝜋
𝑑Ω′. The variation of radiant intensity due to scattering can be written as 

 (𝑑𝐼𝜆)𝑠𝑐𝑎𝑡 = −𝛾𝜆𝐼𝜆(𝒓, 𝑡, �̂�)𝑑𝑠 + 𝛾𝜆𝑑𝑠∫
1

4𝜋
𝑃(�̂�, �̂�′)𝐼𝜆(𝒓, 𝑡, �̂�′)

 

4𝜋

𝑑Ω′ (1.32) 

On substituting (1.30) -(1.32) into (1.29) and dividing by 𝑑𝑠, one obtains the radiative transfer equation 
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𝑑𝐼𝜆
𝑑𝑠
= −𝜅𝜆𝐼𝜆 (𝒓, 𝑡, �̂�′) + 𝜅𝜆𝐼𝑏𝜆(𝑇) − 𝛾𝜆𝐼𝜆(𝑠, 𝑡, �̂�) + 𝛾𝜆∫

1

4𝜋
𝑃(�̂�, �̂�′)𝐼𝜆(𝒓, 𝑡, �̂�′)

 

4𝜋

𝑑Ω′ (1.33) 

where, since along a ray starting at 𝒓0 one has 𝒓 = 𝒓0 + �̂�, the dependence 𝒓 of 𝐼𝜆 has been replaced by a 

dependence on the path length, 𝑠. Defining the total monochromatic extinction coefficient and the 

monochromatic scattering albedo coefficient as 

 𝛽𝜆 = 𝜅𝜆 + 𝛾𝜆     𝑎𝑛𝑑     𝜔𝜆 =
𝛾𝜆
𝛽𝜆

 (1.34) 

Respectively, (1.33) can be written as 

 
𝑑𝐼𝜆
𝑑𝑠
= −𝛽𝜆𝐼𝜆(𝑠, 𝑡, �̂�) + 𝛽𝜆𝑆𝜆(𝑠, 𝑡) (1.35) 

where 𝑆𝜆 is the so-called spectral source function -which accounts for the processes of emission and scattering 

- defined as 

 𝑆𝜆 = (1 − 𝜔𝜆)𝐼𝑏𝜆(𝑇) + 𝜔𝜆∫
1

4𝜋
𝑃(�̂�, �̂�′)𝐼𝜆(𝒓, 𝑡, �̂�′)

 

4𝜋

𝑑Ω′ (1.36) 

For the case of a gray medium and isotropic scattering to be considered in this work, the extinction and 

scattering albedo coefficients can be considered independent of the wavelength and 𝑃(�̂�, �̂�′) = 1. Then, (1.35) 

and (1.36) can be integrated over the wavelength to yield the equations for the radiant intensity and the (total) 

source function 

 
𝑑𝐼

𝑑𝑠
= −𝛽𝐼(𝑠, 𝑡, �̂�′) + 𝛽𝑆(𝑠, 𝑡) (1.37) 

and 

 𝑆 = (1 − 𝜔)𝐼𝑏(𝑇) +
𝜔𝐺

4𝜋
 (1.38) 

where 𝐼𝑏(𝑇) = 𝜎𝑇
4 𝜋⁄ , as given by (1.27), and the function G is the radiant intensity over the unit sphere, 

 𝐺(𝑠, 𝑡) = ∫ 𝐼(𝑠, 𝑡, �̂�′)𝑑Ω
 

4𝜋

 (1.39) 

By taking into account that 𝑑𝐼 𝑑𝑠⁄ = �̂� · ∇𝐼, one obtains from (1.22) and (1.37) -(1.39) that the radiant heat 

leaving the unit voume per unit time is given by 

 

 ∇ · 𝒒𝑅(𝒓, 𝑡) = 4𝜋𝛽(1 − 𝜔) [𝐼𝑏(𝑇) −
𝐺

4𝜋
] 

 

(1.40) 
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1.3 Fundamentals of atmospherics physics 

 

Among the numerous physical processes involving thermal radiation, those which involve solar radiation are 

particularly important for astrophysics and for the study of the structure and evolution of planetary 

atmospheres, in particular that of Earth.  

1.3.1 General features of Earth’s atmosphere 

Solar radiation constitutes the main energy source of our planet. This energy reaches the Earth’s atmosphere 

carried by photons of wavelengths ranging from the infrared to the ultraviolet and interacts with the different 

layers of the atmosphere trough many physical mechanisms such as absorption, reflection, scattering, 

dissociation, ionization, etc., and provides the conditions which make life possible in this planet. 

As for any other star, solar energy has its origin in the nuclear fusion processes which take place in the sun’s 

core, where temperatures of around 15 million kelvin degrees are probably reached. From all the energy 

produced, only a small fraction of it reaches the Earth. This fraction, called solar irradiance (𝐺𝑠), has an 

experimentally measured value of  

 𝐺𝑠 = 1373 
𝑊
𝑚2⁄  . (1.41) 

This value, also known as the solar constant, represents the amount of energy emitted by the Sun which 

reaches the Earth per unit normal surface per unit time. Its knowledge permits to determine the so called Sun 

effective temperature,  which is defined as the surface temperature that a spherical black body of a radius equal 

to the solar radius,  𝑟𝑠, should have in order to radiate the same energy per unit time as the Sun. In effect, the 

conservation of energy demands that the total energy which per unit 

 

Figure 10: Energy balance between Sun and the terrestrial sphere (taken from [Cengel, 2002]) 

 time abandons the Sun equals that passing through a sphere of  radius equal to the mean Sun-Earth distance,   

 4𝜋𝐿2𝐺𝑠 = 4𝜋𝑟𝑠
2𝜎𝑇𝑠

4 (1.42) 

where 𝐿 is the astronomical unit, that is, the mean distance in the Sun-Earth orbit, 𝑟𝑠 is the solar radius, and 𝑇𝑠 
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is the surface solar temperature. Substituting the values of each parameter, is obtained 

 𝑇𝑠 = 5780 𝐾 (1.43) 

which is very close to the experimentally measured value of 5800 K. Therefore, it can be inferred that, due to 

the small difference between the effective and the observed solar surface temperatures, the Sun  can be 

considered as a black body radiator which emits in a wide range of wavelengths and whose spectral emissive 

power has a maximum at a wavelength of approximately 0.5 𝜇𝑚. 

 

Figure 11: Comparison between real and black body emission of the Sun (taken from [Cengel, 2002]) 

Once some of the main characteristics of the solar radiation have been introduced, those of the second element 

intervening in the problem, the terrestrial atmosphere, will be next reviewed. 

 

Figure 12: Concentration of the gaseous components in the atmosphere (taken from [Coakley & Yang, 2014]) 
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The atmosphere is formed by a mixture of different substances is gaseous state which compose the air. Its two 

main components are the nitrogen and the oxygen, which constitute about 99% of the atmosphere. 

However, the concentration of these substances greatly depends on the location within the atmosphere.  Since 

the atmosphere is very thin, it can be assumed in a first approximation that the composition and the 

concentration of the different components of the air vary only with height, so that the atmosphere can be 

considered as divided in uniform adjacent horizontal layers. This is not really so, as, in addition to the height, it 

both longitudinal and horizontal variations are also present in the distribution and production of greenhouse 

effect gases, water evaporation, air streams which redistribute the air components, etc. However, these 

complications will not be taken into account in the simple atmospheric model considered in this document. 

 

Figure 13: Mean water vapor concentration in the atmosphere, measured in cm 

Within the layer model, several characteristic levels can be distinguished (see Figure 14): 

Troposphere: It is the lowest level of the atmosphere, which is in contact with the Earth’s surface and extends 

up to a height of approximately 10 km. Its mass is about 80% of that of the whole atmosphere and contains 

about 99% of the water vapour and most of the aerosols. In this level the temperature increases with height. 

The final layers of the troposphere constitute the tropopause, a region which is characterized by the fact that 

the temperature remains approximately constant with height.  

Stratosphere: It extends from 10 Km to 30 km. It is very dry and contains the ozone layer, located at a height 

of 20 km, which protects the Earth’s surface from harmful solar emissions. The troposphere and the 

stratosphere contain about 99% of the mass of the whole atmosphere. In the stratosphere the temperature 

decreases with height. 

Mesosphere: This level, which extends from 50 to 85 km, is characterised by its low temperature - the lowest 

of the atmosphere -, with a distribution which decreases with height. The characteristic value of the pressure in 

it is only a 1% of that of Earth’s surface (approximately 1 bar). As a curiosity, is in the mesosphere is where 

most meteorites disintegrate into small, incandescent particles due to the frictional heating. 

Thermosphere: In this last level, the solar heating has a very important influence. As a consequence, the 

upper limit is quite diffuse, and is located at height which ranges between 500 and 1000 km. The air is 

rarefied, and its temperature tends to increase steeply, reaching values above 1000 K. Boreal aurores take place 

at this part of the atmosphere. 
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Figure 14:  Schematics of the temperature distribution in the different levels of the Earth’s atmosphere. 

It is important to point out that the upper and lower limits established above are just approximate and must be 

taken only as averages, since both the climate and local atmospheric conditions can make them vary 

considerably. 

After the introduction of some of the principal elements involved in the physics of the atmosphere, some of the 

relations among them will be next briefly described.  

When solar radiation reaches the atmosphere and interacts with the air particles, many processes, which 

mainly depend on the radiation wavelength and the nature of the particles that receive it, may take place. 

Processes like molecules dissociation or ionization are frequent. For instance, the ozone located in the 

stratosphere, absorbs the ultraviolet radiation and gets divided into molecular and atomic oxygen, what 

protects the biosphere from these harmful radiative beams. However, in this project only the lower levels of 

the atmosphere - particularly the troposphere- will be considered, so that the most interesting processes will be 

the absorption, the emission and the scattering of radiation. As mentioned at the end of Section 1, not all the 

radiation which arrives to the Earth reaches its surface, but the intensity of the solar rays weakens in clear days 

and, much more, in foggy or cloudy days. Part of the incoming solar radiation is absorbed by the gases which 

compose the troposphere, which increases their thermal energy. In general, each constituent is more sensitive 

to the absorption of radiation within a particular (narrow) band of wavelengths. Thus, the ozone absorbs the 

totality of radiation which is under 𝜆 = 0.3 𝜇𝑚 (ultraviolet), the oxygen in a narrow band around 𝜆 =

0.76 𝜇𝑚 and the 𝐶𝑂2 absorbs in the infrared band – what makes it an important greenhouse gas.  

Nevertheless, the water vapour constitutes somewhat an exception, since it absorbs infrared radiation in a wide 

range of wavelengths as shown in Figure 15. This fact makes water vapor the most important component of 

the greenhouse gases, as will be discussed in the next subsection. 

Finally, in addition to absorption, there exists another mechanism which weakens, although to a smaller extent, 

the intensity of the incoming solar radiation: the scattering. This mechanism consists on a reflexion process in 

which the radiative beams which collide with the particles bounce and get redirected randomly, yielding a 

diffuse radiation in every direction of the space. This implies that part of this radiation is returned to the 

hemisphere from which it comes, thus reducing the downwards radiative flux. The scattering is mainly 

governed by the particles size in relation with the incident wavelength. Thus, the oxygen and the nitrogen 

scatter wavelength radiation in the visible range (see Figure 15), in particular the colours blue and violet, 
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respectively. This, together with the fact that these two gases are the most abundant in the atmosphere is what 

gives the sky its characteristic blue colour in clear days. The effect of the scattering in the visible range is 

particularly evident at sunrise and sunset, when the Sun is low on the horizon. At these times of the day, 

sunlight has to travel through more of the atmosphere to reach us and, therefore, the shortest wavelengths get 

scattered in greater amount along the paths of the rays. As a consequence, the light reaching the Earth’s surface 

at those moments of the day mainly consists of red, orange and yellow wavelengths. 

 

Figure 15: Absorption and scattering in the terrestrial atmosphere. The upper graph is the solar radiation which 

reaches the atmosphere and the lower one, the radiation which reaches the surface (taken from [Satoh, 2014]) 

1.3.2 Simplified atmospheric model 

Once some important atmospheric physical processes have been introduced, it will be presented in this 

subsection a simplified model of the lower atmosphere which, in first approximation, permits to analyse the 

main features of its structure and evolution. Only the troposphere is considered in this work, and it is modelled 

as a slab which is infinite in the plane perpendicular to the direction of gravity - which will be taken along the 

z-axis - and  is limited by lower and upper surfaces representing the Earth’s surface and the top of the 

troposphere, respectively. It will be assumed that the problem is one-dimensional, so that quantities depend 

only on the z-coordinate (and, possibly, on time), which greatly simplifies the equations and is and assumption 

widely used in the literature dealing with global-mean properties of the atmosphere. Another commonly used 

assumptions, which will also be made in this work, are that the atmosphere is in local thermodynamic 

equilibrium (LTE) as well as in hydrostatic quasi equilibrium. 

Concerning the characteristics of the thermal radiation, it will be assumed that the Earth’s surface is a black 

body which emits at a certain temperature and that the top of the troposphere is transparent, so that it allows to 

escape the radiation to free space without neither absorption nor reflexion. In addition, the troposphere will be 

assumed to be a grey medium, an assumption which, admittedly not realistic, is often made in the literature 

dealing with simple atmospheric models in order to achieve a first approximation to the problem with 

simplified equations. Consistently with the approximate character of the model, scattering will be either 

neglected or considered to be isotropic and characterized by a uniform scattering albedo.  

Finally, it will be taken into account that, according to Figure 12 and 15, water vapor is the atmospheric 
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component which, besides being the most abundant infrared absorber, it is the one which absorbs in a larger 

number of infrared bands and that the troposphere contains 99% of the water vapor. Thus, it will be assumed 

that water vapor is the only absorber of radiation in the troposphere. This permits to model the absorption 

coefficient will be as a magnitude dependent on the height (z-coordinate) through pressure and density.  

 

Figure 16: Total and partial pressures of air and water vapour (taken from [Coakley & Yang, 2009]) 

In effect, starting from the definition of the absorption coefficient, 

 
𝜕𝜏

𝜕𝑧
= 𝛽(𝑧) = 𝜒𝜌

𝑎
(𝑧), (1.44) 

where 𝛽 has been expressed in terms of the so called extinction coefficient per unit mass, 𝜒 , which is a 

constant for a given substance, and of the mass of water vapor per unit volume of air, 𝜌
𝑎
. Observe that the 

dimensions of 𝜒 are those of surface per unit mass. Since the mass fraction of water vapor is 

 𝑞
𝑎
(𝑧) =

𝜌
𝑎
(𝑧)

𝜌(𝑧)
 , (1.45) 

one has that 

 𝛽(𝑧) = 𝜒𝜌(𝑧)𝑞𝑎(𝑧) . (1.46) 

 As is usual in the literature, it will be assumed that the water vapor depends on height through a power of the 

nondimensional pressure defined as the local pressure divided by the sea level value in the form 

 𝑞
𝑎
(𝑧) = 𝑞

𝑎𝑠
(
𝑝(𝑧)

𝑝
𝑠

)

𝛼

, (1.47) 

where 𝑞𝑎𝑠 is the seal level water vapor mass fraction and 𝛼 is a constant which must be properly chosen. 

According to Figure 16, (1.47) reproduces quite well the experimental data for 𝛼 = 4. Thus, the absorption 

coefficient may be expressed as follows 
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 𝛽(𝑧) = 𝑞𝑎𝑠𝜒𝜌𝑒⏟    
𝛽𝑠

(
𝜌

𝜌𝑒
) (
𝑝

𝑝𝑠
)
4

= 𝛽𝑠𝜌 𝑝
4, (1.48)        

where 𝜌
𝑒
is a conveniently chosen reference density that will be defined in Chapter 3.  Equation (1.48) shows 

the 𝛽 decreases with height as a consequence of the reduction in both density and pressure.  

The existence of water vapor - and, to a lesser extent, of CO2 - in the atmosphere is responsible for the 

greenhouse effect, which consists in the heating of the Earth’s surface and its surroundings due to the 

asymmetric properties of the terrestrial atmosphere, which is relatively transparent to solar radiation but 

opaque to planetary radiation. The simplest model to explain how the greenhouse effect takes place consists on 

a one-layer model in which the atmosphere is represented as a sheet of glass. The glass is transparent to short 

wave (solar) radiation (𝑞𝑟𝑠), but opaque to infrared (planetary) radiation, and emits in both directions as a 

blackbody of temperature 𝑇𝑒. Outward radiation from the glass corresponds to outgoing radiation at the top of 

the atmosphere. 

 

Figure 17: Schematic exchange of radiative fluxes from the surface, sun and sheet of glass which models the 

atmosphere. 

Energy balances at the top of the atmosphere, the glass and at the lower surface yield  

 (1 − 𝐴)𝑞
𝑟𝑆
− 𝜎𝑇𝑒

4 = 0 , (1.49) 

 𝜎𝑇0
4 − 2𝜎𝑇𝑒

4 = 0 , (1.50)

 (1 − 𝐴)𝑞
𝑟𝑆
+ 𝜎𝑇𝑒

4 − 𝜎𝑇0
4 = 0 , (1.51) 

respectively, where A is the Earth’s albedo and represents the fraction of the total incident solar radiation 

absorbed by the Earth’s surface. From these three equations, effective temperature and the Earth’s surface 

temperature can be calculated as

 𝑇𝑒 = [
(1 − 𝐴)𝑞

𝑟𝑆

𝜎
]

1
4

, (1.52) 
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 𝑇0 = [2
(1 − 𝐴)𝑞

𝑟𝑆

𝜎
]

1
4

= 2
1
4 𝑇𝑒 . 

(1.53) 

As previously mentioned, the greenhouse effect makes  the surface temperature is higher than the effective one 

- in this model by a factor of 21 4⁄  -  the latter being be the one the Earth’s surface would have in the absence 

of a participative atmosphere. Then, it can be concluded that the existence of an atmosphere will have an 

associated greenhouse effect, whose magnitude will depend on characteristics of the atmosphere such as its 

height, the fraction of constituents or the relative importance of radiation and conduction. 

Considering the total atmosphere as a single sheet of glass is equivalent to assume that the absorption 

coefficient is constant with height, which will be one of the preliminary simplifications that will be made in the 

Chapter 2. However, this is not a realistic assumption, since the amount of water vapor decreases with height. 

In Chapter 3, the absorption coefficient from equation (1.48) will be considered, what would be equivalent to 

divide the atmosphere in many sheets of glass, each one with its own effective temperature. 
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2 UNSTEADY ONE-DIMENSIONAL CONDUCTION-

RADIATION PROBLEMS 

 

2.1. Introduction 

As a first application of the theory of radiative transfer exposed in Section 2 of Chapter 1, the combined 

radiation conduction problem in the simple situation of a one-dimensional, incompressible, gray medium will 

be considered in this chapter. The equation governing the one-dimensional temperature field, 𝑇(𝑧, 𝑡), within 

the slab infinite in the horizontal directions, 𝑥 and 𝑦 of Figure 1 is  

 𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑧2
−
𝜕𝑞𝑅
𝜕𝑧
 , (2.1) 

 

Figure 18: Schematics illustrating the radiant intensities 𝐼+ and 𝐼−. 

where the density, 𝜌, the specific heat, 𝑐𝑝, and the thermal conductivity, 𝑘, of the medium are assumed to be 

uniform. According to equation (1.40), the radiant heat leaving the unit volume per unit time is 

 
𝜕𝑞𝑅
𝜕𝑧

= 4𝜋𝛽(1 − 𝜔)(
𝜎𝑇4

𝜋
−
𝐺

4𝜋
) , (2.2) 

where 𝐺 = ∫ 𝐼(𝑠, 𝑡, �̂�)
 

4𝜋
𝑑Ω is the radiant intensity over a spherical solid angle (hemispherical radiant 

intensity), and 𝐺 (4𝜋)⁄  is the average over the unit sphere. Observe that in order to solve (2.1), the expression 

for 𝐺 in (2.2) in terms of the temperature field within the slab must first be found. This requires solving the 

integro-diferential equation (1.37) of Chapter 1, which written explicitly in terms of 𝐼(𝑠, 𝑡, �̂�) and 𝑇 is 
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𝑑𝐼

𝑑𝑠
= −𝛽𝐼 +

𝛽𝜔

4𝜋
∫ 𝐼(𝑠, 𝑡, �̂�)
 

4𝜋

𝑑Ω +
𝛽(1 − 𝜔)

𝜋
𝜎𝑇4 , (2.3) 

to express the radiant intensity in terms of 𝑇 and the boundary conditions at the slab lower and upper surfaces. 

Since 𝐼(𝑠, 𝑡, �̂�) -and, therefore, 𝐺(𝑠, 𝑡)- depend in a nonlinear way on the values of  𝑇 at all points in the 

domain, (2.1) yields a partial nonlinear integro-differential equation for the temperature field.   

Observe in Figure 1 that, due to the symmetry of the problem, all planes containing the z-axis are equivalent 

and, therefore, the radiant intensity does not depend on the angle 𝜙 around the z-axis, but only on the polar 

angle 𝜃 shown in the figure. If what follows, and for the sake of brevity, the explicit time dependence will be 

often suppressed from the arguments of the radiant intensity and its 𝜃 -dependence will be characterized by 

𝜇 = cos 𝜃. Note also in Figure 1 that only the range 0 ≤ 𝜃 ≤ 𝜋 2⁄  (1 ≥ 𝜇 ≥ 0) needs to be considered if for 

each value of 𝜃 in this range the intensities 𝐼+(𝑠, 𝜇) ≡ 𝐼(𝑠, �̂� = cos 𝜃 𝒆𝒙 + sin 𝜃 𝒆𝒛) and 𝐼−(𝑠, 𝜇) ≡

𝐼(𝑠, �̂� = −cos 𝜃 𝒆𝒙 − sin𝜃 𝒆𝒛) travelling in the positive and negative $z$-directions, respectively, are 

defined. 

 

In this chapter, the equation (2.3) will be solved in Section 2 and a numerical method to solve the equation 

(2.1) will be proposed in Section 3 and validated in Section 4 with known results existing in the literature.  The 

Matlab code used to implement the numerical method is detailed in the appendix. 

2.2. The radiant intensity field in a one-dimensional slab 

In order to solve (2.3) for the slab shown in figure 1, it is convenient to use as independent variable the optical 

depth, defined as 

 𝜏 = ∫ 𝛽(𝑧′)
𝑧

0

𝑑𝑧′, (2.4) 

and to take into account that, the path length element 𝑑𝑠 for a ray travelling in the direction defined by an 

angle 𝜃 is related to the vertical coordinate element by 𝑑𝑠 = 𝑑𝑧 𝜇⁄ = 𝑑𝜏 (𝛽𝜇)⁄ . Then, according to (2.3), the 

equation for the radiant intensity for a ray travelling in the positive z-direction can be written as 

 
𝑑𝐼+

𝑑𝜏
= −

𝐼+(𝜇, 𝜏)

𝜇
+
𝑆(𝜏)

𝜇
 , (2.5) 

where 𝑆 = (1 − 𝜔)𝐼𝑏(𝑇) + 𝜔𝐺 4𝜋⁄  is the source function introduced in equation (1.38), which represents the 

augmentation of radiant intensity due to the effects of both emission and scattering into the ray direction. 

Equation (2.5) is a first order, linear, ordinary differential for 𝐼+(𝜇, 𝜏) which, with the help of the integrating 

factor 𝑒𝜏 𝜇⁄ , can be immediately integrated to yield 

 𝐼+(𝜏, 𝜇) = 𝐼+(0, 𝜇)𝑒
−
𝜏
𝜇 +∫ 𝑒

𝜏′−𝜏
𝜇
𝑆(𝜏′)

𝜇
 

𝜏

0

𝑑𝜏′. (2.6) 

The first term on the RHS of (2.6) represents the attenuation -due to both absorption and scattering- of the ray 
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intensity as it travels from the lower boundary 𝑧 = 𝜏 = 0 -where its value is 𝐼+(0, 𝜇) -up to a level 𝑧 where 

the optical depth is 𝜏, while the second term represents the augmentation of the ray intensity due to the 

accumulated contributions of the source functions of the elementary optical paths 𝑑𝜏′ from 𝜏′ = 0 up to 𝜏′ = 𝜏 

-note that the contribution of each 𝑑𝜏′ is affected by weight function 𝑒
𝜏′−𝜏

𝜇 ,which decreases as the optical 

distance 𝜏 − 𝜏′ increases. Analogously, and taking into account that for rays propagating in the negative z-

direction 𝑑𝑠 = −𝑑𝑧 𝜇⁄ = −𝑑𝜏 (𝛽𝜇)⁄ , (2.3) provides the equation for 𝐼−(𝜏, 𝜇) as 

 
𝑑𝐼−

𝑑𝜏
=
𝐼−(𝜇, 𝜏)

𝜇
−
𝑆(𝜏)

𝜇
 . (2.7) 

By making use of the integrating factor 𝑒𝜏 𝜇⁄ , equation can be immediately integrated between 𝜏0 = 𝜏(𝑧 = 𝐻) 

and 𝜏 to yield 

 𝐼−(𝜏, 𝜇) = 𝐼−(𝜏0, 𝜇)𝑒
−(𝜏0−𝜏)
𝜇 +∫ 𝑒

𝜏−𝜏′

𝜇
𝑆(𝜏′)

𝜇

𝜏0

𝜏

𝑑𝜏′ , (2.8) 

which is an expression with the same physical meaning as (2.6) if one takes into account that now the ray starts 

at the upper surface and travels towards regions of decreasing optical depth. 

Since 𝑑Ω = 𝑑𝜙𝑑𝜃 sin𝜃 = −𝑑𝜙𝑑𝜇, the radiant intensity over the unit sphere can be written in terms of 𝐼+ 

and 𝐼− as 

 𝐺(𝜏) = ∫ 𝑑𝜙
2𝜋

0

∫ sin𝜃 𝐼(𝜏, �̂�)
𝜋

0

𝑑𝜃 = 2𝜋∫ [𝐼+(𝜏, 𝜇) + 𝐼−(𝜏, 𝜇)]
1

0

𝑑𝜇 . (2.9) 

In what follows only the case of diffuse boundaries will be considered, in which case the radiant intensities at 

the domain surfaces are independent of 𝜇. Thus, if 𝐵1 and 𝐵2 denote the radiosities of the lower and the upper 

surfaces of the slab, one has that 𝐼+(0, 𝜇) = 𝐵1 𝜋⁄  and 𝐼−(𝜏0, 𝜇) = 𝐵2 𝜋⁄ , and equations (2.6) and (2.8)-(2.9) 

yield 

 𝐺(𝜏) = 2[𝐵1𝐸2(𝜏) + 𝐵2𝐸2(𝜏0 − 𝜏)] + 2𝜋 [∫ 𝑆(𝜏′)𝐸1(|𝜏
′ − 𝜏|)

𝜏0

0

𝑑𝜏′ ] , (2.10) 

where the well known definition of the n-th exponential integral function 

 𝐸(𝜒) = ∫ 𝜇𝑛−2𝑒
𝜒
𝜇

1

0

𝑑𝜇     (𝑛 ≥ 1) (2.11) 

has been employed. 

The radiative heat flux in the z-direction 𝑞𝑅(𝑧), can be obtained from equation (1.25) and (1.28) as 

 𝑞𝑅 = 𝒆𝒛 · 𝒒𝑹 = ∫ 𝜇𝐼(𝑠, �̂�)
 

2𝜋

𝑑Ω −∫ 𝜇𝐼(𝑠, −�̂�)
 

2𝜋

𝑑Ω , (2.12) 

where it has been taken into account that 𝒆𝒛 · �̂� = 𝜇. For the one-dimensional case, (2.12) can be expressed in 

terms of 𝐼+ and 𝐼− as 
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 𝑞𝑅(𝜏) = 2𝜋∫ 𝜇𝐼+(𝜏, 𝜇)
1

0

𝑑𝜇 − 2𝜋∫ 𝜇𝐼−(𝜏, 𝜇)
1

0

𝑑𝜇 = 𝑞𝑅
+ − 𝑞𝑅

− , (2.13) 

which can be obviously interpreted as the difference between the upwards heat flux carried by rays traveling in 

the positive z-direction, 𝑞𝑅
+, and that carried downwards by rays traveling in the negative z-direction, 𝑞𝑅

−. On 

sustituting (2.6) and (2.8) in (2.13) respectively, there results 

 𝑞𝑅(𝜏) = 2𝐵1𝐸3(𝜏) − 2𝐵2𝐸3(𝜏0 − 𝜏) + 2𝜋∫ 𝑠𝑖𝑔𝑛(𝜏 − 𝜏′)𝑆(𝜏′)𝐸2(|𝜏 − 𝜏
′|)

𝜏0

0

𝑑𝜏′, (2.14) 

On taking into account that 𝐸3(0) = 1 2⁄ , equation (2.14) particularized for 𝜏 = 0 and 𝜏 = 𝜏0 yields 

respectively 

 𝑞𝑅(0) = 𝐵1 − [2𝐵2𝐸3(𝜏0) + 2𝜋∫ 𝑆(𝜏′)𝐸2(𝜏′)
𝜏0

0

𝑑𝜏′] (2.15) 

and 

 𝑞𝑅(𝜏0) = −𝐵2 + [2𝐵1𝐸3(𝜏0) + 2𝜋∫ 𝑆(𝜏′)𝐸2(𝜏0 − 𝜏′)
𝜏0

0

𝑑𝜏′] . (2.16) 

Observe that the quantities within the brackets in (2.15)-(2.16) can be identified as the irradiances 𝐻1 and 𝐻2 

on the lower and upper surfaces, respectively, which where introduced in section 1 of Chapter 1. In this work, 

only surfaces for which the relation 𝐵 = 𝜎휀𝑇4  + (1 − 휀) 𝐻 applies -where 휀 is the surface emissivity- will 

be considered. Thus, by substituting in this relation the expressions for the irradiances obtained from (2.15)-

(2.16), on obtains that at the lower and upper surfaces the boundary conditions 

 𝐵1 − 2𝐵2(1 − 휀1)𝐸3(𝜏0) − 2𝜋(1 − 휀1)∫ 𝑆(𝜏′)𝐸2(𝜏
′)

𝜏0

0

𝑑𝜏′ = 𝜎휀1𝑇1
4 (2.17) 

and 

 −2𝐵1(1 − 휀2)𝐸3(𝜏0) + 𝐵2 − 2𝜋(1 − 휀2)∫ 𝑆(𝜏′)𝐸2(𝜏0 − 𝜏
′)

𝜏0

0

𝑑𝜏′ = 𝜎휀2𝑇2
4 (2.18) 

must be satisfied. 

If the expression for the source function 𝑆 = (1 − 𝜔)𝐼𝑏(𝑇) + 𝜔𝐺 4𝜋⁄  -where 𝐼𝑏(𝑇) = 𝜎𝑇
4 𝜋⁄  is the black 

body radiant intensity- is introduced in equations  (2.10) and (2.17)-(2.18) the following system of three 

integro-algebraic equations is obtained 

 

𝐺(𝜏) −
𝜔

2
∫ 𝐺(𝜏′)𝐸1(|𝜏 − 𝜏

′|)
𝜏0

0

𝑑𝜏′ − 2𝐵1𝐸2(𝜏) − 2𝐵2𝐸2(𝜏0 − 𝜏)

= 2𝜋(1 − 𝜔)∫ 𝐼𝑏(𝜏
′)𝐸1(|𝜏 − 𝜏

′|)
𝜏0

0

𝑑𝜏′ , 
(2.19) 
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−
𝜔

2
(1 − 휀1)∫ 𝐺(𝜏′)𝐸2(𝜏

′)
𝜏0

0

𝑑𝑡 + 𝐵1 − 2(1 − 휀1)𝐸3(𝜏0)𝐵2

= 휀1𝐼𝑏1𝜋 + 2𝜋(1 − 𝜔)(1 − 휀1)∫ 𝐼𝑏(𝜏
′)𝐸2(𝜏

′)
𝜏0

0

𝑑𝑡 , 
(2.20) 

 

−
𝜔

2
(1 − 휀2)∫ 𝐺(𝜏′)𝐸2(𝜏0 − 𝜏

′)
𝜏0

0

𝑑𝜏′ + 𝐵2 − 2(1 − 휀2)𝐸3(𝜏0)𝐵1

= 휀2𝐼𝑏2𝜋 + 2𝜋(1 − 𝜔)(1 − 휀2)∫ 𝐼𝑏(𝜏
′)𝐸2(𝜏0 − 𝜏

′)
𝜏0

0

𝑑𝜏′, 
(2.21) 

where, for the sake of simplicity in the presentation, it has been assumed that 𝜔 is uniform within the slab. 

Equations (2.19)-(2.20), whose discretization and numerical solution will be explained in the next section, 

permit to obtain simultaneously 𝐺(𝜏), 𝐵1 and 𝐵2 in terms of the distribution of 𝐼𝑏(𝜏) -or which is the same, in 

terms  the temperature field 𝑇(𝜏)- within the slab. 

2.3. Numerical method 

After the equations have been written in a proper form, they must be solved numerically and, therefore, the 

values of the quantities, 𝐺(𝜏) and 𝐼𝑏(𝜏) in this case, will be needed at discrete points.  

 

Figure 19: Schematics of the discretization and the unknown values of the function 𝐺 and 𝐼𝑏 at each point. 

Therefore, the first objective is to discretize equations (2.19)-(2.21) in order to arrive to a solution of the form 

 [
𝑮

𝐵1
𝐵2

] = 𝑀𝐺𝐽 · 𝑰𝒃 , (2.22) 

where 𝑮 = [𝐺1, … , 𝐺𝑖 , … , 𝐺𝑁𝑧]
𝑇

 and 𝑰𝒃 = [𝐼𝑏1, … , 𝐼𝑏𝑖, … , 𝐼𝑏𝑁𝑧]
𝑇
 are the values of 𝐺(𝜏) and 𝐼𝑏(𝜏) at the 

nodes, that is, 𝐺𝑖 = 𝐺(𝜏𝑖) and 𝐼𝑏𝑖 = 𝐼𝑏(𝜏𝑖).

Firstly, equation (2.19) is considered with integrals with exponential integral functions (𝐸1(|𝑡 − 𝜏|)). For this 

purpose, consider any function of the form 
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 𝐹(𝜏) = ∫ 𝑓(𝜏′)
𝜏0

0

𝐸1(|𝜏 − 𝜏′|) , (2.23) 

which, once discretized, may be written as

 

[
 
 
 
 
𝐹1
⋮
𝐹𝑖
⋮

𝐹𝑁𝑧]
 
 
 
 

= [

   

 𝐴𝑖𝑗  

   
]

[
 
 
 
 
𝑓
1

⋮
𝑓
𝑗

⋮

𝑓
𝑁𝑧]
 
 
 
 

 . (2.24) 

Note that the contribution to the integral (2.23) at 𝜏 = 𝜏𝑖 from each interval [𝜏𝑗, 𝜏𝑗+1], where 𝑗 = (1,… ,𝑁𝑧), 

can be approximate by

 
𝑓
𝑗
+ 𝑓

𝑗+1

2
∫ 𝐸1(|𝜏𝑖 − 𝜏′|)
𝜏𝑗+1

𝜏𝑗

𝑑𝜏′ ≡
𝑓
𝑗
+ 𝑓

𝑗+1

2
𝑔
𝑖𝑗
 . (2.25) 

Since 𝐸1(𝜏) has a logarithmic singularity at the origin 𝜏 → 0, it is preferable to use the following property 

 
𝑑𝐸𝑛(𝜒)

𝑑𝜒
= −𝐸𝑛−1(𝜒) (2.26) 

of the exponential integrals and write the integral in (2.25) in terms of 𝐸2(𝜏). Since there is an absolute value 

in the function argument, two cases are distinguished. The first case is that  𝜏𝑖 ≥ 𝜏𝑗+1, as in Figure 20, which 

yields

 

 

Figure 20: Schematics of the case 𝜏𝑖 ≥ 𝜏𝑗+1 in which 𝜏′ is between 𝜏𝑗 and 𝜏𝑗+1 for the integration. 

 

 𝐸1(|𝜏𝑖 − 𝜏′|) = 𝐸1(𝜏𝑖 − 𝜏′) =
𝑑𝐸2

𝑑𝜏′
(𝜏𝑖 − 𝜏′) , (2.27) 

and the integral becomes

 𝑔
𝑖𝑗
= ∫ 𝐸1(𝜏𝑖 − 𝜏′)

𝜏𝑗+1

𝜏𝑗

𝑑𝜏′ = 𝐸2(𝜏𝑖 − 𝜏𝑗+1) − 𝐸2(𝜏𝑖 − 𝜏𝑗) . (2.28) 

The second case corresponds to 𝜏𝑖 ≤ 𝜏𝑗, which yields
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Figure 21: Schematics of the case 𝜏𝑖 ≤ 𝜏𝑗 in which 𝜏′ is between 𝜏𝑗 and 𝜏𝑗+1 for the integration. 

 𝐸1(|𝜏𝑖 − 𝜏′|) = 𝐸1(𝜏
′ − 𝜏𝑖) = −

𝑑𝐸2

𝑑𝜏′
(𝜏′ − 𝜏𝑖)  (2.29) 

And, therefore,

 𝑔
𝑖𝑗
= −𝐸2(𝜏𝑗+1 − 𝜏𝑖) + 𝐸2(𝜏𝑖 − 𝜏𝑗) (2.30) 

Observe that expressions (2.28) and (2.30) can be combined into the single one

 

𝑔
𝑖𝑗
= 𝑠𝑖𝑔𝑛(𝜏𝑖 − 𝜏𝑗+1 + 10

−12)𝐸2(|𝜏𝑖 − 𝜏𝑗+1|)

− 𝑠𝑖𝑔𝑛(𝜏𝑖 − 𝜏𝑗 − 10
−12)𝐸2(|𝜏𝑖 − 𝜏𝑗|) 

(2.31) 

which is very useful for numerical purposes. The terms ±10−12 are included so that the sign functions yield 

the proper values when 𝜏𝑖 = 𝜏𝑗+1 or 𝜏𝑖 = 𝜏𝑗. Thus, equations (2.23) and (2.25) yield

 

𝐹𝑖 = ∑
𝑓
𝑗
+ 𝑓

𝑗+1

2

𝑁𝑧−1

𝑗=1

𝑔
𝑖𝑗

=           =
𝑓
1

2
𝑔
𝑖1
+
𝑓
2

2
(𝑔
𝑖1
+ 𝑔

𝑖2
) + ⋯+

𝑓
𝑗

2
(𝑔
𝑖𝑗−1

+ 𝑔
𝑖𝑗
) + ⋯+

𝑓
𝑁𝑧

2
𝑔
𝑖𝑁𝑧−1

 

(2.32) 

or, in the form of equation (2.24),

𝐹𝑖 =∑ 𝐴𝑖𝑗

𝑁𝑧

𝑗=1

𝑓
𝑗
 

where 

𝐴(𝑖, 1) =
1

2
𝑔𝑖1 ,      𝐴(𝑖, 𝑗) =

𝑔𝑖𝑗−1 + 𝑔𝑖𝑗

2
 ,      𝐴(𝑖, 𝑁𝑧) =

𝑔𝑖𝑁𝑧−1

2
 

Then, equation (2.19) can be discretized as 

 (𝐼 −
𝜔

2
𝐴) · 𝑮(𝜏) − 2𝐵1𝑬𝟐(𝜏) − 2𝐵2𝑬𝟐(𝜏0 − 𝜏) = 2𝜋(1 − 𝜔)𝐴 · 𝑰𝒃(𝜏) (2.33) 

where 𝑮(𝜏) and 𝑰𝒃(𝜏) have the same meaning as in (2.22) and 𝑬𝟐(𝜏0 − 𝜏) = [𝐸2(𝜏0 − 𝜏1), … , 𝐸2(𝜏0 −

𝜏𝑖), … , 𝐸2(𝜏0 − 𝜏𝑁𝑧)]
𝑇
 and 𝑬𝟏(𝜏) = [𝐸2(𝜏1), … , 𝐸2(𝜏𝑖), … , 𝐸2(𝜏𝑁𝑧)] are the exponential integral function 

vectors.
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   Next the equations (2.20) and (2.21) for the radiosities will be discretized.  For this purpose, observe  in 

equation (2.20) that the expression 𝐼1 = ∫ 𝐺(𝜏′)𝐸2(𝜏′)
𝜏0

0
𝑑𝜏′ may be written using the trapezoidal rule as 

 

𝐼1 = ∑
𝐸2(𝜏𝑗)𝐺𝑗 + 𝐸2(𝜏𝑗+1)𝐺𝑗+1

2
(𝜏𝑗+1 − 𝜏𝑗)

𝑁𝑧−1

𝑗=1

=          = (
𝐸2(𝜏1)

2
(𝜏2 − 𝜏1), … ,

𝐸2(𝜏𝑁𝑧−1)

2
(𝜏𝑁𝑧 − 𝜏𝑁𝑧−1), 0) · 𝑮

+         +(0,
𝐸2(𝜏2)

2
(𝜏2 − 𝜏1), … ,

𝐸2(𝜏𝑁𝑧−1)

2
(𝜏𝑁𝑍 − 𝜏𝑁𝑧−1 )) · 𝑮 = 𝒂 · 𝑮 , 

(2.34) 

where the vector 𝒂 is defined as

 𝒂 = (
𝐸2(𝜏)

2
(𝜏2 − 𝜏1),… ,0) + (0,… ,

𝐸2(𝜏𝑁𝑧)

2
(𝜏𝑁𝑧 − 𝜏𝑁𝑧−1)) . (2.35) 

Analogously, the expression 𝐼2 = ∫ 𝐺(𝜏′)𝐸2(𝜏0 − 𝜏
′)

𝜏0

0
𝑑𝜏′ from equation (2.21) is discretized as 

 𝐼2 = ∑
𝐸2 (𝜏0 − 𝜏𝑗)𝐺𝑗 + 𝐸2(𝜏0 − 𝜏𝑗+1)𝐺𝑗+1

2
(𝜏𝑗+1 − 𝜏𝑗)

𝑁𝑧−1

𝑗=1

= 𝒃 · 𝑮 , (2.36) 

where 𝒃 is the analogous to 𝒂 in (2.34)

𝒃 = (
𝐸2(𝜏0 − 𝜏1)

2
(𝜏2 − 𝜏1),… ,0) + (0,… ,

𝐸2(𝜏0 − 𝜏𝑁𝑧)

2
(𝜏𝑁𝑧 − 𝜏𝑁𝑧−1)) . 

Then, equations (2.20) and (2.21) can be written in a form similar to that of equation (2.33) as  

 
−
𝜔

2
(1 − 휀1)𝒂 · 𝑮 + 𝐵1 − 2(1 − 휀1)𝐸3(𝜏0)𝐵2

= 휀1𝐼𝑏1𝜋 + 2𝜋(1 − 𝜔)(1 − 휀1)𝒂 · 𝑰𝒃 
(2.37) 

 
−
𝜔

2
(1 − 휀2)𝒃 · 𝑮 + 𝐵𝟐 − 2(1 − 휀2)𝐸3(𝜏0)𝐵1

= 휀2𝐼𝑏𝑁𝑧𝜋 + 2𝜋(1 − 𝜔)(1 − 휀2)𝒃 · 𝑰𝒃 
(2.38) 

   Finally, equations (2.33), (2.37) and (2.38) are written in matrix form as



39 

 

 

[
 
 
 
 
 
 
 
 
 

 −2𝐸2(𝜏1) −2𝐸2(𝜏0 − 𝜏1)
 ⋮ ⋮

𝐼 −
𝜔

2
𝐴 −2𝑬𝟐(𝜏) −𝑬𝟐(𝜏0 − 𝜏)

 ⋮ ⋮

 −2𝐸2(𝜏𝑁𝑧) −2𝐸2(𝜏0 − 𝜏𝑁𝑧)

−
𝜔

2
(1 − 휀1)𝒂       1 −2(1 − 휀1)𝐸(𝜏0)

−
𝜔

2
(1 − 휀2)𝒃       −2(1 − 휀2)𝐸3(𝜏0) 1 ]

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝐺(𝜏)
⋮

𝑮(𝜏)
⋮

𝐺(𝜏𝑁𝑧)

𝐵1
𝐵2 ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 

 

 

2𝜋(1 − 𝜔)𝐴
 

 

2𝜋𝒂(1 − 𝜔)(1 − 𝜖1) + (𝜋𝜖1𝒆𝟏)

2𝜋𝒃(1 − 𝜔)(1 − 𝜖2) + (𝜋𝜖2𝒆𝑵𝒛)]
 
 
 
 
 
 

[
 
 
 
 
𝐼𝑏1
⋮

𝑰𝒃
⋮

𝐼𝑏𝑁𝑧]
 
 
 
 

 , 

(2.39) 

where 𝒆𝟏 = [1, 0, … , 0] and 𝒆𝟐 = [0, … , 0, 1] , with 𝑁𝑧 components in both vectors. Thus, denoting the left 

member by 𝐿𝐺𝐵 ,which is a (𝑁
𝑧
+ 2) × (𝑁𝑧 + 2) matrix, and right member by  𝑅𝐼𝑏, which is a  (𝑁𝑧 +

2)𝑥𝑁𝑧) matrix, equation (2.39) can be compactly simply written as

 𝐿𝐺𝐵 · [
𝑮(𝜏)
𝐵1
𝐵2

] = 𝑅𝐼𝑏 · 𝑰𝒃(𝜏) (2.40) 

Although this system is defined to satisfy the boundary conditions 𝑇(0) = 𝑇1 and  𝑇(𝜏0) = 𝑇2,  it can be 

easily modified if there are different ones. Thus, if, for example, 𝐵2 = 0, last row in 𝐿𝐺𝐵 should be replaced 

by a vector of 0 except the last term which would be 1 and last row of 𝑅𝐼𝑏 would be a 0 vector :

 
𝐿𝐺𝐵(𝑁𝑧 + 2, 1: 𝑁𝑧 + 1) = 0 ,     𝐿𝐺𝐵(𝑁𝑧 + 2, 𝑁𝑧 + 2) = 1 , 

𝑅𝐼𝑏(𝑁𝑧 + 2, ∶) = 0. 
(2.41) 

Then, in order to calculate both the radiosities and the hemispherical radiant intensity function, 𝐿𝐺𝐵 may be 

invert and obtain

 [
𝑮(𝜏)
𝐵1
𝐵2

] = 𝐿𝐺𝐵
−1 · 𝑅𝐼𝑏 · 𝑰𝒃(𝜏) = 𝑀𝐺𝐵 · 𝑰𝒃(𝜏) , (2.42) 

where 𝑀𝐺𝐵 is of the form

 𝑀𝐺𝐵 = [

𝑀𝐺
𝒂𝑩𝟏
𝒂𝑩𝟐

] , (2.43) 

 𝑀𝐺 being  a (𝑁𝑧 × 𝑁𝑧) matrix,  both 𝑎𝐵1 and 𝑎𝐵2 are (1 × 𝑁𝑧) vectors, and the quantities 𝑮, 𝐵1 and 𝐵2 are
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 𝑮 = 𝑀𝐺 · 𝑰𝒃 ,         𝐵1 = 𝒂𝑩𝟏 · 𝑰𝒃 ,        𝐵2 = 𝒂𝑩𝟐 · 𝑰𝒃 . (2.44) 

       The (Nz x 1) vector 𝑰𝒃  results from solving the energy equation for the temperature. In effect, that 

equation can be written after combining equations (2.1) and (2.2) as  

 𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑧2
− 𝛽(1 − 𝜔)(4𝜎𝑇4 − 𝐺) . (2.45) 

In order to numerically solve (2.45), it is convenient to introduce the dimensionless variables 

 𝑧 = 𝐻𝑧 ,            𝑇 = 𝑇1𝑇 ,            𝑡 =
𝑘

4𝛼𝛽𝜎𝑇1
3 𝑡 , (2.46) 

where 𝛼 = 𝑘 (𝜌𝐶𝑝)⁄  is the thermal diffusivity coefficient and the bar on the top of each variable means that it 

is nondimensional. In terms of the new variables, equation (2.45) reads 

 
𝜕𝑇

𝜕𝑡
=
𝑁𝑐𝑟

𝜏0
2

𝜕2𝑇

𝜕𝑧
2 − (1 − 𝜔) (𝑇

4
−
𝐺(𝜏)

4𝜎𝑇1
4) , (2.47) 

where 𝑁𝑐𝑟 is the conduction to radiation ratio parameter and 𝜏0 is the optical depth, which are defined as

 𝑁𝑐𝑟 =
𝑘𝛽

4𝜎𝑇1
3  ,        𝜏0 = 𝛽𝐻 . (2.48) 

Observe that 𝑁𝑐𝑟 controls the energy transfer regime, that is, if this parameter is large the problem is 

dominated by conduction, while if it is small, radiation is the principle mechanism of transfer.  Analogously to 

(2.19)-(2.22), equation (2.47) must be discretized. This will be done in terms of the mesh (𝑧1 =

0,… ,  𝑧𝑗, … , 𝑧𝑁𝑧 = 1) and the vector 𝑻𝒏 = [𝑇1𝑛, … , 𝑇𝑗𝑛, … , 𝑇𝑁𝑍]
𝑇
, defined at those points at instant 𝑡𝑛.  The 

discretization yields

 𝑻𝒏 = 𝑻𝒏−𝟏 + 𝑑𝑡(
𝑁𝑐𝑟

𝜏0
2 𝐷𝑧𝑧 · 𝑻𝒏 − (1 − 𝜔) (1 −

1

4𝜋
𝑀𝐺) · 𝑻𝒏

4) , (2.49) 

where 𝐷𝑧𝑧 is the matrix resulting from the discretization of the operator 𝑑2 𝑑𝑧
2⁄ , obtained through the finite 

differences method, based on the Lagrange polynomials, as it is implemented in the Matlab code 

detailed in the appendix. The preceding equation may be written in compact form as

 𝐵 · 𝑻𝒏 + 𝑐 · 𝑻𝒏
4 = 𝒃 , (2.50) 

where 

 𝐵 = 𝐼 −
𝑁𝑐𝑟

𝜏0
2 𝐷𝑧𝑧𝑑𝑡 ,      𝑐 = (1 − 𝜔) (

1

4𝜋
𝑀𝐺 − 𝐼) 𝑑𝑡 ,        𝒃 = 𝑻𝒏−𝟏 . (2.51) 
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The first and last rows of 𝐵, 𝑐 and 𝒃 should be appropriately modified dependently on the boundary 

conditions. For example, if 𝑇(𝑧 = 0) = 𝑇1(𝑡) and 𝑇(𝑧 = 𝐻) = 𝑇2, one should have

 
𝐵(1, : ) = 0 ,      𝐵(1,1) = 1 ,   𝑐(1, : ) = 0 ,    𝑏(1) = 𝑇1(𝑡𝑛) , 

𝐵(𝑁𝑧 , : ) = 0 ,      𝐵(𝑁𝑧, 𝑁𝑧) = 1 ,    𝑐(𝑁𝑧, : ) = 0 ,     𝑏(𝑁𝑧) = 𝑇𝐻 . 
(2.52) 

If, on the other hand, the boundary conditions are 𝑇(𝑧 = 0) = 𝑇1 and 𝑑𝑇 𝑑𝑧⁄ (𝑧 = 𝐻) = 0, the modifications 

are

 𝐵(𝑁𝑧, : ) = 𝐷𝑧(𝑁𝑧, : ) ,        𝑐(𝑁𝑧, : ) = 0 ,        𝑏(𝑁𝑧) = 0 . (2.53) 

The system of equations (2.50) can be solved with the classical Newton-Raphson method. That is, if the 

guessed value of 𝑻𝒏 for the k-th iteration is 𝑻𝒌 and ∆𝑻 denotes the correction for the next iteration, then

 𝐵 · (𝑻𝒌 + ∆𝑻) + 𝑐 · (𝑻𝒌
4 + 4𝑻𝒌

3 ∗ ∆𝑻) = 𝒃 (2.54) 

where the operator ∗ means that the product is made component by component (Hadamard product), instead of 

a common vector product. This can also be written as

 ∆𝑻 = 𝑆−1 · 𝑭𝒌 , (2.55) 

where 𝑆 and 𝑭𝒌 are defined as

 𝑆 = 𝐵 + 4𝑐 ·

[
 
 
 
 
𝑻𝟏
3  …  0

 ⋱    

⋮  𝑻𝒌
3  ⋮

   ⋱  

0  …  𝑻𝑵𝒛
3
]
 
 
 
 

 , 𝑭𝒌 = 𝒃 − (𝐵 · 𝑻𝒌 + 𝑐 · 𝑻𝒌
4) . (2.56) 

Once the vector 𝑻𝒏 is known, the quantities 𝑮(𝜏), 𝐵1 and 𝐵2 can be found using the relation given by (2.44). 

Thus, all the quantities are known and therefore the problem is closed, since the temperature field has been 

found and the conductive and radiative fluxes may be calculated with the corresponding equations of section 2. 

2.4. Verification and comparison of results 

Up to now, in section 1, governing equations of the problem were derived while in section 2 a numerical 

method to solve these equations was developed. Thus, this section will be concerned with proving that the 

obtained results are both accurate and physically plausible. 

For this purpose, a comparison with [Sparrow & Cess (1978)] results for the conduction-radiation problem 

will be made first for some particular cases, such as radiative equilibrium and pure scattering or non-scattering 

media. The results obtained are quite similar, since the same governing equations have been used.  After this, 

the results will be contrasted with those by [Aston et al. (2000)]. In this case, the equations are different since 

they introduced a simplification in the model - the so called Eddington approximation to be discussed later -  

so that their results , although similar, differ somewhat from the ones obtained with the method proposed in 
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this work. Finally, results corresponding to several unsteady problems will be given. 

2.4.1 Validation of the method 

 First, the behaviour of the proposed  numerical model will be tested  for several cases with different values of  

the parameters 𝑵𝒄𝒓, 𝝉𝟎, 𝜺𝟏, 𝜺𝟐 and 𝝎 . Figure 22 represents the total (radiative plus conductive) non- 

dimensional heat flux   as a function of the parameter 𝑵𝒄𝒓 for different values of the optical thickness 𝝉𝟎 and 

for a non-scattering media (𝝎 = 𝟎). As can be seen, the numerical results obtained by the method are very 

similar to those given by Sparrow & Cess. The figure shows how the increase of the optical depth (opaque 

medium) reduces the heat transfer, while the augmentation of 𝑵𝒄𝒓 increases the heat flux as the problem tends 

to be dominated by heat conduction. In addition, it may be observed that the graphs have an asymptotic 

behaviour when 𝑵𝒄𝒓 reaches either very high or very low values. 

    

 

 

𝝉𝟎 = 𝟏 

Figure 22: Heat transfer results for 휀1 = 휀2 = 1 and 𝑇2 = 0.1 
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Figure 23 shows the effect of the scattering albedo on the total heat flux. Again, the results match properly 

with those of Sparrow and Cess. As the Figure 23 (a) shows, the heat flux has a very weak dependence on 𝜔 

when the emissivities of the surfaces are unity, so that both surfaces are black bodies. Figures 23 (b) and (c) 

show that this dependence increases when the emissivity decreases and that the effect is stronger as radiation 

gets more important. 

2.4.2 Radiative equilibrium 

Next the case radiative equilibrium case will be considered. In this case, radiation is the only mechanism of 

energy transfer and the temperature distribution within the medium, which is steady in equilibrium, results 

from a balance between the absorption and the emission of radiation.  The energy equation then yields   

 

 
𝜕𝑞𝑅
𝜕𝑧

= 0   
        
⇒    𝑞𝑅 = 𝑐 , (2.57) 

where 𝑐 is a constant.  Therefore, in order to have the condition of radiative equilibrium it is necessary that the 

Figure 23: Effect of albedo on heat transfer for (a) 𝜏0 = 1, 휀1 = 휀2 = 1; (b) 𝜏0 = 1, 휀1 = 휀2 = 0.5, 

𝑇2 = 0.5; (c) 𝜏0 = 1, 휀1 = 휀2 = 0.1, 𝑇2 = 0.5 

𝑁𝑐𝑟 = 0.1 

𝑁𝑐𝑟 = 0.1 

𝑁𝑐𝑟 = 1 
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radiative heat flux is the same at every point in the domain, its value being determined by the boundary 

conditions. Although this consideration allows to simplify the equations, the same numerical method exposed 

previously will be applied to solve the problem. In order to compare with the existing literature, it is 

convenient to introduce the following dimensionless variable which it is independent of the boundary 

condition of the top surface: 

 𝜙(𝜏) =
𝜎𝑇4(𝜏) − 𝐵2
𝐵1 − 𝐵2

=
𝑇4 − 𝐵2

𝐵1 − 𝐵2
 . (2.58) 

This quantity is represented in Figure 24 is as a function of the optical coordinate for different values of the 

optical depth. Again, the agreement with the results reported by Sparrow and Cess is very good.

    

Figure 24: Temperature function for 𝑁𝑐𝑟 = 0, 휀1 = 휀2 = 1, and boundary condition 𝑇𝐻 = 0.5. The values for 

𝜏0 are the ones written in the left picture (0, 0.1, 0.5, 1, 2, 10,∞). 

 

In addition, the temperature profile for two very different values of the optical depth is showed in Figure 25.  

 

Figure 25: Temperature profiles for radiative equilibrium with values 휀1 = 휀2 = 1, 𝑁𝑐𝑟 = 0, 𝜏0 = 0.1 (blue 

line) and 𝜏0 = 10 (red line), and boundary condition 𝑇𝐻 = 0.2. 
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It is observed that the temperature decreases more rapidly within the medium as it gets opaquer and that there 

exists a discontinuity in the temperature field at the boundaries. Then, it may be concluded that heat 

conduction must play here an analogous roll to that of viscosity in the boundary layer, so that the temperature 

distribution is smooth near the boundaries if heat conduction is taken into account. 

2.4.3 Milne-Eddington approximation 

The Eddington approximation is based on the assumption that the intensity of radiation is a linear function of 

𝜇. It may be used in a “slab medium”, that is, a medium in which variables are considered to be constant in 

planes. Then the intensity would be described by 

 𝐼(𝜇, 𝑧) = 𝑎(𝑧) + 𝜇𝑏(𝑧) (2.59) 

where 𝑧 is the coordinate normal to the slab horizontal planes. This simplification makes use of the moment 

method, where the m-th moment of the intensity is defined by

 𝑚 = ∫ 𝐼 𝒏𝒊𝟏𝒏𝒊𝟐…𝒏𝒊𝒎

 

Ω

𝑑𝜔  (2.60) 

Thus, the first three moments are denoted as

 𝐽 =
1

4𝜋
∫ 𝐼
 

Ω

𝑑𝜔;         𝐻𝑖 =
1

4𝜋
∫ 𝐼 𝒏𝒊

 

Ω

𝑑𝜔;        𝐾𝑖𝑗 =
1

4𝜋
∫ 𝐼 𝒏𝒊𝒏𝒋

 

Ω

𝑑𝜔 (2.61) 

so, the Eddington approximation would be equivalent to setting

 𝐾𝑖𝑗 =
1

3
𝐽𝛿𝑖𝑗 (2.62) 

with the assumption that 𝐾𝑖𝑗 is isotropic.

Introducing these terms into the equations and boundary conditions of the intensity of radiation yields the 

following system of equations (for a detailed derivation it can consulted the paper by [Aston et al. (2000)]) 

 
𝑑𝑇

𝑑𝑡
=
𝑑2𝑇

𝑑𝑧
2 −

3𝜏0
2𝜒

4
(𝑇
4
− 𝐽) , (2.63) 

 
𝑑2𝐽

2

𝑑𝑧
2 = −3𝜏0

2 (𝑇
4
− 𝐽) , (2.64) 

subject to the boundary conditions

 𝐽 −
1

√3𝜏

𝑑𝐽

𝑑𝑧
= 𝑓4(𝑡) ,    𝑇 = 𝑓(𝑡) ,     𝑎𝑡  𝑧 = 0, (2.65) 

 𝐽 +
1

√3𝜏

𝑑𝐽

𝑑𝑧
= 0 ,            

𝑑𝑇

𝑑𝑧
= 0 ,         𝑎𝑡  𝑧 = 1 , (2.66) 
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where the parameter 𝜒 has an opposite meaning to that of 𝑁𝑐𝑟 in the equations of section 2. Thus, when 𝜒 

tends to infinity the problem is radiation-dominated, while if it tends to 0, conduction would be the principal 

mechanism of heat transfer. Both parameters are related by

 𝑁𝑐𝑟 =
4

3𝜒
 . (2.67) 

The temperatures a heat flux profiles obtained by solving numerically equations (2.63)-(2.66) are shown for 

different parameters of the medium are shown in Figure 26.  This figure shows that, despite of the different 

equations and numerical methods used; the results are quite similar for most of the cases. However, it can be 

observed that the higher the optical depth is, the more important become the differences between both 

procedures. This fact is due to numerical issues, so increasing the number of mesh points would improve the 

results. Thus, we may conclude that the method developed works better for low values of the optical depth has 

low values, as it the case for most planetary atmospheres. 
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Figure 26: Comparison between the results given by [Aston et al. (2004)]  (dashed lines) and the ones obtained 

by the numerical method (solid lines) for (a) 𝜒 = 0.1 and 𝜏0 = 0.5, (b) 𝜒 = 100 and 𝜏0 = 0.1, (c) 𝜒 = 0.1 

and 𝜏0 = 15, (d) 𝜒 = 2 and 𝜏0 = 2, (e) 𝜒 = 10 and 𝜏0 = 10, (f) 𝜒 = 100 and 𝜏0 = 1000 . 

2.4.4 Transient state 

Many applications of thermal radiation require the study of a transient state since, in general, the boundary 

conditions change with time. That is the case of planetary atmospheres, where the incident radiation, and 

therefore the surface temperature, depends cyclically on time. In these cases, the transient state acquires great 

important, as it is the predominant regime. 

Although this topic will be treated in depth later, here the unsteady state will be validated by proving that there 

only exists a unique steady solution for certain boundary conditions. Then, in this section the boundary 

conditions will be fixed for the different cases, what fixes the unique steady state, and, for each case, give 

several initial conditions. In this way it can observed that for the steady state, the temperature profile is the 

same regardless of the starting state. However, the initial conditions will affect the time evolution at each point 

of the atmosphere, since the increments of temperature will change depending on the difference between the 

initial and final values. 

As can be seen in the figures 27 and 28 the instantaneous temperature which is reached at a given point 

depends strongly on the initial state, and so does the tendency of the evolution. For instance,  figures 27 (a) and 

28 (a) show that the temperature near 𝑧 = 0.8 tend to decrease with time, as the initial value of the 

temperature was higher than the final one, while for 27 and 28 (b) the opposite occurs.  However, it can be 

noted that for all cases, the final state (steady state) is exactly the same. Thus, it can be finally concluded that, 

although the evolution of the temperature profile does depend on the initial condition, this is not the case for 

the steady state, which is unique for given parameters and boundary conditions. 

To sum up, in this section it has been proved that, as expected, the numerical method developed is reliable 

enough, since the obtained results match properly those of the literature, and  gives an unique solution for the 

steady state, independently of the initial temperature profile. 
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Figure 27: : Temperature evolution with time for (a) an inverted exponential (𝑇0(𝑧) = 1 − 𝑒
−8𝑧), (b) flat 

(𝑇0(𝑧) = 0) and (c) sine (𝑇0(𝑧) = 0.5 + sin(2𝜋𝑧))  initial condition with parameters values 𝑁𝑐𝑟 = 2 and 

𝜏0 = 10. The numbers represent the order of the evolution. 𝑡 is the characteristic dimensionless time to reach 

the steady state. 
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Figure 28: Temperature evolution with time for (a) an inverted exponential (𝑇0(𝑧) = 1 − 𝑒
−8𝑧), (b) flat 

(𝑇0(𝑧) = 0) and (c) sine (𝑇0(𝑧) = 0.5 + sin(2𝜋𝑧)) initial condition with parameters values 𝑁𝑐𝑟 = 0.5 and 

𝜏0 = 50. The numbers represent the order of the evolution. 𝑡 is the characteristic dimensionless time to reach 

the steady state. 
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3 RADIATION-CONDUCTION-CONVECTION 

PROBLEMS APPLIED TO THE ATMOSPHERIC 

THERMAL STRUCTURE 

3.1. Introduction 

Once the numerical method has been developed and tested in the previous chapter, it will be applied in this 

chapter to some practical cases related to the thermal structure of the Earth’s atmosphere, whose physics was 

introduced in section 3 of chapter 1. Firstly, a simple atmospheric model with a uniform absorption coefficient 

and an atmosphere without convection will be considered and the results obtained will tested with those of the 

literature [Satoh (2014), Visconti (2001)]. After this, the unrealistic hypotheses of a constant absorption 

coefficient is replaced by that of a height dependent coefficient, which will improve the veracity of the 

solutions, and the transient responses of the non-convective atmosphere to several types of changes in the solar 

radiative flux incident on the Earth’s surface are analysed. Finally, the effects of convection are included and 

the transient evolution of a convective-radiative atmosphere towards the current steady state – the Standard   

Atmosphere - is computed and the results compared with those of the literature [Manabe & Stikcler (1963)] 

It is important to say that in this chapter equations and magnitudes are not expressed in terms of 𝑧 , as in the 

previous ones, but in terms of the optical thickness,  𝜏. When 𝛽 is constant, the optical thickness and the height 

have a similar physical meaning, as they represent exactly the same thing but scaled by the absorption 

coefficient However, when  𝛽 is variable, the relation between 𝑧 and 𝜏 becomes complicated and unknown a 

priori. In this case, the optical thickness is the natural variable to use in the formulation of the radiation 

problem as it takes into account both the height and the absorption coefficient value at that height. 

 

Figure 29: Pictorial representation of the isotropic hemispheres of the intensity of radiation 

3.2. Radiative atmosphere with constant absorption coefficient 

In this section the numerical method developed in the previous chapter will be applied to determine the 

thermal structure of an atmosphere in radiative equilibrium and with a constant absorption coefficient. The 
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results will be compared with those obtained by the use of the so called “two stream” approximation [Satoh 

(2014)], in which the equation of radiative transfer (1.35) is solved assuming that the radiant intensity is 

uniform in each hemisphere (see figure 29). The two-stream approximation provides an analytical solution for 

the temperature field which will be reviewed next - more detailed presentations can be found in Satoh (2014) 

or Visconti (2001). If 𝐼+ and 𝐼− denote the (assumed uniform) radiant intensities in the upper and lower 

hemispheres (see figure 29), the upwards and downwards heat fluxes are respectively 𝑞𝑅
+ = 𝜋𝐼+ and 𝑞𝑅

− =

𝜋𝐼− , respectively.  Thus, multiplying equations (2.5) and (2.7) by 2𝜋𝜇 and integrating with respect to 𝜇 

between 0 and 1 yield 

 −
2

3

𝑑𝑞𝑟
+(𝜏)

𝑑𝜏
= 𝑞𝑟

+(𝜏) − 𝜋𝑆(𝑇(𝜏)) , (3.1) 

 
2

3

𝑑𝑞
𝑟
−(𝜏)

𝑑𝜏
= 𝑞

𝑟
−(𝜏)− 𝜋𝑆(𝑇(𝜏)), (3.2) 

 and the net radiative flux of planetary radiation is given by

 𝑞
𝑟
(𝜏) = 𝑞

𝑟
+(𝜏) − 𝑞

𝑟
−(𝜏). (3.3) 

Throughout this chapter it will be assumed that the Earth’s surface emits as a black body and that the top of the 

atmosphere is transparent to radiation, so that all radiation incident upon escapes to free space. Thus, the 

boundary conditions for (3.1)-(3.2) are 

 𝑞
𝑟
+(0) = 𝜎𝑇0

4 ,     𝑞
𝑟
−(𝜏0) = 0, (3.4) 

where 𝜏0 is the optical depth at the top of the atmosphere. In order to simplify the model as much as possible, 

it will be assumed that the total radiative flux in the atmosphere is formed by the sum of the fluxes from just 

two sources: planetary and solar radiation (see figure 30).  Thus,

 𝑞
𝑟
= 𝑞

𝑟
− (1 − 𝐴)𝑞

𝑟𝑆
 , (3.5) 

where 𝑞
𝑟𝑆

 is the solar flux, 𝐴 is the albedo of the planet and 𝑞
𝑟
 is the horizontal mean upward radiative flux. 

The albedo is defined as the ratio between the amount of solar flux which is reflected in the surface and the 

total solar flux which reaches it.

 

Figure 30: Representation of the sources reaching and leaving the Earth. 
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Since the atmosphere is assumed to be in radiative equilibrium, equation (2.57) must be satisfied, so that 

equation (3.5) yields 

 𝑞
𝑟
= 𝑐 . (3.6) 

In particular, if there is not a radiative heat source neither in the atmosphere nor in the solid planetary system, 

the horizontal mean upward radiative flux must be zero (𝑐 = 0), and (3.5) and (3.6) yield

 𝑞𝑟 = 0         
⇒  𝑞

𝑟
= (1 − 𝐴)𝑞

𝑟𝑆
 . (3.7) 

Taking into account (3.3) and (3.7) together with the boundary conditions (3.4), equations (3.1)-(3.2) can be 

easily solved for the upward and downward fluxes to yield

 𝑞
𝑟
+(𝜏) =

𝑞
𝑟

2
(
3

2
(𝜏
0
− 𝜏) + 2), (3.8) 

 𝑞
𝑟
−(𝜏) =

𝑞
𝑟

2

3

2
(𝜏
0
− 𝜏). (3.9) 

Finally, taking into account that for a non-scattering atmosphere (𝜔 = 0), the source function is 𝑆 = 𝜎𝑇4 𝜋⁄ , 

and combining equations (3.1)-(3.2) and (3.7) -(3.9), the temperature profile can be obtained as a function of 

the optical thickness as

 𝑇(𝜏) = [
(1 − 𝐴)𝑞𝑟𝑆

2𝜎
(
3

2
(𝜏0 − 𝜏) + 1)]

1
4

 . (3.10) 

Observe that the surface temperature, 𝑇0, obtained from equation (3.8) and the boundary condition (3.4) is 

higher than the temperature at 𝜏 = 0 given by (3.10), so that 

 𝑇0 = [
𝑞
𝑟

2𝜎
(
3

2
𝜏𝑠 + 2)]

1
4
> [
𝑞
𝑟

2𝜎
(
3

2
𝜏0 + 2)]

1
4
= 𝑇(𝜏 = 0), (3.11) 

which indicates that there exists a jump in the temperature profile near the ground surface. As explained in 

chapter 2, this non-physical fact stems from the fact that heat conduction has been neglected in the analysis. 

Also note that in case the absorption coefficient does not vary with height (𝛽 ≠ 𝛽(𝑧)), the relation between 𝜏 

and 𝑧 is linear (𝜏 = 𝛽𝑧), so that

 (𝜏0 − 𝜏) = 𝜏0(1 − 𝑧) (3.12) 

where  𝑧 = z𝛽/ 𝜏0 , and equation (3.10) can be written as

 𝑇(𝑧) = [
(1 − 𝐴)𝑞𝑟𝑆

2𝜎
(
3

2
(1 − 𝑧)𝜏0 + 1)]

1
4

 (3.13) 

which yields the temperature as a function of height.  
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After an analytical solution for the temperature profile has been found, it will be compared with the solution 

provided by the numerical method developed in chapter 2. In order to do this, first the temperature will be 

nondimensionalized using the effective temperature, 𝑇𝑒 = [(1 − 𝐴)𝑞𝑟𝑆 𝜎⁄ ]
1

4, instead of the surface 

temperature.  The last row of the matrix (2.39) must be modified according to equation (2.41) to satisfy the 

zero radiosity condition at the upper surface imposed by de second equation in (3.4), and the emissivity of the 

lower surface will be set equal to one in order to satisfy the black body condition of the Earth’s surface. In 

addition, since, the known solar heat flux absorbed by the ground surface, (1 − 𝐴)𝑞𝑟𝑆  , will be imposed as 

boundary condition instead of the value of the surface temperature,, the first rows of the matrices B, C and 

vector b in (2.50) must be modified as follows: 

 

𝐵(1, ∶) = 0, 𝑏(1) = 1, 

𝐶(1, ∶) =
1

𝜋
(𝒂𝑩𝟏 − 2𝜋𝒂(1 − 𝜔) −

𝜔

2
𝒂𝑀𝐺)⏟                    

𝑞𝑟0

. (3.14) 

Finally, at the top of the atmosphere a null variation with height of the temperature will be assumed since, as 

mentioned in chapter 1, in the upper layers of the troposphere –the tropopause– the temperature remains 

practically constant with height, as can be seen in figure 31 corresponding to the International Standard 

Atmosphere (ISA). This condition is achieved by (2.53). 

 

Figure 31: ISA temperature profile. 

The good agreement of the results obtained with the two-stream approximation [Satoh (2014)] and with the 

numerical method are shown in Figure 32 for the cases of atmospheres with low  𝜏0 (transparent), intermediate  

𝜏0 and high  𝜏0 (opaque), respectively. Note that the lower the optical depth, the flatter becomes the 

temperature profile. In fact, in the opaque case, the temperature gradient is quite high at the top of the 

atmosphere yielding an unstable thermal equilibrium which may induce convection (see section 3). The 

augmentation of the temperature gradient with the optical depth takes place because of the increase of the 

absorption coefficient, which reduces the efficiency of radiation as a mechanism of energy transport.  
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Figure 32: Comparison between results obtained by the numerical method (blue line) and those from Satoh 

(red crosses) for atmospheres in radiative equilibrium and uniform absorption coefficients. The values of the 

atmospheric optical thicknesses are (a) 𝝉0 = 10
−2, (b) 𝜏0 = 6 and (c) 𝜏0 = 50.As one can observe, given 

solutions from the two different procedures are quite similar for the three cases. 

3.3. Radiative atmosphere with variable absorption coefficient 

The case of uniform absorption coefficient considered in the previous section is a very unrealistic one. In fact, 

the amount of radiation absorbed by the different layers of the atmosphere depends on its composition, 

especially on the distribution of absorbing constituents, such as CO2, O2, O3 or H2O. In this section a simplified 

atmospheric model with a height-dependent absorption coefficient will be analyzed by assuming that, as 

explained in section 3 of chapter 1, water vapor can be considered in good approximation as the sole absorber 

of infrared radiation in the troposphere. Thus, the absorption coefficient defined in the equation (1.48) will be 

used from now on in this chapter.   

Using expressions (1.44) and (1.48), and differentiating respect to 𝜏, equation (2.47) yields 

 
𝐷𝑇

𝐷𝑡
= 𝑝

𝛼
𝑁𝑐𝑟

𝑑

𝑑𝜏
(𝜌 𝑝

𝛼 𝑑𝑇

𝑑𝜏
) − 𝑝

𝛼(1 − 𝜔) (𝑇
4
−
𝐺(𝜏)

4𝜎𝑇𝑒
4) (3.15) 

where 𝑁𝑐𝑟 is defined as it was in chapter 2 but using 𝛽
𝑒
 as the reference absorption coefficient. To close the 

𝑻 

𝑻 𝑻 

𝝉 

𝝉 𝝉 

(𝒂) (𝒃) 

(𝒄) 
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problem, the hydrostatic equilibrium equation and the equation of state are used. It is easy to show that the 

hydrostatic equilibrium equation yields the pressure as a function of the optical depth as 

 
𝑝
𝛼+1

− 1

𝛼 + 1
= −

𝜌
𝑒
𝑔

𝑝
𝑠
𝛽
𝑠

𝜏 
       
⇒   𝑝 = (1 −

𝜏

𝜏0
)

1
1+𝛼

 (3.16) 

where the optical depth of the atmosphere in is given by

 𝜏0 =
𝑝
𝑠
𝜒𝑞
𝑎𝑠
𝑅𝑔𝑇𝑒

𝑔(1 + 𝛼)
 (3.17) 

while the equation of state is 

 
�̅�

�̅�
= �̅� (3.18) 

In the previous equations the reference density,  𝜌𝑒, has been defined through the equation 𝑝𝑠 𝜌𝑒⁄ = 𝑅𝑔𝑇𝑒. 

Note that equations (3.15)-(3.16) and (3.19) permit to determine the temperature, pressure and density and, 

therefore, the absorption coefficient, as a function of 𝜏. The relation between the height and the optical 

thickness is can be obtained by integration of the differential equation 𝑑𝑧 = 𝑑𝜏 𝛽⁄ .  

The three cases represented in figure 33 show how the normalized absorption coefficient behaves with respect 

the normalised optical thickness for different kinds of atmospheres.  As can be seen in the figure, the function 

 

Figure 33: Representation of the normalized absorption coefficient for opaque atmosphere (yellow line), 

medium atmosphere (red line) and transparent atmosphere (blue line). 

tends to be linear for small values of 𝜏0 (transparent atmosphere), while for large values of opaque atmosphere, 

this linearity disappears, especially at the top of the atmosphere, where the presence of water vapour is 

negligible. 

 Figure 34 shows, for parameters values typical of the Earth’s atmosphere (𝜏0 = 4 and 𝛼 = 4), the 

temperature profiles obtained by the two-stream approximation [Satoh (2014)] and by using the numerical 

method developed in chapter 2 applied to equations (3.15)-(3.16) and (3.19). Observed the good agreement 

𝝉 𝝉𝟎⁄  

𝜷 
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between the two solutions except in the outermost layers, which may be due to the approximate character of 

the two stream equations. 

     

Figure 34: Comparison of numerical (blue line) and Satoh (red dashed line) solution for a variable absorption 

coefficient. The values of the parameter are characteristic of the atmosphere:  𝜏0 = 4, 𝛼 = 4 and 𝑁𝑐𝑟 = 0.1. 

Figure 35 shows the effects 𝜏0 and 𝛼 have on the relation between the distributions of pressure and 

temperature. Observe that the larger 𝛼, the lower is the temperature for a given value of the pressure, except at 

the ground.  This is due to the fact that as 𝛼 increases the water vapor gets more concentrated near the surface, 

and so do the higher temperatures due to the absorption of radiation. On the other hand, the increase of 𝜏0 

originates larger temperatures for a given pressure, even at the ground, due to the augmented radiation 

absorption. a similar effect, but it also affects to the ground values. Also note that none of these parameter 

affects the temperature at the top of the atmosphere as it only depends, according to equation (3.10), on the 

radiative flux, which remains constant for all cases. 

     

Figure 35: Pressure vs.  temperature distributions for an atmosphere with a variable absorption coefficient. 

Parameters values are:  (a) 𝜏0 = 4, 𝛼 = 1, 5, 10, 20 and (b) 𝛼 = 4, 𝜏0 = 1, 5, 10, 25. 
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Finally, we compare the temperature profiles for the variable and the constant absorption coefficient 

   

 

Figure 36: Temperature profiles for constant (blue line) and variable (red line) absorption coefficient. The 

parameter values are (a) 𝜏0 = 0.1 and 𝑁𝑐𝑟 = 0.1, (a) 𝜏0 = 4 and 𝑁𝑐𝑟 = 0.1 and (a) 𝜏0 = 4 and 𝑁𝑐𝑟 = 10. 

It can be observed that for the terrestrial case, the temperature profiles are quite similar independently of the 

absorption coefficient. However, for cases in which the radiation is less effective, that is, for higher values of 

𝜏0 and 𝑁𝑐𝑟 the profiles tend to separate, so using a realistic absorption coefficient become quite important. 

3.4. Time evolution of a radiative-conductive atmosphere  

After having validated the numerical method with several known steady solutions, it will be applied in this 

section to analyse some unsteady situations for hypothetical radiative-conductive atmospheres. The analysis of 

the transient response is essential in a dynamical model of the atmosphere, as that solar radiative flux incident 

on a given portion of the planet’s surface varies on a daily basis. Two kinds of model simulations will be 

carried out in this section. The first one –which will be called heat impact– analyses the transient response of 

the atmosphere of an initially very cold planet when the stellar radiative flux incident on the planet’s surface 

suddenly increases from zero to a given value. The second simulation considers the more realistic and familiar 

situation in which the incident stellar radiative flux varies cyclically on a given area of the planet’s surface.  
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3.4.1 Heat impact 

The thermal atmospheric structures corresponding to different stages during the evolution of several 

transparent atmospheres under a heat impact are represented in figure 37. The atmospheres are characterized 

by the same, low value of the optical depth and by different values of the conduction-radiation parameter 𝑁𝑐𝑟 . 

It can be observed in figure 37.a that when thermal radiation is the only mechanism of energy transfer, the 

evolution of the outermost layers, where the absorption coefficient is very small due to the decrease of the 

concentration of the absorbing constituents, is much slower than that of the innermost ones, where the 

absorption coefficient is larger. Thus, the outer layers are the ones that control the time taken by the 

atmosphere to reach the radiative equilibrium. On the other hand, it can be observed in figures 37.b-37.d that, 

as expected, for increasing heat conduction the temperature profiles become more homogeneous within the 

whole atmosphere and the evolution towards the radiative-conductive equilibrium is faster. 

    

      

Figure 37: Temporal evolution of the temperature profiles for a transparent atmosphere (𝜏0 = 0.1) and 𝑁𝑐𝑟 =

0 (a), 𝑁𝑐𝑟 = 0.1 (b), 𝑁𝑐𝑟 = 5 (c) and 𝑁𝑐𝑟 = 20 (d). The numbers represent different stage of the evolution. 

Figure 38 show the different stages of the response to a heat impact of different atmospheres with the same 

moderate value of the optical depth (semi-transparent atmosphere) and different values of 𝑁𝑐𝑟. This case is 

especially interesting since the typical values of the optical depth for the Earth are in this range. It can be 

anticipated that, since the increasing of the optical depth reduces the effectiveness of the radiative energy 

transport, the times taken by the different atmospheres to reach the steady state will be longer than those 
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corresponding to the previous, transparent case. In addition, this increase changes the way in which the 

temperature profiles evolve to the steady state, as can be seen by comparing figures 37.a and 38.a.  

For the case of figure 37.a, in which radiation is very effective, the evolution begins with a linear temperature 

profile which deforms during de evolution but remaining smooth inside the atmosphere. However, at the 

optical depth increases (figure 38.a), also does the difference between the absorption coefficient between the 

inner and the outer atmospheric layers, which eventually leads to a large increase of the temperature of the 

inner layers which propagates outwards in the form of a heat wave. Although the case  𝑁𝑐𝑟=0 is the most 

relevnt for the Earth’s atmosphere, figures 38.b-38.c show that for increasing  𝑁𝑐𝑟 the effects of heat 

conduction in smoothing the temperature gradients and in shortening the characteristic time for the 

evolution also increase. However, this effects of the increase of  𝑁𝑐𝑟 are less pronounced than that in 

the case of a transparent atmosphere. 

    

     

Figure 38: Temporal evolution of the temperature profiles for a transparent atmosphere (𝜏0 = 4) and 𝑁𝑐𝑟 = 0 

(a), 𝑁𝑐𝑟 = 0.1 (b), 𝑁𝑐𝑟 = 5 (c) and 𝑁𝑐𝑟 = 20 (d). The numbers represent the order of the evolution. 

Finally, as shown in figure 39, the features of the evolution of opaque atmospheres are qualitatively similar, 

but more pronounced, to those with an intermediate optical depth (figure 38) discussed in the previous 

paragraph. 
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Figure 39: Temporal evolution of the temperature profiles for a transparent atmosphere (𝜏0 = 25) and 𝑁𝑐𝑟 =

0 (a), 𝑁𝑐𝑟 = 0.1 (b), 𝑁𝑐𝑟 = 5 (c) and 𝑁𝑐𝑟 = 20 (d). The numbers represent the order of the evolution. 

The dimensionless times elapsed until the transient responses to a heat impact of the different atmospheres 

considered in this subsection reach almost the steady state are listed in the table of figure 40.  It can be 

observed that, as discussed in the previous paragraphs, the effect of increasing heat conduction is to decrease 

the time for the evolution, while the increase of the optical depth has the opposite effect. 

 𝑁𝑐𝑟 

0 0.1 5 20 

 

𝜏0 

0.1 6678.9 18.8 8.34 8.23 

4 7200.1 1332.3 303.7 269.45 

25 7425.8 4655.6 1789.5 1655 

Figure 40: Value of the dimensionless time taken to reach the steady state, starting from a null temperature 

profile. 

To end up this section, the time evolution of temperature profiles at different atmospheric heights will be 

analysed. We are especially interested in the Earth case, so the temperature time evolutions of an atmosphere 

with parameters values similar to those of the Earth will be compared with those of a more unrealistic one – 

higher value of real case and a more unrealistic one (with a higher value of 𝑁𝑐𝑟  ). In figure 41, two 
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differentiate time scales have been considered: that of the upper layers (figures 41.a and 41.c) and that of the 

lower and intermediate layers (figures 41.b and 41.d). As can be seen in the figures these scales differ by about  

      

      

Figure 41: Evolution of the temperature with time for 0% of height (blue line), 25% of height (red line), 50% 

of height (green line), 75% of height (black line), 0% of height (cyan line). Figures (a) and (c) are represented 

in the characteristic scale of upper layers, and (b) and (d) in the scale of lower and intermediate layers. 

two orders of magnitude for the case of the Earth (𝑁𝑐𝑟 = 0 and 𝜏0 = 4, figures 41.a and 41.b) and by one 

order of magnitude for the radiative-conductive atmosphere (𝑁𝑐𝑟 = 0.1 and 𝜏0 = 4, figures 41.a and 41.b). 

This figure also illustrates that the effect of heat is to increase the time for the lower layers to reach the state 

and to decrease that for upper layers. 

3.4.2 Cyclical incident radiation 

As was introduced is the first chapter, the main source of energy of the Earth is the incident solar radiation. 

Until now it has been assumed that this radiative flux is constant in time, although this is clearly a very 

unrealistic assumption. In fact, the radiative emission of the sun remains constant with time, but due to the 

terrestrial rotation the amount of it that arrives to a given point of the Earth’s surface changes with time. For 

example, during the night the incident solar radiation is null, and reaches its highest value at midday.  
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Figure 42: Schematic picture of the incident radiation to the Earth’s surface. 

In order to model properly the incident solar radiation, it is necessary to take into account several variables, 

such as the latitude of the point in which we are simulating the flux, the solar declination which depends on the 

season and, therefore, on the day of the year and, of course, the time of the day. Since taking into consideration 

all these factors lead to a cumbersome expression for the incident solar flux, it will be assume hear that it can 

be approximated by the following cyclic law which only consider the time of the day: 

 {
𝑞𝑟𝑆 = 𝑞𝑟𝑆0 cos(𝜃)      −

𝜋

2
≤ 𝜃 <

𝜋

2

               0                           
𝜋

2
≤ 𝜃 <

3𝜋

2

 (3.19) 

where 𝑞
𝑟𝑆0

 is the highest value of the solar flux, that is, the flux at midday, and 𝜃 is the angle rotated by the 

Earth (see figure 42). Due to its definition it is obvious that for the midday we have that 𝜃 = 0. Thus, this 

angle can be written as 𝜃 = Ω𝑡, where Ω is the angular velocity of the Earth, and 𝑡 is the time elapsed from 

midday. Introducing the law for the time variation of the solar flux into the boundary conditions of the 

numerical model, the atmospheric profiles at each instant of time can be obtained. 

 Figure 43 shows the results of the simulation for the assumed solar law (3.19). The blue line represents the 

solution for a constant maximum flux (solar flux at midday), the red dashed line is the solution for a constant 

solar flux whose value is the mean value of (3.19) and the black lines represent the profiles with the highest 

and the lowest value of the temperature, respectively. In can be seen in the figure that the temperature profile 

oscillates around the mean-flux solution, that is, the dashed red line is between the two black lines. In addition, 

although during the cycle the maximum value of the solar flux, 𝑞
𝑟𝑆0

 , is reached, the solution is very different  

       

Figure 43:Temperature profiles for solar radiative flux. The (a) is for 𝑁𝑐𝑟 = 0.01 and (b) for 𝑁𝑐𝑟 = 1. 

𝑻 𝑻 

𝝉 𝝉 

(𝒂) (𝒃) 



 

 Radiation-conduction-convection problems applied to the atmospheric thermal structure 

64 

 

64 

to that of a constant flux of that value (blue line). Thus, it may be concluded that a variable cyclic solar flux is 

almost equivalent to receive a continue flux whose value coincides with the average flux whose value 

coincides with the average of the cycle. 

3.5. Radiative-convective-conductive atmosphere 

The final step in the study of the atmosphere is the introduction of convection as another mechanism of energy 

transfer. Thus, in this section, the convective flux of energy will be described. In first place, the criterion for 

the onset convection will be investigated. After this, the convection term of the energy equation will be derived 

in terms of the magnitudes and parameters of the problem and introduced in the governing equations. Finally, 

the new equations will be solved using the numerical method developed in chapter 2 and results will be 

compared with those obtained in the absence of convection.  

3.5.1 Onset of convection and convective flux 

The phenomenon of convection appears as a consequence of an instability of the thermal structure of the 

atmosphere. The purposes of this subsection are to investigate what causes the onset of convection, to establish 

a mathematical criterion for its occurrence and, finally, to provide a plausible approximate expression to 

compute the energy flux carried by convection. 

Consider a fluid particle initially located at a certain atmospheric layer, denoted by subscript 1, and in 

equilibrium with its surroundings, so that both have the same values of the state variables, (𝑇𝑝1, 𝜌𝑝1, 𝑝𝑝1) =

(𝑇𝑠1, 𝜌𝑠1, 𝑝𝑠1). If the particle is then displaced upwards by some sudden perturbation up to a higher layer, 

denoted by subscript 2, it may be assumed that the particle evolves adiabatically and that its pressure equals 

that of the surroundings at every location of the particle. Thus, in the p-T diagram the evolution of the particle 

from the initial layer to the final layer, with pressure 𝑝𝑝2 = 𝑝𝑠2, is along the red line shown in figure 44. Note 

that, as the evolution has been adiabatic, the densities of both particle and surroundings will differ at layer 2. 

Thus, if 𝜌
𝑝2
< 𝜌𝑠2 , as happens if the temperature profile of the atmosphere (surroundings) is like the red one 

in figure 44 (where  𝑇𝑝2 > 𝑇𝑠2) , the particle will continue raising  due the buoyancy force, while if 𝜌
𝑝2
>

𝜌𝑠2 , as happens if the temperature profile is like the blue one in figure 44  ( 𝑇𝑝2 > 𝑇𝑠2),  the particle will 

return to its original position. In the first case, the atmosphere is unstable to convection, and is known as a 

 

Figure 44: Schematic distribution of an adiabatic (black line), subadiabatic (red line) and superadiabatic (blue 

line) evolution. 
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superadiabatic atmosphere, while in the second one, it is stable to convection and is called a subadiabatic 

atmosphere. 

This above physical reasoning leads to the well known Schwarzchild criterion, which permits to characterize 

mathematically the condition for the onset of convection. To derive it, it is first necessary to express the 

pressure and densities at layer 2 in terms of those at layer 1 by using Taylor series as 

 𝜌𝑝2 = 𝜌𝑝1 + (
𝜕𝑝

𝜕𝑧
)
 
∆𝑧,    𝜌𝑠2 = 𝜌𝑠1 + (

𝜕𝑝

𝜕𝑧
)
 
∆𝑧,   (3.20) 

where derivatives are computed at layer 1 and higher order terms have been neglected. Since the stability 

condition requires  

 𝜌
𝑝2
> 𝜌𝑠2 (3.21) 

or, making use of the adiabatic evolution of the particle, 

 𝜌𝑠1 (
𝑝𝑠2
𝑝𝑠1
)

1
𝛾
> 𝜌𝑠2 , (3.22) 

insertion of (3.20) into (3.22) yields, after linearization,  

 −
1

𝛾

1

𝑝

𝜕𝑝

𝜕𝑧
< −

1

𝜌

𝜕𝜌

𝜕𝑧
 (3.23) 

where we have suppressed the subscripts in p and 𝜌 . Considering an ideal gas, its equation of state can be 

differentiated to obtain 

 
𝜕𝑝

𝑝
−
𝜕𝜌

𝜌
=
𝜕𝑇

𝑇
, (3.24) 

and combining equations (3.23) and (3.24) yields 

 −(1 −
1

𝛾
)
𝑇

𝑝

𝜕𝑝

𝜕𝑧
> −

𝜕𝑇

𝜕𝑧
. (3.25) 

Taking into account that 𝑅𝑔 = 𝐶𝑝 − 𝐶𝑣 and 𝛾 = 𝐶𝑝 𝐶𝑣⁄ , and using the hydrostatic equilibrium equation, 

dp/dz=- 𝜌 g , one finally obtains from (3.25) the Schwarzchild criterion as 

 −
𝑑𝑇

𝑑𝑧
<
𝑔

𝐶𝑝
, (3.26) 

where 𝑔 𝐶𝑝⁄ = Γ is the adiabatic temperature gradient.

where 𝑔 𝐶𝑝⁄ = Γ is the adiabatic temperature gradient. It states that convection will take place if the local 

lapse rate is larger than the negative of the adiabatic temperature gradient or, in physical terms, if the 

temperature distribution decreases faster than the adiabatic one.

Once the criterion for the appearance of a convective energy flux has been determined, such a term can be   
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introduced into equation (2.45) as 

 𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑧2
+
𝜕𝑞𝑐
𝜕𝑧
− 𝛽(1 − 𝜔)(4𝜎𝑇4(𝜏) − 𝐺(𝜏)), (3.27) 

where 𝑞𝑐 is the heat flux due to convection. 

where 𝑞𝑐 is the convective energy flux. Since atmospheric convection is highly turbulent, the modelling of 𝑞
𝑐
 

in terms of the problem variables is not a trivial issue. In this work it will done be means of the so called 

mixing length theory, [Satoh (2014)] which assumes that the convective heat transport is due to eddies that 

have characteristic lengths much smaller that the characteristic length of the problem. The theory considers 

that the convective eddies are individual air parcels which may move up or down a distance 𝑙 , the mixing 

length,  before they mix with their turbulent surroundings and that the convective energy flux can be 

approximated by the heat transported per unit area and per unit time by those individual parcels. In this theory  

the convective heat flux can be expressed by 

 

𝑞
𝑐
= −𝐾𝐻 (

𝑑𝑇

𝑑𝑧
+ Γ)      𝑖𝑓        

𝑑𝑇

𝑑𝑧
+ Γ ≤ 0, 

𝑞
𝑐
= 0                              𝑖𝑓        

𝑑𝑇

𝑑𝑧
+ Γ > 0, 

(3.28) 

where 𝐾𝐻 is a turbulent thermal diffusivity which must be modelled in terms of the variables of the problem. 

According to [Ramanathan-Coakley (1978)], the thermal diffusivity takes the following expression

 𝐾𝐻 = 1.32𝑧
2 (
𝑔|𝑑𝑇 𝑑𝑧⁄ + Γ|

𝑇
)

1
2

𝜌𝑐𝑝. 
(3.29) 

In order to solve (3.27)-(3.29) it is convenient to nondimensionalize the variable 𝑧 with a height related with 

the state variables of the problem, instead of the height of the atmosphere. In addition, as was done for the case 

of conductive-radiative equilibrium with  variable absorption coefficient, the optical thickness will be taken as 

the independent spatial variable, which is related  to z through equations (1.44), (1.46)-(1.47) and (3.17)-(3.18) 

as

 𝑑𝜏 = 𝜏0(𝛼 + 1)
𝑔

𝑅𝑔𝑇𝑒

𝑝
𝛼+1

𝑇
𝑑𝑧. (3.30) 

According to (3.30), it is convenient express 

 𝑧 = 𝐻𝑒𝑧 (3.31) 

where 𝑅𝑔𝑇𝑒 𝑔⁄ = 𝐻𝑒 is the scale height based on the effective temperature of the earth, and 𝑧  is the 

dimensionless vertical coordinate. In terms of the dimensionless variables of the problem, and taking into 

account (3.28),  the turbulent thermal diffusivity can now be expressed as, 
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 𝐾𝐻 = 1.32 (
𝑅𝑔𝑇𝑒

𝑔
)
2

𝜌
𝑒
𝑐𝑝 𝜌𝛽𝑒

1
2𝑔
1
2𝑧
2
𝜌 |
𝜌 𝑝

𝛼

𝑇

𝑑𝑇

𝑑𝜏
+
Γ

𝑇
|

1
2

·
1

2
(1 − 𝑠𝑔(𝜌 𝑝

𝛼 𝑑𝑇

𝑑𝜏
+ Γ)),   (3.32) 

where 𝑠𝑔 denotes  the sign function, and Γ = Γ (𝑇𝑒𝛽𝑒⁄ ) , which can also be written in a more compact way as 

 𝐾𝐻 = 1.32 (
𝑅𝑔𝑇𝑒

𝑔
)
2

𝜌𝑒𝑐𝑝𝛽𝑒
1
2𝑔
1
2�̂�𝐻, (3.33) 

where the expression of �̂�𝐻  can be identified from (3.32). Introducing (3.28)-(3.33) in equation (3.27) and 

using the dimensionless quantities, there results: 

 

𝜕𝑇

𝜕𝑡
= 𝑝

𝛼

[
 
 
 
 

𝑁𝑐𝑟
𝜕

𝜕𝜏
(𝑝
𝛼
𝜌
𝜕𝑇

𝜕𝜏
) +

1.32 (
𝑅𝑔𝑇𝑒
𝑔
)
2

𝛽𝑒
3
2𝜌
𝑒
𝑐𝑝𝑔

1
2

4𝜎𝑇𝑒
3⏟              

𝑁𝑐𝑜𝑛𝑣𝑟

𝜕

𝜕𝜏
(𝐾𝐻 (𝑝

𝛼
𝜌
𝜕𝑇

𝜕𝜏
+ Γ))

− (𝑇
4
−

𝐺

4𝜎𝑇𝑒
4
)

]
 
 
 
 

  

(3.34) 

which generalizes equation (2.47) by allowing for the presence of convection. The parameter 𝑁𝑐𝑜𝑛𝑣𝑟 is the 

convective equivalent to 𝑁𝑐𝑟, since it measures the relative importance between the energy transport 

mechanisms of convection and radiation. In order to numerically solve (3.34), it is more appropriate write in 

the following form: 

 

𝜕𝑇

𝜕𝑡
= 𝑝

𝛼
[(𝑝

𝛼
𝜌
𝜕2𝑇

𝜕𝜏2
+
𝜕(𝑝

𝛼
𝜌)

𝜕𝜏
 
𝜕𝑇

𝜕𝜏
)𝑁𝑐𝑟 +𝑁𝑐𝑜𝑛𝑣𝑟

𝜕𝐾𝐻
𝜕𝜏

(𝑝
𝛼
𝜌
𝜕𝑇

𝜕𝜏
+ Γ)

+ 𝑁𝑐𝑜𝑛𝑣𝑟 (𝐾𝐻𝑝
𝛼
𝜌
𝜕2𝑇

𝜕𝜏2
+ 𝐾𝐻

𝜕(𝑝
𝛼
𝜌)

𝜕𝜏
 
𝜕𝑇

𝜕𝜏
) − (𝑇

4
−

𝐺

4𝜎𝑇𝑒
4
)] 

(3.35) 

3.5.2 Results for a convective-radiative-conductive atmosphere 

In this final study of the thermal structure of the atmosphere, which, in general, involves the three mechanisms 

of heat transfer, equation (3.35) -instead of equation (3.15) - has been numerically solved using the method 

developed in chapter 2. The Matlab program for the numerical integration of (3.35) is included in the 

Appendix. The temperature profiles of the atmosphere will be computed for different conditions corresponding 

to different values of the governing parameters, 𝑁𝑐𝑟, 𝑁𝑐𝑜𝑛𝑣𝑟 and 𝜏0 , and the results will be compared  with 

those obtained for radiative-conductive atmospheres with the same 𝑁𝑐𝑟 and 𝜏0. Then, the vertical distributions 

of three types of heat fluxes will be represented. Lastly, the transient response to a heat impact of an initially 

cold atmosphere with terrestrial parameters will be numerically analized and the time evolutions of the 

potential and the thermal energy of the atmosphere computed  

he temperature profiles for different atmospheres with and without convection are represented in figure 45 
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Figure 45: Temperature profiles considering convection (blue line) and neglecting convection (red line). The 

cases considered are (a) 𝑁𝑐𝑟 = 0.1, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10
3 and 𝜏0 = 4; (b) 𝑁𝑐𝑟 = 0.1, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10

4 and 𝜏0 = 4; (c) 

𝑁𝑐𝑟 = 0.1, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10
4 and 𝜏0 = 10

−2; (d) 𝑁𝑐𝑟 = 20, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10
4 and 𝜏0 = 10

−2 ; (e) 𝑁𝑐𝑟 = 0.1, 

𝑁𝑐𝑜𝑛𝑣𝑟 = 10
4 and 𝜏0 = 25; (f) 𝑁𝑐𝑟 = 20, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10

4 and 𝜏0 = 25; (g) 𝑁𝑐𝑟 = 20, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10
4 and 

𝜏0 = 4; 

As can be observed the values of the parameters can change radically the solution of the problem. In particular, 

it can be seen in figures 45 (a) and (b) that convection makes the temperature profiles almost linear in the 

intermediate layers of the atmosphere. The region in which the temperature has a practically linear behaviour 

increases with 𝑁𝑐𝑜𝑛𝑣𝑟, since convection becomes more important and its effects extend to layers closer to the 

surface.  

In figures 45 (c) and (d) the optical depth has been decreased to a quite transparent value. The differences 

between these two pictures are unappreciable although in (c) the radiation is much more important in relation 

to conduction than in figure (d). This is a consequence of the tiny value of 𝜏0, which provokes that radiation is 

the main mechanism of energy transfer, and so conduction has very little effects in these kinds of atmosphere. 

Otherwise, if we compare the temperatures with and without convection, it can be seen convection increase 

their value because its efficient redistribution of energy. 

Figures 45 (e) and 45 (f) correspond to an opaque value of 𝜏0. In this case, they are differences between the 

profiles. The relative importance of conduction has as a consequence an augmentation of the minimum 

temperature at the top of the atmosphere, and reduces the linear zone yielding a parabolic shape to the 

convective profile. Compared with the non-convective profile the main differences are the reduction of both 

the slope and the maximum temperature, due to the homogenising effect that convection has on the 

temperature distribution. 

Finally, figure 45 (g) represents the same situation of figure 45 (b) but with conduction dominating over 

radiation. It can be seen that, as a consequence of the increase of 𝑁𝑐𝑟 , the linear zone has completely 

disappeared, and the minimum temperature has become higher while the maximum has become lower. 

Is interesting to analyse how the different fluxes (radiative, conductive and convective) participate in the 

problem and affect to the final solution. To do this, each heat flux is represented separately in figure 46 for the 

same cases considered in figure 45. 
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Figure 46: Heat fluxes of convection (green line), conduction (blue line) and radiation (red line). The cases 

considered are (a) 𝑁𝑐𝑟 = 0.1, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10
3 and 𝜏0 = 4; (b) 𝑁𝑐𝑟 = 0.1, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10

4 and 𝜏0 = 4; (c) 

𝑁𝑐𝑟 = 0.1, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10
4 and 𝜏0 = 10

−2; (d) 𝑁𝑐𝑟 = 20, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10
4 and 𝜏0 = 10

−2 ; (e) 𝑁𝑐𝑟 = 0.1, 

𝑁𝑐𝑜𝑛𝑣𝑟 = 10
4 and 𝜏0 = 25; (f) 𝑁𝑐𝑟 = 20, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10

4 and 𝜏0 = 25; (g) 𝑁𝑐𝑟 = 20, 𝑁𝑐𝑜𝑛𝑣𝑟 = 10
4 and 

𝜏0 = 4; 

In figures 46 (a) and 46 (b) can be observed that, since the main mechanisms of energy transfer are radiation 

and convection, there exists a kind of symmetry in the figure with respect to 𝑧 = 0.5 except in the lowest 

layers of the atmosphere where heat conduction acts in a small boundary layer near the surface. It can also be 

noticed that increasing 𝑁𝑐𝑜𝑛𝑣𝑟 augments the influence of convection in the lower and intermediates layers of 

the atmosphere and makes narrower the boundary layer where heat conduction is important in the boundary, 

but does not affect to the symmetry. 

For the cases considered in figures 45(c) and 46(d), the high transparency of the atmosphere makes radiation 

the most important energy transfer process and predominates in the whole atmosphere for the two cases, even 

in the boundary layer, where the effect of conduction is very small compared to that of radiation. 

Again, opaque atmospheres are represented in figures 46 (e) and 46 (f). In the first one the symmetry is 

maintained, but in the second one is not. The results of 46 (e) are quite similar to those of  46 (a), but as a 

consequence of the opacity, the convective flux reaches higher layer and layer values with respect to radiative 

heat flux, so that it predominates in a greater portion of the atmosphere. In figure 46 (f) it should be noticed 

that the radiative flux is more or less the same as in figure 46 (e) - except in the boundary layer because of the 

increase of 𝑁𝑐𝑟 and the consequent increment of the conductive flux -, but  the convective flux has decreased 

in the intermediate layers and, consequently, the conductive one has increased. Thus, it may be concluded that 

when the atmosphere is opaque, conduction may acquire great importance in the bottom and the middle layers 

of the atmosphere. 

Finally, in figure 46 (g) can be seen that convection has little effect in the atmosphere.  Thus, it can be 

concluded that the diminution of the opacity leads to a decrease of the convective heat flux, and if it is not very 

low, an augmentation of the conductive heat flux as well as a reduction of the radiative one in the low 

atmosphere. Compared with the case of figure 46 (a), it can be noticed that conduction has gained importance, 

while both convection and radiation have lost it. 

Lastly, the temperature profiles and the heat fluxes for the terrestrial atmosphere are represented for 
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appropriate values of the three parameters in figure 47. 

    

 

Figure 47: Temperature profile (a) and heat fluxes (b) for terrestrial atmosphere. The parameters used are 

𝑁𝑐𝑟 = 0.1, 𝑁𝑐𝑜𝑛𝑣𝑟 = 2 · 10
5 and 𝜏0 = 4. Figure (c) taken [Manabe & Strickler 1964] shows the comparison 

of the temperature profile for pure radiative equilibrium, dry adiabatic adjustment, and the convective case 

with a lapse rate of Γ = 6.5𝐾 𝐾𝑚⁄ . 

It can be seen in figure 47 (a) that the effect described for figures 45 (a) and (b) has become accentuated, since 

almost all the temperature profile is linear except in the highest and lowest layers. In addition, the maximum 

temperature, that of the surface, has decreased. These effects appear as a consequence of the increased 

convection, which mixes upper and lower layers tending to homogenize the temperature.  

Figure 47 (b) shows the effect predicted in figures 47 (a) and (b). In the very narrow boundary layer 

conduction has great importance, reaching values of 𝑞 = 0.75, and so have the convection, which has larger 

values of the flux. However, the increment of 𝑁𝑐𝑜𝑛𝑣𝑟 has not affected the heights up to which these fluxes 

have effect, since both conduction and convection have larger values only in the low atmosphere. 

To conclude the section, the transient response of the atmosphere to a heat impact has been analysed and the 

time evolutions of the thermal and gravitational energy of the atmosphere computed. in order to see how the. 

The atmospheric energy is divided into two main contributions: thermal energy and gravitational energy 
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(𝐸 = 𝐸𝑇 + 𝐸𝑔). Their expressions are respectively given by 

 𝐸𝑇 = ∫ 𝜌𝑐𝑣𝑇
𝐻

0

𝑑𝑧,        𝐸𝑔 = ∫ 𝜌𝑔𝑧
𝐻

0

𝑑𝑧. (3.36) 

Taking into account (1.44), equations (3.36) can be written in dimensionless variables as 

 𝐸𝑇 =
𝐸𝑇

(
𝜌𝑠𝑐𝑣𝑇𝑒
𝛽𝑒

)
= ∫

𝑇

𝑝
𝛼

𝜏0

0

𝑑𝜏,            𝐸𝑔 =
𝐸𝑔

(
𝜌𝑠𝑅𝑔𝑇𝑒
𝛽𝑒

)

= ∫
𝑧

𝑝
𝛼

𝜏0

0

𝑑𝜏. (3.37) 

These two magnitudes are represented in figure 48, as well as the total energy. 

     

Figure 48: Evolution of atmospheric potential energies. Figure (a) represents the thermal energy (black line) 

and the gravitational energy (blue line), as well as the nondimensionalized height with respect to the effective 

temperature (red line) and the mean temperature of the atmosphere (green line). Figure (b) shows the total 

energy evolution. 

It can be observed how both energies grow with time, as the height and the mean temperature of the 

atmosphere grow too. However, it can be noticed that their time evolutions slowly separate as the mean 

temperature grows faster than the height of the atmosphere. 
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4 CONCLUSION AND FUTURE LINES 

Along this document we have intended to achieve two main objectives. The first one was to give a concise and 

a practical approach to the physics of radiation - especially that related with atmospheric problems -, while the 

second one was to develop a numerical method which allows to solve unsteady, one-dimensional radiation 

problems in a simple way and not only for limit cases such as radiative equilibrium, or the approximations of 

optically thin or optically thick medium, but for a great variety of situations, including the transient state. 

In the first chapter, the general principles of the physics of radiation were presented as a theoretical base for the 

derivation of the governing equations. In addition, a simplified model of the atmosphere was described, as well 

as some of the phenomena which happen in it. 

After this, in chapter 2 the governing equations were derived, and written in an appropriate form to solve them 

numerically. A numerical method was then developed based on these equations, which consists on a 

combination of a finite difference discretization of the radiation equations and the use of a Newton-Rapson’s 

method for solving the energy equation. The method was verified by comparing the results obtained with those 

of the literature, giving very similar solutions. The unsteady state was tested by proving that, as the theory 

predicts, the method yields a unique steady state solution for given conditions independently of the initial state. 

Finally, in chapter 3 the implementation of the atmospheric model in the numerical method was checked and 

validated with results of the literature. Next, the method was used to study the evolution and steady state of 

different kinds of atmospheres by comparing the time taken to reach the final state. Lastly, to have a complete 

model of the energy transfer, convection was included and, again, results for different atmospheres were 

calculated. 

We may conclude that the numerical method developed in this project is both compact and functional, 

allowing to obtain a first approximation of the atmospheric thermal structure, and can be used as starting point 

for more complex methods and to calculate variables of interest such as the heat fluxes, which help to 

understand how the atmosphere evolves and behaves under certain conditions. 

As future objectives, it would be interesting to relax some of the assumptions made. For example, for the 

absorption coefficient, instead of considering the water vapour as the only constituent, other gases, such as 

ozone and 𝐶𝑂2 could be taken into account. In addition, the absorption bands of figure 15 may be considered 

in order to have a more complete model of the thermal structure of the atmosphere. 

With the same purpose, the vaporization and the latent heat of the vaporization could be included in the energy 

budget of the atmosphere considered here, as well as how the heating of the atmosphere gets fed back from 

this vaporization. 

Otherwise, in the atmospheric model presented here, only the troposphere has been studied for simplicity. 

Other layers of the atmosphere may be also taken into account, such as the stratosphere and the mesosphere, 

including the different processes that take place in those areas. This will improve and complete the vertical 

thermal structure, because, in addition to increment the height considered, some of the boundary conditions 

which were imposed in order to simulate the existence of these zones can be deleted if the zone itself is 

considered. 

Finally, about convection, the movement induced by a nonuniform heating can be taken into account to study 
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the dynamic behave of the convective atmosphere. Additionally, convective models different from the mixing 

length can be used. These models could be tested and compared with experimental or theoretical data of the 

literature, and determinate which model fulfil best the structure of the terrestrial atmosphere. 
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APPENDIX: MATLAB CODE 

function RadSparrowConvSimple 

clear all; clc; close all; 

%Governing parameters of the problem 

tau0=4; emiss1=1; emiss2=1; 

alpha=4; Ncr=0.1; omega=0; 

Nconvr=200000; 

Gamma=(1-1/1.4)/tau0/(alpha+1)*6.5/9.8; %lapse rate 

 

%Calulation of tau as spatial variable 

Ntau=500; 

taumin=0; taumax=0.9999*tau0; 

pmin=(1-0.9999)^(1/(alpha+1)); 

tauv(1:Ntau)=(taumax+taumin)/2-(taumax-taumin)/2*cos(((1:Ntau)-1)*pi/(Ntau-1)); 

htau(1:Ntau-1)=tauv(2:Ntau)-tauv(1:Ntau-1); htau(Ntau)=htau(Ntau-1); 

traptau(2:Ntau-1)=(tauv(3:Ntau)-tauv(1:Ntau-2))/2; traptau(1)=(tauv(2)-tauv(1))/2; 

traptau(Ntau)=(tauv(Ntau)-tauv(Ntau-1))/2; 

 

%Matrix for the first and second derivate with respect to tau 

[D_tau, D_tau2]=FinDiff(tauv,Ntau); 

 

%Calculation of the exponential functions 

tauH=tau0; 

NX=3*10^3; Nmu=10^5; 

Xv=linspace(0,tauH,NX); 

mu=linspace(10^-10,1,Nmu); 

E2v(1)=1; 

trapmu(2:Nmu-1)=(mu(3:Nmu)-mu(1:Nmu-2))/2; trapmu(1)=(mu(2)-mu(1))/2; trapmu(Nmu)=(mu(Nmu)-

mu(Nmu-1))/2; 

muinv=1./mu; 

for iX=2:NX, 

    X=Xv(iX); 

     E2v(iX)=trapmu*exp(-X.*muinv)'; 

end 

E3_H=trapmu*(mu.*exp(-tauH.*muinv))'; % Value of E3(tauH), needed for radiosities 

 

% Matrix A: 

Mtau=tauv'*ones(1,Ntau)-ones(Ntau,1)*tauv; % Matrix of dicretization of tau_i-tau_j de tau-tau' 

Mabtau=abs(Mtau); % Matrix of dicretization of |tau_i-tau_j| de |tau-tau'| 

ME2=interp1(Xv,E2v,Mabtau); % Matrix of dicretization of E2(|tau-tau'|) 

Mstaup=sign(Mtau+10^-10); Mstaum=sign(Mtau-10^-10); 

g(1:Ntau,1:Ntau-1)=Mstaup(:,2:Ntau).*ME2(:,2:Ntau)-Mstaum(:,1:Ntau-1).*ME2(:,1:Ntau-1); 

A(1:Ntau,1)=0.5*g(:,1); A(:,2:Ntau-1)=0.5*(g(:,1:Ntau-2)+g(:,2:Ntau-1)); A(:,Ntau)=0.5*g(:,Ntau-

1); 

 

% Vectors a and b: 

vE2(1:Ntau)=interp1(Xv,E2v,tauv); vE2(1)=1; 

vE2H(1:Ntau)=interp1(Xv,E2v,abs(tau0-tauv)); vE2H(Ntau)=1; 

a(1:Ntau)=0.5*[vE2(1:Ntau-1).*(tauv(2:Ntau)-tauv(1:Ntau-1)) 0]+0.5*[0 

vE2(2:Ntau).*(tauv(2:Ntau)-tauv(1:Ntau-1))]; 

b(1:Ntau)=0.5*[vE2H(1:Ntau-1).*(tauv(2:Ntau)-tauv(1:Ntau-1)) 0]+0.5*[0 

vE2H(2:Ntau).*(tauv(2:Ntau)-tauv(1:Ntau-1))]; 
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% Matrices LGJ and RIb: 

LGJ(1:Ntau,1:Ntau)=eye(Ntau)-omega/2*A; LGJ(1:Ntau,Ntau+1)=-2*vE2(1:Ntau)'; LGJ(1:Ntau,Ntau+2)=-

2*vE2H(1:Ntau)'; 

LGJ(Ntau+1,1:Ntau)=-omega*(1-emiss1)/2*a; LGJ(Ntau+1,Ntau+1)=1; LGJ(Ntau+1,Ntau+2)=-2*(1-

emiss1)*E3_H; 

LGJ(Ntau+2,1:Ntau)=0; LGJ(Ntau+2,Ntau+1)=0; LGJ(Ntau+2,Ntau+2)=1; %J2=0 

RIb(1:Ntau,1:Ntau)=2*pi*(1-omega)*A; 

RIb(Ntau+1,1:Ntau)=pi*emiss1*[1 zeros(1,Ntau-1)]+2*pi*(1-emiss1)*(1-omega)*a; 

RIb(Ntau+2,1:Ntau)=0; %J2=0% 

LGJiRIb=LGJ\RIb; MG=LGJiRIb(1:Ntau,1:Ntau); aJ1=LGJiRIb(Ntau+1,1:Ntau); 

aJ2=LGJiRIb(Ntau+2,1:Ntau); 

 

% Advance in time: 

dt=0.001; 

 

% Relation between the pressure and the optical thicness (independent of t) 

gamma=alpha/(alpha+1); 

pn(1:Ntau,1)=(1-tauv'/tau0).^(1/(alpha+1)); 

pnalpha(1:Ntau,1)=(1-tauv'/tau0).^gamma; 

pnalphamat=spdiags(pnalpha,0,Ntau,Ntau); 

 

%Matrix C of the Newton-Raphson method 

C=dt*(1-omega)*spdiags(pnalpha,0,Ntau,Ntau)*(eye(Ntau,Ntau)-MG/4/pi); 

C(1,:)=(aJ1-2*pi*(1-omega)*a-omega/2*a*MG)/pi; 

C(Ntau,:)=0; 

ftau2=log(1-tauv'/tau0).^2; 

dermax=0; %Set the derivate of the temperature with time to 0 

 

%Solving loop 

for it=1:100000, 

    t=dt*it; %Dimensionless time 

    tv(it)=t; %Dimensionless time vector 

    if it==1, 

        Tnm1(1:Ntau,1)=0.2; %Initial value of temperature profile 

        rhonm1=pn./Tnm1; %Initial value of densit profile 

    end 

 

    % Calculation of the dimensionless absorption coefficient 

    rhopna=rhonm1.*pnalpha; drhopna=D_tau*rhopna; 

 

    %Calculation of the height nondimensinalized with effective temperature 

    zad(1,1)=0; 

    for k=2:Ntau, 

    zad(k,1)=zad(k-1,1)-0.5/(alpha+1)*(Tnm1(k,1)+Tnm1(k-1,1))*(log(1-tauv(k)/tau0)-log(1-tauv(k-

1)/tau0)); 

    end 

    zad2=zad.*zad; 

 

    % Calculation o convection parameters 

    dTpGam=rhopna.*(D_tau*Tnm1)+Gamma; 

    KHaux=(1-exp(-zad.^2./(Tnm1.^2*0.3))).*pn.*Tnm1.^.5.*abs(dTpGam).^(1/2); 

    KH=0.5*(1-sign(dTpGam)).*KHaux; 

    dKH=0.5*(1-sign(dTpGam)).*(D_tau*KHaux); 

 

    % B matrix of the Newton-Raphson method 

    BT=eye(Ntau)-dt*pnalphamat*(spdiags((Ncr+Nconvr*KH).*rhopna,0,Ntau,Ntau)*D_tau2+... 

        spdiags((Ncr+Nconvr*KH).*drhopna,0,Ntau,Ntau)*D_tau); 
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    BT(1,:)=-4*Ncr*rhonm1(1,1)*pnalpha(1,1)*D_tau(1,:); 

    BT(Ntau,:)=D_tau(Ntau,:); 

 

    % b vector of the Newton-Raphson method 

    bnm1=[1; ... 

        Tnm1(2:Ntau-1,1)+dt*Nconvr*pnalpha(2:Ntau-1,1).*dKH(2:Ntau-1,1).*dTpGam(2:Ntau-1,1);... 

        -3/16/(1/2*(3/2*(tau0-taumax)+1)).^(3/4)]; 

 

    % Newton-Raphson iteration 

    Tk=Tnm1; 

    for k=1:100, 

        Tk3=Tk.*Tk.*Tk; Tk4=Tk3.*Tk; 

        Fk=BT*Tk+C*Tk4-bnm1; 

        Hk=BT+4*C*spdiags(Tk3,0,Ntau,Ntau); 

        dTk=-Hk\Fk; 

        if max(abs(dTk)) <= 10^-12, 

            break 

        else 

            Tk=Tk+dTk; 

        end 

    end 

    Tn=Tk; 

    Tn4=Tk4; 

 

    %Condition to considerd that the Newton-Raphson is good enogh 

    dermax=max(abs((Tn-Tnm1)/dt)); 

    if dermax <= 10^-7, 

        break; 

    end 

 

    %Actualization of the state variables 

    Tnm1=Tn; 

    rhon=pn./Tn; 

    rhonm1=rhon; 

 

    % Dimensionless magnitudes of interest (referred to sigma*Teff^4) 

    J1=aJ1*Tn4/pi; %Lower radiosity 

    J2=aJ2*Tn4/pi; %Upper radiosity 

    G=MG*Tn4/pi; %Radiant intensity 

    S=(1-omega)*Tn4/pi+omega/4/pi*G; %Source function 

    qR_H=2*J1*E3_H-J2+2*pi*b*S; %Upper downward radiative flux 

    qR_0=aJ1*Tn4/pi-2*pi*(1-omega)*a*Tn4/pi-omega/2*a*MG*Tn4/pi; %Lower upward radiative flux 

    qcond_0=-4*Ncr*rhonm1(1,1)*pnalpha(1,1)*D_tau(1,:)*Tn; %Upper downward conductive flux 

    qcond_H=-4*Ncr*rhon(Ntau,1).*pnalpha(Ntau,1)*D_tau(Ntau,:)*Tn; %Lower upward conductive flux 

    qcond=-4*Ncr*rhonm1.*pnalpha.*(D_tau*Tn); %Conductive flux 

    qconv(1:Ntau,1)=-4*Nconvr*dTpGam.*KH; %Convective flux 

    dqrad_tau=(1-omega)*(4*Tn4-G); %Radiative flux 

    qrad(1,1)=qR_0; 

    for k=2:Ntau; 

        qrad(k,1)=qrad(k-1,1)+0.5*(dqrad_tau(k,1)+dqrad_tau(k-1,1))*(tauv(k)-tauv(k-1)); 

    end 

    Tnrad(1:Ntau,1)=(1/2*(3/2*pn(1:Ntau,1).^(alpha+1)*tau0+1)).^(1/4); %Radiative equilibrium 

analitycal distribution of the temperature 

    Ts_satoh=(1/2*(3/2*(tau0-0)+2)).^(1/4); %Surface temperature for radiative equilibrium 

analitycal solution 

end 
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%Finite differences function to calculate the first and second derivate 

%with respect to tau 

function [D1x, D2x]=FinDiff(x,N) 

 

D1x=sparse(N,N); 

D2x=sparse(N,N); 

 

for i=1:N, 

    xc=x(i); 

    if i==1, 

        kv(1)=i; kv(2:7)=2:7; 

    end 

    if i==2; 

        kv(1)=1; kv(2)=i; kv(3:7)=3:7; 

    end 

    if i==3; 

        kv(1:2)=1:2; kv(3)=i; kv(4:7)=4:7; 

    end 

    if i >= 4 && i <= N-3 

        kv(1:3)=(i-3):(i-1); kv(4)=i; kv(5:7)=(i+1):(i+3); 

    end 

    if i==N-2, 

        kv(1:4)=(N-6):(N-3); kv(5)=i; kv(6:7)=(N-1):N; 

    end 

    if i==N-1, 

        kv(1:5)=(N-6):(N-2); kv(6)=i; kv(7)=N; 

    end 

    if i==N; 

        kv(1:6)=(N-6):(N-1); kv(7)=i; 

    end 

        xk(1:7)=x(kv(1:7)); 

        [d1x]=deriv1(xk,xc); 

        [d2x]=deriv2(xk,xc); 

        D1x(i,kv(1:7))=d1x; 

        D2x(i,kv(1:7))=d2x; 

end 

 

function[d1x]=deriv1(xk,xc) 

Nst=7; 

for j=1:Nst, 

    for jj=1:Nst 

        if abs(jj-j)> 0, 

        a(jj)=(xc-xk(jj))/(xk(j)-xk(jj)); 

        ap(jj)=1/(xk(j)-xk(jj)); 

        else 

            a(jj)=0; 

            ap(jj)=0; 

        end 

    end 

    d1x(j)=0; 

    for k=1:Nst, 

        prodk=ap(k); 

        for ip=1:Nst, 

            if abs((ip-k)*(ip-j))> 0, 

                prodk=prodk*a(ip); 

            end 

        end 
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        d1x(j)=d1x(j)+prodk; 

    end 

end 

 

function[d2x]=deriv2(xk,xc) 

Nst=7; 

for j=1:Nst, 

    for jj=1:Nst 

        if abs(jj-j)> 0, 

        a(jj)=(xc-xk(jj))/(xk(j)-xk(jj)); 

        ap(jj)=1/(xk(j)-xk(jj)); 

        else 

            a(jj)=0; 

            ap(jj)=0; 

        end 

    end 

    d2x(j)=0; 

    for k=1:Nst, 

        for ele=1:Nst, 

            if abs(ele-k)>0, 

            prodk=ap(k)*ap(ele); 

            for ip=1:Nst, 

            if abs((ip-j)*(ip-k)*(ip-ele))> 0, 

                prodk=prodk*a(ip); 

            end 

            end 

            d2x(j)=d2x(j)+prodk; 

            end 

         end 

    end 

end 
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