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Abstract 

We explore architectures and circuit techniques for the 
implementation of genera l  piecewise constrained 
optimization problems using VLSI techniques. Discrete- 
time analog techniques are considered due to the i r  
inherent accuracy, programmability and reconfigurability. 
A general architecture is introduced for minimization of 
piecewise functions by using gradient schemes. Switched- 
capacitor (SC) building blocks featuring improved 
characteristics in terms of area occupation and operation 
speed a re  presented. The  implementation of the  
architectures by using the newest Switched-Current (SI) 
techniques is also discussed. Finally, the layout of a 3 pm 
CMOS SC prototype for a quadratic optimization problem 
with linear constraints is given. 

Introduction 

The field of analog computation deserved big attention 
during the sixties [l], [2]. Although the basic concept was 
theoretically well proven a t  this time, this concept was of 
no practical use because of the many limitations of the 
implementations available in this pre-VLSI era. However, 
in spite of this and of the subsequent prevalent dominance 
of conventional digital computers, analog computation 
have continued to be recognized as the ideal solution for 
those applications where real-time processing is required. 

The current status of analog VLSI technology makes i t  
possible to overcome many of the  problems in  the  
implementation of analog computers. In particular, there 
exists a strong renovated interest in the design of new 
analog computational models based on some aspects of 
biological neural nets [3], [4]. It has been encoura ed for 
recent proposals demonstrating the ap lication o f  these 
artificial neural networks in solving difficult optimization 

In [5] a special-purpose neural-like analog computer 
architecture was reported to solve linear constrained 
optimization problems in real-time. This preliminary work 
has been further extended by Chua and Kennedy [61 and 
others [7]. All of these approaches use conventional actiue- 

C design techniques which require operational 
amplifiers, resistors and capacitors. The resulting circuits 
a r e  t h u s  no t  t h e  b e s t  s u i t e d  f o r  mono l i th i c  
implementations. 

Recently, the authors have obtained preliminary 
results in the direction of practical IC implementations of 
analog programming solvers by using switched-capacitor 
techniques [a], [91. This paper explores several lines that 
were opened in these previous works. A more general 
architecture is presented covering the case of a piecewise 
objective function. Also, SC building blocks with enhanced 
performance are proposed to implement this architecture. 
F ina l ly ,  bu i ld ing  blocks a r e  presented  for t he  
imp!ementation of the architecture by using SI techniques. 

Architectures for Constrained Optimization 

Optimization problems are usually formulated as  
minimization (or maximization) problems. For constrained 
optimization, the formulation is made in terms of a cost 
function, Wk), subjected to a set of constraints. Solving 
such problem is hence the process of finding the point 
inside the region defined by the constraints (feasibility 
regrpn) where the value of the cost function is the 
minimum one. 

The common strategy to solve the  constrained 

roblems 151. 

optimization problem by analog computation consists of 
two step. First, penalty functions are used to define an  
;quivalent unsconstrained problem with a pseudo-cost 
function, Y(k) [9], [lo]. Then, an analog system is built to 
solve th i s  equiva len t  problem by us ing  gradien t  
techniques, 

d x  1 - = - - V W X )  
dt t 

, I.> 0 

The formulation in [81,[91 assumes the cost function is 
defined by a single expression valid in the whole feasibility 
region. Here, a more general problem is considered where 
the feasibility region is divided into several subregions, 
each one corresponding to a different expression of the cost 
function. This general constrained optimization problem 
can be formulated as follows, 

Subject to the constraints 

An example of such a kind of problems can be found in 
Fig.1, corresponding to a two-dimensional piecewise-linear 
scalar function. 

Figure 1:Tw o -d i mens io  n a l  p iecewise-  l i nea r  con-  

Observe the feasibility region is divided by the curves 
r2(f), r3(k)  into three regions. In the more general 

case, a set of L functions (rl, 1 s 1 s L )  will be required to 
define the P subregions of the feasibility interval. In this 
general case, each region Rp, will be defined by the 
condition that all corresponding boundary function, (I’l 
and/or Fk) are positive. For instance, the region RI  in Fig.1 
is defined by F3, F4, rj and r3 via the following inequalities 

strained optimization problem. 

F ~ ( ~ )  2 0 ,  F ~ ( ~ )  2 o, rl(x) 5 0,  r3(x) 2 0 ,  

In a more compact notation we will say RI is  defined by the 
condition that all the components of a vectorial function 
RI ={F3, F4, -rj, r3) are positive. 

By extending the penalty strategy given in [9] to this 
r n e r a l  piecewise problem the following pseudo-cost 
unction can be calculated, 
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where we define 

(3b) 

and where Pk[Fk] is assumed to monotonically increase as 
the constraint Fk decrease from zero. In the more common 
case, 

I ,ifenchcomponenl ofC ispositive 

0 ,otherwise 
U(G) = [ 

(3c) IFk( x )I 
‘ k [  F k ( x ) l  = [ F E ( x )  

Starting from this pseudo-cost function the following 
discrete- t ime companion gradien t  system can be 
formulated, 

which corresponds to the conceptual block diagram of 
Fig.2. This hence represents a general architecture for the 
solution of constrained optimization problems using 
discrete-time analog techniques. 

Figure 2:Architecture for a discrete-time constrained 

The  integrators  in  Fig.:! can be viewed a s  t h e  
elementary computational units (“neurons”) of a neural- 
like circuit architecture. Observe the interconnections 
among “neurons” are strongly nonlinear in the more 
general case. Consider the particular case in which the 
pieces of the scalar function are quadratic, 

optimizer with a piecewise cost function. 

and the constraints and the boundary functions are linear. 
11 this case, only analog switches and comparators are 

required to implement the nonlinear interconnections. It is 
illustrated in  Fig.3a where the i - t h  “neuron” and  
corresponding inputs are shown for a piecewise quadratic 
problem with linear sections and linear constraints and 
assuming the absolute-value penalty is used. The signal 
controlling the analog switches in Fig.3a can be obtained 

Figure 3:a) i-th “neuron” a n d  corresponding inputs 
b) example of boundary encoder. 

via logical operations on the outputs of weighted-summer/ 
comparators as i t  is illustrated in Fig.3b for the region RI  
of Fig.1. 

Design of the  SC building blocks 

According to Fig.3, the only blocks required for the 
implementation of piecewise-quadratic constrained 
optimization problems with linear boundaries are just 
weighted-summer/integrators and /comparators. State of 
the ar t  implementations for these blocks can be found 
elsewhere [ill, [12], [91. There are however several 
pract ical  considerat ions concerning our  specific 
application which should be taken into account for proper 
design. 

Area-optimized integrators. 

Let us consider the summingiintegrator. In a typical 
optimization problem, some of the “neurons” may require 
the values of the corresponding weights to vary in a wide 
range. Also, stability considerations dictate the need to 
scale all the weights by a very small value in order the 
solution point to remain bounded inside a given interval. 
Since in conventional summing/integrators the weights 
are directly given by ratios of capacitors, very large areas 
and power consumptions may result if very small and very 
different weights have to be implemented. Obviously this 
is not convenient for “neural-like” circuits. 

A family of new SC summing/integrators have been 
developed which overcome t h i s  drawback of the  
conventional implementations. Fig.4 serves to illustrate 
both the basic concept and the properties of the family. 

A conventional one-input SC integrator is shown 
(Fig.4a) together with an area optimized design (Fig.4b). 
Assuming the area is proportional to the capacitor values 
and using a weight l / r  for the input we get, 

where A N O R  holds for Fig.4a and 

(6) 

1 
AMoo for Fig.4b. A 
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I'igura 4:a) Insensitive Amplifier [Malo84]; 

b) Modification small weights. 

significant reduction in the area can be observed when the 
modified structure is compared to the conventional one. 

The design concept in Fig.4 can be extended to the 
general summing/integrator case. Fig.5 show several 
a l ternat ives  implementat ions.  The  corresponding 
expressions for the weights are shown along with the 
figures. 

The circuits in F ig5  are insensitive to the input offset 
voltage of the opamp. They are however sensitive to the 
parasi tic capacitors associated to actual MOS capacitors. 
In the case of Fig.5a all the weights are modified by the 
same factor. In its application to analog optimizers i t  
means a change in the speed of operation of the circuits but 
not in the accuracy of the solution point. For Fig.5b 
different weights are modified by different factors which 
may not only affect the speed of convergence but also the 
accuracy of the solution point. 

Comparator  

For most practical cases, the solution point of a 
piecewise constrained optimization problem is either on 
the boundary between two adjacents region inside the 
feasibility region or on the boundary of this latter region. 
Fig.6 shows a typical trajectory of a discrete-time 
constrained optimization solver. I t  corresponds to the 
problem of Fig.1, whose theoretical solution point is a t  the 
crossing point of the three boundary lines r l ,  I'z and r3. As 

can be seen, the trajectory is oscillating back and forth 
around the line I?,. The comparator whose output codifies 
.he position of the point relative to this line must hence 
change state in each iteration. Since the amplitude of the 
oscillations must, on the other hand, stay bounded to a 
small value to ensure stability of the optimizer, the 
amplitude of the step at the input of the comparator will be 
very small and, as a consequence, the transient to change 
state very large. To overcome this problem, we propose to 
use the dynamic comparator of Fig. 6 where a positive 
feedback is temporarily applied during the one of the clock 
phases. By using this comparator a reduction of even two 
orders magnitude can be achieved in  regard to the  
resolution time of a conventional high-gain comparator. 

Figure 6 Typical trajectory for  a piecewise optimizer. 

1 o-+q+ 

- - 
Figure 7:A dynamic positive feedback SC comparator  

Switched-Currents Building Blocks 

The primitives for the monolithic implementation of SC 
circuits are MOS transis tors  a n d  MOS capacitors. 
Recently, a new design technique have been proposed for 
the design of analog sampled-data circuits which only 
requires MOS transistors [13]. This is very appealing for 
implementation in digital MOS technologies where the 
available capacitors are bulky and inaccurate. Also in SI 
circuits the processing is not made on voltages, as  i t  is the 
case in SC circuits, but on currents. It means that  the 
summing operation can be directly made by exploiting 
KCL. Also, the reduction in dynamic range which results 
as  a consequence of the scaling down is less restrictive for 
current-based circuits than i t  is for voltage-based ones. 

Fig.8 shows several elementary SI building blocks for 
the solution of piecewise-quadratic optimization problems 
with l i n e a r  boundaries .  The  same arch i tec tura l  
considerations as for SC circuits apply for this family of SI 
blocks [91. 

Discussion of Results 

Using sampled-data analogue techniques provides a 
natural way to implement "neural-like" constrained 
optimizers in monolithic form. Several SC prototypes have - 
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been built. In particular, Fig.9 shows one microphotograph 
corresponding to a quadrat ic  problem with l inear  
constraints. It has been designed in a 3pm n-well double- 
poly technology and conventional SC building blocks [9]. 
Preliminary testing give results that  are in accordance 
with the expected theoretical behavior. New prototypes 
are currently under progress which uses the enhanced 
building blocks proposed in  this paper. A family of 
enhanced SI building blocks is also currently under 
development. Simulation results for this family shows very 
promising results in terms of convergence speed. 

I I I I 
bJ Lvss C) 

Figure 8:a) SI weighted-summer, b) SI integrator, 
c)  Current  comparator  
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Figure 9 A  3pm CMOS prototype 
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