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Human-in-the-loop model predictive control

of an irrigation canal

P.J. van Overloop, J.M. Maestre, A.D. Sadowska, E.F. Camacho,

and B. De Schutter

Until now advanced model-based control techniques have been predominantly employed to

control problems that are relatively straightforward to model. Many systems with complex

dynamics or containing sophisticated sensing and actuation elements can be controlled if

the corresponding mathematical models are available, even if there is uncertainty in this

information. Consequently, the application of model-based control strategies has flourished

in numerous areas, including industrial applications [1]–[3].

The difficulty arises when there are components in the controlled system that are not easily

modeled in a standard setting. One important and broad class of such systems is that with

humans involved in the actuation process, in measurements or in system dynamics. How to

integrate the important role played by human operators in the control problem formulation is

still an open question. Control methods typically rely on a fully automatic control operation,

which in the case of humans being involved in the control system, is unrealistic. Likewise,

fully manual control methods might compromise the performance of the system because of

factors such as limitations on the availability of the operators to implement control actions or

the lack of coordination when several operators are involved. Therefore, there is an incentive

in terms of performance to provide a link between state-of-the-art control methods and human
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operation.

Human-in-the-loop control

To increase system performance using state-of-the-art control methods, the trend is either to

increase the level of instrumentation for manipulating and measuring the system as desired

or, when cost is an issue, to improve the exploitation of the instrumentation available by

means of sophisticated information-processing methods. The approach in this article consists

of using human operators as an alternative to mitigate the unavailability of instrumentation,

which is common in application domains where ubiquitous sensing and actuating equipment

cannot be guaranteed. For example, this is the case of irrigation, where reluctance to automatic

control methods is particularly visible. Control methods for automatic control of an irrigation

canal can be found in [4]–[12]. However, the functioning in practice of a canal often resorts

to manual operation with human operators traveling between the gates and adjusting their

positions according their own judgment. This is directly associated with the fact that irrigation

canals are often located in harsh environments resulting in damage to or even theft of field

equipment. As human operators only take into account local information from the gate where

they are located, and base their actions on a subjective judgment, the resulting performance

is sometimes far from a global optimum.

The topic of humans in the loop (HIL) has been considered in the control systems community

as a logical progression for control systems design [13]. The authors in [14] study how human

input can be most beneficial to a collaborative task between a human and a robotic system.

Various aspects are highly relevant to the HIL design process, the availability of accurate and

efficient models of human behavior is one of the most important. As such, studying human
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behavior and developing models of human behavior has attracted considerable attention.

Amongst others, in [15] a number of factors of human behavior that impose requirements on

the control design are discussed, while [16] examines the behavior of humans involved in a

cooperative task with a machine and in particular studies the human-machine interactions. In

addition, [17] considers system identification tools to develop low-order models of a human

operator to mimic the operator’s actions. Also [18] studies the problem of modeling a human

operator for military weapon control, whereas [19] focuses on obtaining a nonlinear model

of a human operator allowing for discontinuous control actions such as bang-bang strategies

to be applied.

Human-system interactions are also the subject of [20]–[22], concentrating primarily on

human-robot interactions. The schemes presented in [20]–[22] start from an input by the

human and use the notion of shared control in which this initial input is modified to account

for possible state constraints while minimizing any deviations from the resulting control action

with respect to the action performed by the human. The issue of a busy human operator

who is unable to take direct control of a remote unit because of other tasks is considered

in [23]. A strategy is introduced that enables autonomous operation most of the time with

only occasional inputs from the human operator expected. In a similar setting, a class of

control systems that expect only sporadic human inputs are studied in [24]. An example of

an airplane pilot as operator and an autopilot as the machine controlling the flight for most

of the time is given. The pilot only needs to perform some tasks at certain times and be

part of the overall human-machine control system. In [25], a collaborative work between

human and robot systems for information gathering is presented. This problem also appears

in other works such as [26], where human operators are integrated into a sensor network

formed by a heterogeneous team of unmanned air and ground vehicles. Human operators are
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regarded as information sources. In [27], the implications of humans as perceptual sensors

for information gathering from robotic teams are discussed.

The frequency of interaction between the human operator and the machine is much higher in

a task such as teleoperation [28]. In such an application, the remote machine is fundamentally

manipulated by the human operator. It is stated in [28] that by considering the dissipative

nature of a human operator and the inclusion of human behavior and perception models,

the achievable performance can be improved. For intelligent vehicle control, explicitly

considering human behavior improves performance, and taking human involvement into

account enhances safety [29]. Another application where HIL aspects are pertinent to the

control design is presented in [30], in which a design of a meal assistance orthosis is studied.

The orthosis works by generating an adequate compensation for the upper limb and uses the

forces exerted by the limb as a human input to improve user comfort.

Boredom and distraction effects when supervising unmanned vehicles are studied in [31].

The unexpected increase in operator’s workload with increased automation is considered

in [32] in the context of smart energy systems. How performance can be boosted by humans

providing guidance to automated planners in path planning and resource allocation tasks is

studied in [33].

Finally, it is also possible to identify some links of the considered HIL methods with the

research on Cyber-Physical Systems (CPSs) [34]. A CPS is a mixture of computing and

networking elements that govern a physical entity. In other words, a CPS consists of a

distributed network in which there is tight coupling between its computational and physical

input and output elements, very much like the class of systems discussed with human

operators. An even more visible link between CPS and HIL systems is mentioned in [35],
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which directly refers to HIL-CPS. HIL-CPS are systems where human, computational, and

physical components coexist. Various applications of systems that can be considered as HIL-

CPS are listed in [35], such as brain-computer interfaces and intelligent prostheses.

Contribution of this article

This article extends the scope of HIL control for systems with human operators as the

sole source of sensing and actuation. In particular, this work concerns those situations where

the control system requires action from human operators on a regular basis. That is, no

human decision is involved in the control, although the control system relies completely

on the operators to implement the control actions and to perform measurements. This is a

significant difference with respect to most of the aforementioned references, where operators

supervised or provided guidance to automated systems. This article considers a large-scale

system consisting of cascade-connected subsystems that influence each other through mutual

interrelations. Although there might be local automatic controllers within each subsystem,

the actions of the human operators form the nucleus of the overall system operation. More

specifically, it is assumed that there are several operators working within the system as

sensors and actuators. However, the fact that the number of operators is less than the number

of subsystems in the large-scale system directly implies that both the sensing and the actuating

processes have a sparse nature, which diminishes the performance of the system with respect

to standard, fully automatic methods. The control strategy no longer enjoys the benefits of

the continuous availability of sensors and actuators, which is a challenge that needs to be

tackled in the HIL controller design.

One of the approaches for systematically handling the presence of humans in the control loop
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is the use of model-based control design, due to its inherent robustness and its multivariable

nature [36]. This article aims to apply model predictive control (MPC) [37]–[41] to large-

scale HIL systems with slow dynamics, where human operators are involved in the control

process acting as sensors and actuators.

The key idea of the HIL approach presented in this article is to maximize the performance of

the system by using online optimization to optimize operator’s work in real time. In addition

to operating in real time, it is also convenient to explicitly consider event-triggered approaches

[42], [43]. The research in this context enables the introduction of asynchronous systems,

which do not need to be clocked at regular intervals but instead are updated in response to

events associated with the human operators’ presence at a particular time and at a particular

place to take the necessary actions.

The contributions of this article are twofold. Primarily, a novel HIL-MPC scheme for a large-

scale system with multiple operators to serve as sensors and actuators is presented. Given

the mobility of the operator, the new approach is thereafter referred to as Mobile MPC

(MoMPC). Secondly, the MoMPC approach is tested on an accurate numerical model of an

irrigation canal, namely the Dez canal in Iran. In this way, a realistic performance evaluation

of MoMPC is provided.

Application domains of Mobile MPC

The HIL system type discussed in this article covers many applications. Thus, the MoMPC

framework that is developed is potentially beneficial to many applications areas. A few

example applications include:

• The first example, which has inspired the current investigation of large-scale HIL
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systems, is that of irrigation canals with human operators traveling between gates to

regulate water levels in the canal. The human operator travels between various locations

along the main canal as well as the smaller lateral canals, to change the settings of the

gates to allow more or less flow.

• A second possible application that fits the characteristics of large-scale HIL systems

discussed in this article is the planning of production and maintenance tasks for human-

operated industrial processes such as chemical plants. Specifically, objectives are to

allow the operator to evaluate whether an order can be manufactured without stops for

maintenance and to schedule maintenance tasks to minimize disruption to production.

The degree of automation is one difference between the control of an irrigation canal and

an industrial plant. The irrigation canals are expected to operate without any automation.

The canal is controlled solely by the actions of the human operator, while in an industrial

plant there would normally be a significant level of automation. However, the MoMPC

framework still fits for an industrial plant. The resulting control approach could be

viewed as a two-layer control scheme with the automatic controllers of the production

processes on the lower level and the MoMPC controller on the higher level.

• Another application domain is an advisory system for urban traffic management with

traffic operators and traffic guards. The traffic operators are located at a remote control

center and the traffic guards are dispersed throughout the traffic network. Both traffic

operators and traffic guards manage the traffic, but in different ways. Whereas the traffic

operators may have a certain level of global knowledge, from traffic cameras and other

sensors, the traffic guards do not have the same level of knowledge and need to establish

their control actions based on local observations.

Further possible applications that would benefit from the results of this work are pipeline
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maintenance crews and fire fighting.

Mobile Configuration of Model Predictive Control

The output of a standard MPC controller is a sequence of actions for all the actuators over

the entire control horizon Nc. For example, if there are three manipulated variables, the

sequence of optimal control actions during the control horizon provided by the controller can

be written as

u∗(k : k +Nc) = (u∗1(k), u∗2(k), u∗3(k),

u∗1(k + 1), u∗2(k + 1), u∗3(k + 1), . . . ,

u∗1(k +Nc), u
∗
2(k +Nc), u

∗
3(k +Nc)).

In MoMPC, the control input vector consists of the control actions of the actuators along the

optimal route of the operators. If there is only one operator and the optimal route turns out

to be 1→ 2→ 3, the outcome of the MoMPC could be

u∗(k : k +Nc) = (u∗1(k), 0, 0, 0, 0, 0,︸ ︷︷ ︸
travel time

0, u∗2(k + 2), 0,

0, 0, 0,︸ ︷︷ ︸
travel time

0, 0, u∗3(k +Nc))

because, while the operator is traveling between different locations, control actions cannot

be implemented. In addition, the operator can only be at a single location at any time. This

whole procedure is represented in Figure 1. The MoMPC is a particularization of an MPC that

is calculated taking into account the constraints derived from the mobility and the working

times of the operators. Hence, the non zero elements of the control vector calculated by the

controller indicate both the route that the operators must follow and the actions that must

be implemented. On the one hand, this implies that the number of free decision variables

for a given route is much lower than in conventional MPC, because the only free decision
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variables correspond to the times at which there are operators available to implement changes

to the plant. On the other hand, the computational burden grows, because different routes

have to be explored. Note the similarity with the traveling salesman problem, for which

the computational burden of finding the best route grows very rapidly with the number of

possible destinations.

The key idea behind MoMPC is that human-system interactions are modeled as delayed

control actions in the optimization problem. This is a simplification that is justified for

the type of applications considered. The slow dynamics of irrigation canals mitigate the

uncertainty with respect to the precise instant at which the control actions are actually applied

or the possible operator errors when implementing the actions. However, it must be taken

into account that in reality the degree of accuracy of the operators depends on factors such as

the workload or fatigue, which introduces a new source of uncertainty. Feedback regarding

the degree of accomplishment of the commands would make the MoMPC controller more

realistic. Note that these issues go beyond the scope of the current article, but must not be

ignored in real-world applications.

To formulate the optimization problem that is solved to maximize the performance of the HIL

system, certain assumptions must be made regarding the system dynamics and the behavior

of the operators to keep the computational burden as low as possible. Firstly, it is assumed

that the system can be modeled using discrete-time linear dynamics

x(k + 1) = Ax(k) +Bu(k) + w(k), (1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the input vector, and w(k) ∈ Rnw is the
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disturbance vector. The matrices A ∈ Rnx×nx and B ∈ Rnx×nu are the state matrix and the

input matrix, respectively. It is also assumed that there are closed convex constraints on the

states and the inputs of the system, that is, x(k) ∈ X and u(k) ∈ U . These assumptions are

common in control models of irrigation canals (see for example [10], [44], [45]) and guarantee

that the continuous part of the optimization problem is convex, which is a convenient feature

given the efficient solvers available for this type of problem.

The structure of the systems in the scope of this article can be described by means of

an undirected graph G = (V , E), where V = {1, 2, . . .} is the vertex set, with vertices

corresponding to the measurement/actuation positions in the system, and E ⊆ {(i, j)|(i, j) ∈

V , i 6= j} is the set of edges, which represent the routes that an operator must follow to go

from one place to another. Note that (i, j) and (j, i) stand for the same edge because the

graph is undirected. In addition, the corresponding state and input vectors corresponding to

a location v ∈ V are denoted respectively by xv and uv. For the application considered in

this article, it is assumed that the nodes in V are for both measuring and actuating. However,

note that for other applications there may be measurement-only or actuation-only positions.

The goal of the MoMPC controller is to minimize the stage cost

`(k) = xT(k)Qx(k) +QT
l x(k) + uT(k)Ru(k), (2)

where Q ∈ Rnx×nx , Ql ∈ Rnx , and R ∈ Rnu×nu are constant weighting matrices. Note that

although it is not common to include a linear term in the stage cost of an MPC controller, it

does make sense in the context of water system applications, where it can be used to represent

costs related to pumping. It is also assumed that there is a set of operators O = {1, 2, . . . , No}

who can travel around the plant to take measurements and to implement control actions.

It is assumed that a given operator j ∈ O can travel through the edge set Ej ⊆ E , with
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⋃
j Ej = E .

A path p followed by an operator j ∈ O, denoted by pj , is defined as a sequence of ordered

edges of the form (vl, vl+1), l ∈ {1, . . . , Ns}, where Ns is defined as the sequence horizon,

which denotes the number of elements contained in the sequence. This parameter has to be

adjusted according to the computation power available so that a manageable number of routes

are used. The set of possible paths that an operator j can follow, with length Ns and starting

at vertex v ∈ V , is denoted by Pj
v(Ns).

Operators are not always available to receive instructions; they have to travel, take measure-

ments, and implement control actions. For this reason, operators are considered as moving

sensors and actuators with delays associated with their travel times. Hence, a boolean operator

availability function aj : Pj
v(Ns) × V × N → B is defined, which returns the expected

availability of the operator j at a vertex i k-time steps ahead in the future while following

path pjv. In particular, aj(pjv, i, k) = 1 if the manipulated variable ui(k) can be updated at step

k, and 0 otherwise. This function must take into account the travel time between different

locations plus an additional To time steps employed at each gate to take new measurements

and to change the actuator position.

The MoMPC has to provide the operator with information about the actuation needed in

the current location v ∈ V and a route to the next locations to visit. In particular, this

optimization is triggered in an event-driven fashion after the operator feeds the controller
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with measurements at the current location. The optimization problem solved is defined as:

min
u(k:k+Nc),pjv

Np−1∑
l=0

`(k + l)

such that

x(l + 1) = Ax(l) +Bu(l) + w(l),

pjv ∈ Pj
v(Ns),

ui(l) = 0, for all i ∈ V , for all l ∈ {k, k + 1, . . . , k +Nc} : a(pjv, i, l) = 0,

ui(l) = 0, for all i ∈ V , for all l ∈ {k, k + 1, . . . , k +Nc} : a(p̂−j
v , i, l) = 0,

x(l) ∈ X ,

u(l) ∈ U ,

(3)

where u(k : k + Nc) = {u(k), u(k + 1), . . . , u(k + Nc)}. With a slight abuse of notation,

p̂−j
v is defined to denote the routes that operators other than j follow according to the current

planning, that is, the MoMPC also updates the values of the actuators corresponding to the

rest of the operators. As can be seen, the HIL controller uses (1) to predict the evolution of

the system and optimizes the control actions carried out over a control horizon of Nc time

steps. The impact of these actions is evaluated for a larger prediction horizon Np to account

for delays. Hence, Np ≥ Nc. Note that the actuator settings are assumed to be constant for

time steps beyond the control horizon Nc.

Problem (3) is a mixed-integer quadratic program (MIQP) because it involves optimizing

both the actions, which are continuous, and the route, which is coded by discrete variables.

This problem has to be solved by the MoMPC controller to calculate the optimal path pj∗v

and its corresponding optimal input trajectory u∗(k : k+Nc). The approach followed to solve

(3) is based on exhaustive search, which means exploring all the possible options. Hence,

a quadratic program (QP) is solved for each possible value of the discrete variables. The
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controller selects the QP solutions with lowest cost for implementation. Note that (3) can be

solved in a finite time given that the number of elements in Pj
v(Ns) is finite. In the worst

case, it is necessary to solve a QP problem for each pjv ∈ Pj
v(Ns) to find pj∗v . Thus, if there

are |V| vertices, |V|Ns is an upper bound on the number of different options that must be

evaluated whenever an operator asks the MoMPC controller for instructions. In the case that

the computational burden is too high for real-time implementation, it is possible to reduce it

in several ways:

• The number of gates where an operator can go after performing the corresponding task

can be limited. A constraint based on the maximum distance that the operator can travel

before carrying out a new action can be introduced in the optimization problem. Only

paths are chosen so that pjv ∈ Pj
v(Ns) : dist(vl, vl+1) < γd, where dist : V × V → R is

the distance between two given nodes, γd is the maximum allowable distance without

new measurements or control actions being implemented and l ∈ {1, . . . , Ns}. Given

that the number of options to be explored decreases with γd, it is possible to adjust it

to have a feasible computational burden.

• An alternative is to reduce the number of options tested for each operator to a feasible

number Npath. These subsets of paths can be obtained using heuristics (testing only

common-sense paths) or removing paths based on criteria such as changes of direction

in operator movement or total length. In this way, the computational burden can also be

adjusted for practical applications.

• It is also possible to use relaxation techniques to reduce the computational burden [46],

or to use other lighter approaches such as genetic algorithms [47].

Once (3) is solved, operator j knows the sequence of gates to be followed and the control

actions to be implemented. This procedure is repeated in an event-driven fashion every time
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an operator reaches a new gate and obtains new measurements.

A noteworthy point is that the form of the stage cost (2) has been chosen to obtain a convex

problem once the discrete variables of (3) are fixed. This choice allows the computational

burden to be reduced and is appropriate applications in this article. Nevertheless, more general

options can be considered. For instance, the speed of the operators can be introduced in the

problem formulation by extending the operator availability function aj accordingly. In this

way, the controller can decide the speed required for the operators and additional objectives

such as energy saving could be added into the cost function. Likewise, the controller can

also take into account the update of the measurements at different locations. For certain

applications, the difference between the real state of the system and the value used in the

controller for the predictions may lead to inadequate route choices and control actions. A

penalty on the time steps elapsed since the last measurement taken from each location can

be included in the cost function. In this way, the controller can send the operators to take

new measurements at locations that have been unattended for a long period of time.

Finally, note that there are other additional benefits derived from the application of MPC

to these HIL control problems. In particular, the MPC formulation provides guarantees

about issues such as robustness –using a minmax or a multiple scenario formulation for

example [48]– or stability [49]. As long as the operators are capable of following the

instructions provided by the MoMPC, then the MPC is able to cope with these issues.

Likewise, the flexibility of the MPC framework allows introducing additional constraints

to limit, for example, the workload of the operators or to calculate the most appropriate

terminal state for the canal during the rest periods of the operators [10]. Nevertheless,

these topics are beyond the scope of this article due to the slow and stable dynamics of

irrigation canals, which mitigates the uncertainty regarding the precise moment at which the
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operators apply the control actions or the effects derived from the lack of precision in the

gate movements.

Example: MoMPC for an irrigation canal network

The MoMPC algorithm is tested here for an irrigation canal case study by simulation. A

hydro-dynamic Sobek model [50] of Dez Main Canal in Iran is used. First, the models of

an irrigation canal used for prediction and for representing the real system are given and

related to the MoMPC controller design. Then, the simulation settings are described. Finally,

the results obtained are given and discussed in comparison to other control methods, namely

local control and standard MPC.

Prediction model of an irrigation canal

As discussed in [44], [45], [51]–[53], a linear model of a canal is suitable for capturing

adequately its dynamics. Assuming that operating conditions do not change too much, a

linear model is used as a prediction model. For pool i, i ∈ V = {1, . . . , N}, the model is

given by

hi(k + 1) = hi(k) + Tm

ci
(qi−1(k − kdi)− qi(k) + di(k)),

q0(k) = QS(k),

(4)

where hi is the water level at the downstream end of pool i, di is an external inflow or

outflow, Tm denotes the sampling period (equal for all pools), ci is the surface area, and kdi

is the number of sampling steps before an inflow from the upstream gate i−1 influences the

water level hi in Pool i. In addition, qi is the outflow from pool i assumed as a controllable

input and q0 = QS is the inflow to the canal (to pool 1) from the head gate. It is assumed here
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that flows through the gates can be directly controlled. The actual gate setting is computed

in a post-processing step from the flow and the local water levels and this required action

is communicated to the operator (and in this case implemented in the simulator). Note also

that the above prediction model can be presented in the usual state-space form of (1).

Process model of an irrigation canal

A commonly applied simulator is the water modeling package Sobek [50]. Using this package

a detailed model can be made of an actual irrigation canal and its actuators. A model of Dez

Main Canal in Iran has been developed using all exact dimensions of the cross sections and

gates of the canal. The model, whose profile can be seen in Figure 2, has been calibrated

and used in multiple studies [10], [12], [54]. The simulations run with a time step of 30

seconds, which is accurate enough to capture all relevant low-frequency behavior and the

resonances that may occur. To make the simulations even more realistic, noise has been

added to the signals and control actions. Grey noise has been added to the water level

measurements, control gate positions, fixed turnout crest levels, turnout gate positions and

timing of implementing the turnout gate changes with a standard deviation of 0.01 m, 0.002

m, 0.02 m, 0.02 m, and 900 seconds, respectively. Note that a turnout is a lateral flow for

the farmers with an actuator (gate) between canal and smaller canal for the farmer.
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Optimization problem for a irrigation canal

The control problem solved by the MoMPC controller is obtained substituting (4) into (3),

which leads to

min
∆qi(k:k+Nc),pjv

Np−1∑
l=0

N∑
i=1

(
(hi(k + l)− href,i)

TQi(hi(k + l)− href,i)

+QT
l,i(hi(k + l)− href,i) + ∆qT

i (k + l)Ri∆qi(k + l)
)

such that

hi(l + 1) = hi(l) + Tm

ci
(qi−1(l − kdi)− qi(l) + di(l)),

qi(l + 1) = qi(l) + ∆qi,

di(l) = d̂i(l),

q0(l) = QS(l),

pjv ∈ Pj
v(Ns),

∆qi(l) = 0, for all i ∈ V , for all l ∈ {k, k + 1, . . . , k +Nc} : a(pjv, i, l) = 0,

∆qi(l) = 0, for all i ∈ V , for all l ∈ {k, k + 1, . . . , k +Nc} : a(p̂−j
v , i, l) = 0,

hi(l) ∈ [hmin,i, hmax,i], for all i ∈ V , for all l ∈ {k + 1, . . . , k +Np − 1},

qi(l) ∈ [0, qmax,i], for all i ∈ V , for all l ∈ {k, k + 1, . . . , k +Nc},

(5)

where the goal is to regulate, at each pool i, the error between water level hi(l) and a

target level href,i. To this end, the controller calculates the route that must be followed by

the operator j and the changes that must be applied to the flows through the corresponding

control gates qi(l). Note that an estimation of the future disturbances suffered by each pool

recorded in a schedule of water orders d̂i(l) is used and that the problem is constrained to

guarantee that the water levels and the flows respect maximum and minimum levels. The

values of the parameters used for the simulations are shown in Table II.
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Settings

Dez Main Canal in Iran consists of thirteen canal pools which are interconnected by twelve

control gates and supplied by a head gate. The canal has a total length of 45 km and a

maximum discharge capacity of 157 m3/s at the head gate. The controllable undershot head

gate and gates at the end of each pool can be set to a certain flow to keep the water level

at the downstream side of each reach as close to the target level as possible. There are 71

turnout gates taking water for lateral canals and 15 cross structures such as inverted siphons

and culverts are present in the main canal that are uncontrollable, but have minor influence

on the flows and water levels.

A test scenario describes a severe operational situation that MoMPC may be faced with in

reality. The control time step is 300 seconds and the simulation period is 10 days. A step

test is used to evaluate the ability of MoMPC to handle a change in flow discharge. The

canal runs steady at 50% of the maximum capacity and a step of 20% increase in flow at all

turnouts is imposed at 8:00 AM on the first day of the simulation. At that moment, the gate

positions are adjusted once and set to the new flow based on the inverse of the flow equation

of the turnout gate and the target level of the upstream water level, that is, when the upstream

water level is at its target level, the gate delivers the correct amount of water according to the

scheduled flow. The better the controller can maintain the water levels at the target levels, the

closer the delivery over the entire period is to its required flow. The turnout flows, including

the flow step changes, are assumed to be known by the controller. In addition, realistic

noise is inserted at key variables. This, in combination with the pools acting as a series of

delayed integrators requires continuous corrections to the gate settings. An MPC controller,

two human operators modeled as PI-feedback controllers, and the MoMPC executed by two
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human operators are simulated.

The first scenario investigated is the application of standard MPC. This is a fully automated

control configuration where, in each canal reach, there are water-level sensors upstream and

downstream of a control gate and a measurement of the gate position. The communication

infrastructure transfers these measurements to a central controller where an optimization is

run to determine the required gate position changes, given the known scheduled turnout flows

over the prediction horizon. The prediction and the control horizon are both 4 hours. The

required gate changes are automatically implemented with electro-motors.

The second scenario investigated is manual control by two human operators. This control

configuration assumes two human operators traveling from one gate to the next gate at a speed

of 30 km/h. The operators only use local information, namely the upstream and downstream

water levels at the gate and the gate position. Each operator controls 6 consecutive gates and,

given the length of the canal, the return period at each gate is, on average, 6600 seconds.

Using this time step as the control interval and using the canal reach properties (storage

area, delay time), the operators’ actions are modeled as PI feedback controllers that are

tuned according to the optimization algorithm presented in [55]. This algorithm guarantees

stability of the closed control loop and avoids disturbance amplification. The operators visit

their assigned gates in numerical order and after adjusting their last gate they travel back to

their first one. The head gate is releasing water using a feedforward controller on the known

scheduled flows including the stepwise change in turnout flows at 8:00 AM on the first day.

The feedforward controller of the head gate takes the delay times into account to prerelease

water that will be routed through the canal by the operators.

The third scenario investigated is the MoMPC with two human operators. As in the case
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for standard MPC, the prediction and the control horizons are both 4 hours. In addition, T0

has been set to 0 because the time needed to take a measurement or implement an action is

much lower than the control time step length. In this case, the first operator controls gates

#2-#7, while the second works on gates #8-#13. Every time one of the operators reaches a

gate, a measurement of the local situation is taken and sent to the central MoMPC system

by the operators. This operation updates the corresponding components of the state vector

in the controller. The rest of the states are updated according to the prediction provided by

the linear model. Based on this information, the MoMPC controller computes the optimal

control action to be taken by the operator and communicates to which gate to go to next.

The operator implements the required gate change manually. The head gate is the only one

continuously operated with a control time step of 5 minutes. The flow released from the head

gates is coordinated within MoMPC with the control actions of the two operators.

To assess the performance of the three control approaches, an a posteriori performance index

J is defined

J =
na∑
k=1

N∑
i=1

(ei(k) + r∆q∆qi(k)) , (6)

where na is the number of simulation steps, ei is the setpoint tracking error, ∆qi(k) =

qi(k)− qi(k−1), and r∆q = 0.1 is a penalty on the flow increments. This performance index

is the same as the objective function applied over the prediction horizon of the MPC case.

Also, a second a posteriori index JWD is defined to represent the water deficit fraction. Note

that the better the control configurations keep the water levels at target levels, the closer

the delivered turnout flows are to the intended flows. When the water level upstream of

the turnout in the canal is lower than the target level, the turnout flow is too low, which

is considered as a major issue. On the other hand, when the water level is higher than the

target level, too much water is delivered, which does not solve the issue either, because water
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that is oversupplied cannot be used or stored. This is captured by the index JWD defined as

follows

JWD =

na∑
k=1

mt∑
jt=1

(qi,jt(k)∆t−min (qd,jt(k), qi,jt(k)) ∆t)

na∑
k=1

mt∑
jt=1

(qi,jt(k)∆t)
, (7)

where jt is the turnout number, mt is the number of turnouts, qi,jt is the intended flow at

turnout jt, ∆t is the simulation time step (30 seconds), qd,jt is the delivered flow at turnout

jt.

Results

The simulation results are now discussed to illustrate the performance of the MoMPC. They

have been computed using the Sobek model as plant and the control actions have been

calculated using Matlab. The solver used for the quadratic programming problems appearing

in MPC and MoMPC was quadprog. Note that the computation time of MoMPC depends on

several factors. Each quadratic programming problem was solved by Matlab in approximately

half second due to the low number of optimization variables. Moreover, the number of

problems to be solved depends on Ns, which was set to 4 in the experiments. Given that

each operator controls 6 gates, this means that a maximum number of 1296 options must

be explored. This number can be reduced in practice, though. For example, the routes in

which the operator has to visit the same gate several times during the control horizon

could be dismissed. All the options are independent, which means that the computation

can easily be parallelized. A PC with six 2.4 GHz cores and 12 GB of RAM was used for

the simulations and consequently the MoMPC problem was solved in a much shorter time

than the control time step, which was 5 minutes. Figures 3-5 present the results of the three

control configurations: the standard MPC controller, the local operator-based controller, and
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the new MoMPC controller, respectively. Figure 6 shows the routes followed by the operators

following the instructions of the MoMPC controller during the first day and a histogram of the

visits to the gates during the whole simulation. In particular, 2052 gate settings adjustments

were performed by the operators at the gates during the simulated period in the MoMPC

scenario. In the PI scenario the number is reduced to 1440 because the operators spend

more time traveling. Finally, in the MPC scenario 34560 changes in the gates settings are

performed, one per gate at each time step. The values of the a posteriori performance indices

J and JWD obtained in the simulations are given in Table I.

As shown, the performance of the standard MPC controller exceeds that of the two other

controllers. This performance could be treated as a upper bound when measurement and

actuation are available at all locations at all times. Although the performance of MoMPC is

slightly lower than the performance of standard MPC, in practice it is not always possible

to ensure that complete sensing and actuating equipment are installed for the canal and this

is a practical reason for considering MoMPC as control method for a canal. MoMPC does

not require any automatic equipment, which has proven to be very vulnerable, to be installed

along the canal. Instead, operators equipped with only a mobile device such as a smartphone

to communicate to a central controller can implement MoMPC.

It is evident that the MoMPC configuration outperforms the local configuration with two

human operators implementing local feedback control and feedforward control on the head

gate. This is in accordance with expectations, since MoMPC injects more global information

in the control loop of the central controller. In contrast, the manual control configuration is

based on local information only, hence resulting in an inferior performance.

Finally, regarding the results given in Table I, it must be said that the indices used are in line
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with the required performance of water delivery, where small deviations around a setpoint

do not matter so much, but larger ones result in an integrated volume deficiency of the water

being delivered. The local control results in long periods of water-level deviations from

the setpoints, while MoMPC brings back the water levels swiftly around their setpoints.

In all simulations, exactly the same noise has been injected in the simulation model, so

the seemingly noisy behavior of MoMPC is because of the event-triggered actions, more

comparable to a bang-bang controller. Moreover, canal reaches have significant resonant

behavior and the MoMPC has to take larger control actions compared to MPC to compensate

for the fact that the return time to a gate is much larger.

Conclusions and future work

The main advantage of this new controller, referred to as MoMPC, is that no sensor, actuator,

or dedicated communication equipment needs to be installed and maintained. If there are

several operators, their actions can be coordinated to boost the overall system performance.

However, despite the promising results of this HIL control scheme, several challenges remain.

In the first place, this approach provides a solution for a specific subclass of HIL systems in

which the human-system interactions are modeled solely as delays in the control problem.

The modeling and integration of more sophisticated human-system interactions into the MPC

context must be addressed in future works. Another challenging topic is in the optimization

problem that has to be solved to optimize the operator sequence, because it may become

unfeasible for certain real-time applications. It is necessary to explore suboptimal and

distributed optimization methods that facilitates the application of this approach to other

fields. Another line of enhancement comes from considering the operators’ movements. In
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particular, a trade-off between the effort required to send an operator to a certain gate and

the amount of change needed at the gate can be exploited. Also research is necessary on

how to include an observer that is fed by one measurement at a time from one location.

Otherwise, there is a significant risk that the error between the real and the estimated state

becomes so large as to negatively affect the controller performance. Finally, the uncertainty

about the times at which human operations are actually performed and the resulting impact

on performance and stability is also an issue that deserves attention, especially for systems

with faster dynamics.

This article may open a novel area of new research and applications for control systems that

can add up to extending the scope of applicability and significance of the established research

on HIL systems in the future.
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Lecture Notes in Computer Science, E. Ábrahám and K. Havelund, Eds. Springer

Berlin Heidelberg, 2014, pp. 470–484.

[25] F. Bourgault, A. Chokshi, J. Wang, D. Shah, J. Schoenberg, R. Lyer, F. Cedano, and

M. Campbell, “Scalable bayesian human-robot cooperation in mobile sensor networks,”

in IROS 2008. IEEE/RSJ International Conference on Intelligent Robots and Systems.

IEEE, 2008, pp. 2342–2349.

[26] T. Kaupp, A. Makarenko, S. Kumar, B. Upcroft, and S. Williams, “Operators as infor-

mation sources in sensor networks,” in IROS 2005. IEEE/RSJ International Conference

on Intelligent Robots and Systems. IEEE, 2005, pp. 936–941.

[27] M. Lewis, H. Wang, P. Velagapudi, P. Scerri, and K. Sycara, “Using humans as sensors

in robotic search,” in FUSION’09. 12th International Conference on Information Fusion.

IEEE, 2009, pp. 1249–1256.

[28] S. Hirche and M. Buss, “Human-oriented control for haptic teleoperation,” Proceedings

of the IEEE, vol. 100, no. 3, pp. 623–647, March 2012.

[29] H.-H. Chiang, S.-J. Wu, J.-W. Perng, B.-F. Wu, and T.-T. Lee, “The human-in-the-loop

design approach to the longitudinal automation system for an intelligent vehicle,” IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 40,

no. 4, pp. 708–720, July 2010.

[30] T. Zhang and M. Nakamura, “Neural network-based hybrid human-in-the-loop control

28



for meal assistance orthosis,” IEEE Transactions on Neural Systems and Rehabilitation

Engineering, vol. 14, no. 1, pp. 64–75, March 2006.

[31] M. L. Cummings, C. Mastracchio, K. M. Thornburg, and A. Mkrtchyan, “Boredom

and distraction in multiple unmanned vehicle supervisory control,” Interacting with

Computers, vol. 25, no. 1, pp. 34–47, 2013.

[32] M. L. Cummings and K. M. Thornburg, “Paying attention to the man behind the curtain,”

IEEE Pervasive Computing, vol. 10, no. 1, pp. 58–62, 2011.

[33] M. L. Cummings, J. P. How, A. Whitten, and O. Toupet, “The impact of human–

automation collaboration in decentralized multiple unmanned vehicle control,” Proceed-

ings of the IEEE, vol. 100, no. 3, pp. 660–671, 2012.

[34] E. Lee, “Cyber physical systems: Design challenges,” in Proceedings of the 11th

IEEE International Symposium on Object Oriented Real-Time Distributed Computing,

Orlando, FL, USA, May 2008, pp. 363–369.

[35] G. Schirner, D. Erdogmus, K. Chowdhury, and T. Padir, “The future of human-in-the-

loop cyber-physical systems,” Computer, vol. 46, no. 1, pp. 36–45, Jan 2013.

[36] P. van den Hof, C. Scherer, and P. Heuberger, Model-Based Control: Bridging Rigorous

Theory and Advanced Technology. Springer, 2009.

[37] E. F. Camacho and C. Bordons, Model Predictive Control in the Process Industry.

Second Edition. London, England: Springer-Verlag, 2004.

[38] J. Maciejowski, Predictive Control with Constraints. Essex, England: Prentice Hall,

2002.

29



[39] C. E. Garcı́a, D. M. Prett, and M. Morari, “Model predictive control: Theory and practice

- a survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989.
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Figure 1. Mobile configuration of MPC.
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Figure 2. Profile of the 13 pools of the canal studied.
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Figure 3. Results obtained with the standard centralized MPC.
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Figure 4. Results obtained with local operator-based control.
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Figure 5. Results obtained with MoMPC.
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Figure 6. (a) Routes followed by the operators during the first day and (b) histogram of
the visits to each gate during the whole simulation period.
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TABLE I
PERFORMANCE INDICES J AND JWD FOR THE THREE CONTROL CONFIGURATIONS

TESTED IN THE SIMULATION STUDY.

J JWD

Standard MPC 93.91 2.07
Local control 312.05 12.52

MoMPC 131.35 2.76
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TABLE II
PARAMETERS AND VALUES USED FOR THE MOMPC CONTROLLER.

Gate # Qi Ql,i Ri

1 1 0 30.5300
2 1 0 26.8960
3 1 0 24.7520
4 1 0 24.6520
5 1 0 11.3480
6 1 0 10.8560
7 1 0 10.4760
8 1 0 9.8680
9 1 0 8.5560

10 1 0 7.0560
11 1 0 4.2200
12 1 0 3.8060
13 1 0 3.2360
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