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Abstract

A robust MPC for constrained discrete-time nonlinear systems with additigertainties is presented.
The proposed controller is based on the concept of the reachabléhsétis, the sets that contain the
predicted evolution of the uncertain system for all possible uncertaintipgdesses are nonlinear these
sets are very difficult to compute. A conservative approximation basedterval arithmetic is proposed
for the on-line computation of these sets. This technique provides gsotisavith a computational
effort only slightly greater than the one corresponding to the nomindigiien.

These sets are incorporated in the MPC formulation in order to achieustrstability. By choosing
a robust positively invariant set as a terminal constraint, a robustljlistiady controller is obtained. Sta-
bility is guaranteed in case of suboptimality of the computed solution. In dod#ustrate the proposed

controller, it is applied to a Continuous Stirred Tank Reactor (CSTR) wittxathermic reaction.



1 Introduction

The main reasons for the success of Model Predictive CofitBLC) is that it is one of the few techniques
that is able to handle explicitly constraints and model vtadeties. Furthermore, underlying theoretic
problems on linear MPC and on nonlinear MPC are well studiédSee [2, 3] for a survey on the process
industry application issues and [4, 5] for a survey on naadimMPC. Particularly interesting is [1] where a
standard formulation of the MPC is established and suffigenditions to guarantee asymptotic stability
are given.

Although it has been proved that the controller has someegegf robustness [6, 7], if the system
differs from the prediction model, the stabilizing propestmay be lost. In order to get robust stability
when uncertainties are present, they must be taken intauataothe computation of the control law. Two
different approaches have been proposed: open-loop ased:zloop MPC.

In the open-loop MPC formulation the decision variables aequence of control actions as in the
nominal case. Any feasible sequence applied in an opendw@mer must steer the system to the terminal
region in an admissible way for any possible uncertaintyerTthe reaction of the controller to the uncer-
tainty (due to the feedback structure) is not consideretarpredictions, which makes the controller quite
conservative. Consequently, the domain of attraction neagrhall (or even empty) compared with the real
robustly stabilizable region. In [8] an open-loop dual-raddPC controller is proposed and robustness
under decaying additive uncertainties is achieved.

This conservativeness can be overcome if a sequence obtlawts is used as decision variables, which
leads us to the closed-loop formulation. In this case, tioblpm is mitigated at expense of a quite more
complex optimization problem to solve. The feasibilityimgis quite larger than the one of the open-loop
formulation and it tends to the maximal robustly stabilieategion when the control horizon increases. In
case of constrained linear systems, the closed loop MPCdes ¢haracterized [9] and explicit solutions
of the controller can be obtained by means of multi-paraimptogramming (see [10] and references there
in). In the case of nonlinear systems, the optimization lgmbis prohibitively complex and it must be
considered as a merely theoretical controller.

In this paper, an open-loop robust MPC for constrained disetime nonlinear systems with additive

bounded uncertainties is presented. It is based on theabkchets: the sets which contain the predicted



evolution of the uncertain system under any possible uaitéyt Since the nonlinearity of the model
makes these sets difficult to be accurately obtained, donditare established to compute them by using
approximate procedures.

Interval arithmetic is used for the computation of the apprate reachable sets. This procedure is very
useful for the on-line implementation of the proposed aultdr, since the computational effort is similar
to the nominal prediction. Furthermore, quite good resaifes obtained since the method provides local
approximations to the reachable set.

Based on these sets, a robustly stabilizing dual-mode M@ alter is proposed. The controller is
based on the addition of a robust invariant set as a termimadtaint with an associated robust local
control law. Thus, the dual-mode controller applies the MB@ition as control input when the state is not
in the terminal region, and once the system has reacheckitptial control law is applied. For all initial
states such that the optimization problem is feasible, spbtability is guaranteed. Hence, the uncertain
closed-loop system reaches the terminal region in a finitebaur of steps and it remains in it all the time.
Robust stability is ensured in case of suboptimality of thietson.

The paper is organized as follows: In section 2, some premyiresults are established, the exact and
approximate reachable sets are presented and some badis ireghterval arithmetic are given; in section
3, the Robust MPC strategy is demonstrated, and in the follpwection, closed loop stability is proved.
The application of the proposed controller to a CSTR is shimngection 5, and finally some conclusions

are given at the end of the paper.

2 Preliminary results

2.1 System description
Consider an uncertain nonlinear discrete-time systemmdiye
Xir1 = (X, Uk) + Wi 1)

wherexk € IR" is the state of the system ang € IR™ is the control vector at sample tinke The vector

wg € IR" is the disturbance or uncertainty which is assumed to bdieeldind bounded in a compact ¥t



that contains the origin.

Wi € W 2

The system is subject to constraints on the state X and on the control actiom, € U.
Note that the additive uncertainty can model perturbedesystand a wide class of model mismatches

taking into account that these ones might depend on thedftttie system, since
X1 = T (X, Uk) = (X, Uk) +AF (X, U) = Wi = Af (xi, uk) €W,  ¥xy € X,ug € U

whereX is a closed set arld a compact set, both of them containing the origin.
The model given by

)’ZkJr]_ = f()A(k7 uk) (3)

denotes the nominal model of the system. The vagtgk) denotes a sequence of controlMfinputs
ur (k) = {u(klk), u(k+1k), -, u(k+M—1]k)}

where the number of future inpuk8 is derived from the context. For a given stateand a sequence of
control actionaug (k), the future state of the system at tilke- j predicted by using the nominal model is

denoted ag&(k+ j|k). HenceX(k+ j+ 1|k) = f(X(k+ j|K),u(k+ j|k)), whereX(k|k) = X.

2.2 Reachable sets

Since there are mismatches between the real system andriieahonodel, the predicted evolution using
the nominal model differs from the real evolution of the syst In order to consider this effect in the
controller synthesis, it is interesting to compute theeagiround the nominal prediction that confines the
state of the system under any possible uncertainties.

This idea is the basis of the so-called reachable sets. Gantbiat the state of the system at sample time
kis xx and a sequence of control inputs(k) is applied to the uncertain system. The evolution of thessgst
depends on the uncertainties, that are known to belong tbaheded sétV. The reachable set at sample
time k+ j is denoted asj(xk,ur (k)). This set is the region that confines the evolution of the taie
system under any possible realization of the uncertainii¢ié sample timek+ j, that isV wy,j € W, for
i=0,---,k+ j — 1. Note that this set depends gg on the sequence of inputs froknto k+ j — 1, i.e.

{u(kk),---,u(k+ j — 1]k) } and on the set of uncertainti&g.
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Hereafter some definitions and results related to the rédelsats are presented. First some notations
are introduced; consider seAsandB C IR", a vectorx € IR" and a functiorg(x) : IR" — IR" then the
following sets are defineck+ A= {x+a, ac A}, g(A) = {g(a), ac A}, A+B={a+b,ac A becB},

andA~B={ce R":c+BCA}.

Definition 1 (Reachable set)Consider a system (1) and consider a given state at sampdektirg, and a
sequence of control inputg: (k). Then the reachable set at sample time k Xj(xk, ur (k)), is given by

the following recursion
X;j (% Uk (K)) = f(Xj1(x, Ur (K)), u(k+ j — 1K) + W 4)
whereXy (X, Ug (K)) = (X, u(k|k)) +W.

Note thatX;j(x,ur (k)) is the set that contains the uncertain evolution of all tlaest ofX;_1(x, ur (k)),

that is

Xj(Xk, up (K)) = U f(x,u(k+j—1k)) +W

XeXj_1

Due to the nonlinear nature of the model, for a givens€tIR" and a given control actiom, the setf (A, u)

is very difficult to compute and thus, the reachable sets araiseful from a practical point of view. In
order to reduce the complexity of the computation, thesge st be substituted by tractable approaches
denoted as approximate reachable sets. The approximatlmsed on a procedudg A u) to compute a
conservative and tractable approximationféf, u) with a lower computational burden. This procedure

must satisfy the following conditions.

Assumption 1 The approximate procedurg(A, u), where AC X andu € U satisfies the following condi-

tions:
e Inclusion condition: fA u) C W(A,u).
e Monotonic condition: If B is a set such thatBA, theny(B,u) C W(A,u).
Based on this procedure, it is possible to compute consesvapproximations to the reachable sets.

Definition 2 (Approximate reachable set) Consider a system (1) and a procedurg, -) that satisfies as-

sumption 1 for the system. Then for a given state at sampkekijxy, and a sequence of control inputs



ug (k), the approximate reachable set at sample timej qu (Xk, Ug (k)), is given by the following recursion
X (%, Ur (K)) = W(XG-1 (%, UF (K)), u(k+ j — 1K) +W )
whereXy (xk, Ug) = f (xk, u(k|K)) +W = Xy (xk, ug (K)).
These approximate reachable sets have the following pieper
Property 1 Consider a given state and a sequence of M control inpuis (k),
ug (k) = {u(klk),u(k+1|k),---,u(k+M —1]k)}
Consider the sequence of ML inputsug (k+ 1) given by
Ug(k+1) = {u(k+1k),---,u(k+M—=1]k)}
then we have:

(i) The approximate reachable set contains all the predicitates for all possible realization of the

uncertainties, that is

X (xk, U (K)) € X (xk, Uup (k)  j=1,---,M (6)
(i) For any possiblex1 = f(xk, u(k|k)) +wy, then
X; (%1, Ur (K+1)) € Xja (o Up () j=1,--M~1 @
Proof: Both properties are proved by induction.

(i) From the definition we have thaky (xg, U (K)) = X1 (X, Ug (K)). Assume thatXj_1 (xk, ur (K)) €

Xj_1(xk, U (k)), then

Xi(x U (k) = f(Xj_,u(k+j—1/k)) +W C Y(Xj_1,u(k+j—1k)) +W

C W1k | — 1K) +W = X (6, ur (K))

(ii) Itis clear thatxy,1 € Xi(xk, ug (K)). In virtue of the monotony condition aji(-, -), we have

X1(Xkt1,Ur (K4 1))

W(Xir1,u(k+1k)) +W

C (X (X Ur (K)), u(k+1[K) +W = X2 (xk, U (K))



Consider thaij_1(xk1,Ur (k+1)) € Xj(xk, U (k)). From the inclusion condition af(-,-) we have

Xj (X1, Up (K+1) = W(Xj-a (X, U (k4 1)), u(k+ k) +W

C WX (i, e (K)), u(k+ 1K) +W = X 1(xi, Up (K))
m

The first property proves that assumption 1 suffices to coengpproximate reachable sets; the second
property establishes that the obtained sets are consisitantis, the sequence of approximate reachable
sets computed at the next sampling time for the remainingralosequence is included in the sequence of
approximate reachable sets computed at the current sanijplia.

In order to implement the computation of the approximateheable sets, it is necessary to find pro-
cedures that satisfy assumption 1. A procedure based avaht@ithmetic is used in this paper. In the

following section, some well-known results are shown.

2.3 Interval arithmetic

Interval mathematics is a generalization of real mathesgati which interval numbers replace real num-
bers, interval arithmetic replaces real arithmetic, andriral analysis replaces real analysis [11]. Interval
arithmetic has been applied in numerical analysis and irsthdy of the solutions of equations in com-
pact domains [12], bounding the solution of ordinary difsial equations [13] and global optimization
problems [14, 15, 16].

An interval numbeiX = [a,b] is the set of real numbers such tHat: a < x < b}. The same concept
is extended to interval vectors, where each component igtarval variable. Note that an interval vector
X is asetin IR. The set of real compact intervgbs b], a,b € IR is denoted by, and the sets of interval
vectors in IR is denoted by".

Interval arithmetic is an arithmetic defined on sets of weds, instead of sets of real numbers. The four

basic interval operations [11] are given by

[a,b]+[c,d] = [a+c,b+d]

a,bj—[c,d = [a—d,b—c

[a,b] — [c,d] [ ] @®
[a,b] x [c,d] = [min(a-c,a-d,b-c,b-d),maxac,ad,b-c,bd)]

[a,b]/[c,d] = [aab] X [%7%] if 0¢ [Cvd]



The ranges of the four elementary interval arithmetic oj@na are exactly the ranges of the corre-
sponding real operations. Extension of the interval ar@tieto include 0 in division can be found in [17].
The interval extension of standard functions, suchkiascos, tan, arctan, exp, In, abs, sqgtalso possible.

Consider a functiog : IR" — IR™ and consider an interval vectre |", then the seg(X) denotes the
range ofg(-) over the intervaX. Note that it is not an interval vector in general. Computimgexact range
of an arbitrary functiorg(-) over an interval vectoX is a difficult problem. However, interval arithmetic

can be used to obtain interval bounds of the exact raige.

Definition 3 (Inclusion function) A function G: IR" — IR™ is called an inclusion function for (g) if

g(X) C G(X) for any X of I".

Definition 4 (Inclusion monotonic function) The inclusion function G) is inclusion monotonic if for ev-

ery X,Y € | such that XC Y it is satisfied that &X) C G(Y).

Definition 5 (Natural interval extension [14]) Ifg: IR" — IR™is a function computable as an expression,
algorithm or computer program involving the four elemegtaperations interspersed with evaluations of
standard functions, then a natural interval extension @ ¢s obtained by replacing each occurrence of
each component »f x by the corresponding interval; %f X, by executing all operations according to the

formulas (8) and by computing exact ranges of standard fanst

Note that a natural interval extension of a functgir) : IR" — IR™ is a function(X) : 1" — ™.

Theorem 1 ([14]) Natural interval extensions are inclusion monotonic fimms, i.e. for any Xe I",

g(X) € W(X) and for any XS Y, y(X) C y(Y).

The conclusion is that natural interval extensions can eéd for any function or any procedure. Bounds
on the ranges can be computed from any expansion (raticmgbriseries, etc.) that has an explicit formula
for the error term.

Now, let y(X,u) be a natural interval extension of the modék,u), considering the inputs as a
parameter. Hence, it can be used as inclusion functionsn Breorem 1, we get that for ad§; Y € I" such
thatX C Y and for anyu, f(X,u) C W(X,u), andw(X,u) C w(Y,u).

Therefore this procedure satisfies assumption 1 and it casdzbto compute the approximate reachable

sets. Note that the set of uncertainti@smust be an interval vector, since the gg€X,u) +W must be an



interval vector in order to compute the following set in (bhis is a mild condition since an interval vector
which containdV can be used for the computation of the approximate reaclsetde

It is worth noting that the computational cost of the evahrabf the procedurg(X,u) is of the same
order of complexity that the evaluation of the functibfx,u) (see for instance the interval extensions of
the basic arithmetic operations, where an interval prodpetation requires at most 8 scalar products and
6 comparisons).

The approximate character of the obtained interval range$e reduced using several methods.

¢ Analyzing the function, reordering and grouping terms wuee the so-called multi-incidence prob-
lem. This problem appears when a variable is repeated in aression [14]. For example, when
interval arithmetic evaluates an expression like x-x, #mutt is an outer approximation of the real

solution.

o If the model function does not satisfy some monotony coodifiL5, remark 3.2], then the range of
the function can not be exactly enclosed by an interval vedtothis case, when the sequence of
approximate reachable sets is computed, the so-ocaliegdping effectnay appear. This problem has
been widely studied and some procedures to overcome it hese froposed [11, 12, 15]. In [13],
the intervals have been extended to the notion of zonotapesnotope is an affine mapping of an
hypercube and it is quite more general than standard irgenvathis case, zonotopes can be used to
obtain tighter approximations of the range of a functione ®ilhn's method has been used in [18]

to obtain tighter approximations of the reachable sets.

e Using a pre-stabilization structure: in this case, the mretction uy is given byu, = K(X«) + Vi,

whereK () is a given controller ang is the new control input; thus the system is given by

X1 = T (X, Uk) = (X, K(Xk) + W) = Tic (X, V&)

The control lanK (X) is designed to stabilize the system or merely to reduce tioe ef the approx-
imation of the interval extension. That is, it is designedhtain a functionfk (x,v) such that its
interval extension provides better approximations. It barobtained for instance to cancel terms

which induce large errors in the interval extension.

Once we have a method to compute the approximate reachabletlsese are used to design a new



robust MPC controller. This technique is presented in thieviang section.

3 Robust MPC strategy

Model predictive control is a well established optimal ¢ohstrategy which considers constraints on the
states and on the control actions [1]. The control Kaypc(Xk) is obtained solving a constrained optimiza-
tion problem and applying the optimal control action to thistem in a receding horizon manner. Consider

the finite horizon MPC optimization problem stated as fodow

min I (X, Ug (K)) = NiL()‘((k+ik),u(k+i|k)) +V(&(K+N[K))

ur (k) i=

subject to:

X(k+ jlk) € X Vi=1,---)N
u(k+ jlk) e U Vj=0,---,N-1

%(k+NK) € Q

where the vector of decision variables(k) = {u(k|k),u(k+1|k),---,u(k+N—1|k)} denotes the future
sequence of control inputs of the system along the predidimrizonN and X(k+i|k) is the predicted
nominal state of the system applying (k). L(x,u) is the so-called stage cost, which is a semi-definite
positive function. Notice that the MPC includes a terminadtd/(-) in the cost function and a terminal
constraint given by the regian.

Taking into account that the optimal minimizeg (xi) only depends oy, and the receding horizon
policy, the control law is given byy = Kypc(Xk) = u*(k|k). In absence of uncertainties, this control law
asymptotically stabilizes the system under some assungtino the terminal cost and the terminal region
[1]. Moreover, the optimal cost functiodi;(xk) is a Lyapunov function of the closed loop system. The
domain of attraction of the controlled is the set where the optimization problem is feasible.

If the system is uncertain, then stability, and probablgsfbility of the nominal MPC may be lost. In
[8] a terminal constraint is added to the MPC and dual-modsgrobler is proposed. The terminal set is
considered a subset of a robust invariant set to ensuretrstaislity. Based on the Lipschitz continuity
of the model, a bound of the uncertainties such that the tainesystem is stabilized is given. Due to the

global nature of the Lipschitz constant, the obtained bauag be over-conservative.
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In this paper a robust dual-mode MPC is proposed. It is barddledcomputation of the approximate
reachable sets shown in section 2.2. These sets allow usisiden all possible realizations of the uncer-
tainties in the computation of the MPC control law. It is wopointing out that the approximate reachable
sets are local bounds on the effect of the uncertainties ancd less conservative than global bounds based
on a global Lipschitz constant.

In what follows, it is considered that the system satisfieftifiowing assumption.

Assumption 2 There is a regiorQ C X with an associated control law = h(x) such thatQ is an ad-
missible robust positively invariant set for the uncertaystem. That is, ik € Q, then Kx) € U and

f(x,h(x))+weQ, YweW.

There exists well-established methods to compute robugtaters for nonlinear systems [19]. If an
associated robust Lyapunov function is obtained then ithmmnised as terminal cost and a level set can
be used as terminal set. This choice can be considered asiimfirsite prediction horizon, and hence it
provides an enhanced closed loop performance [20].

Note that we only require that this controller robustly fifabs the system in a neighborhood of the
steady state; this allows us to use local approximation ¢ontbnlinear system around the steady state.
Thus, a linear approximation can be used in a similar wayttteproposed one in [20]. Another technique
is approximating the nonlinear system by a linear diffeéemmclusion (LDI) and compute a robust linear
controller and the maximal robust invariant set, which iob/lpedron [21].

The proposed controller is derived from the following optiation problem:

Robust dual-mode MPC optimization problem (P|§i (Xk))

min JN_k(xk,uF(k))NglL(X(k+i|k),u(k+i|k))+V(>“<(N|k))

st Xj(xue(k) CX Vj=1,---,N—k 9)
uk+jk €U  Vj=0,--,N-k-1 (10)
Xn—k(Xe, Up (K) € Q (11)

The robust dual-mode control law is such that when the sygamt in the terminal region, then the

solution ofPl‘(j (xk) is applied, and when the system is in the terminal regiom the local robust control
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law is applied. Thus, the dual-mode control law is given by
u*(klk) if xx ¢ Q
Kiipc(X) =
h(x) ifxkeQ
whereu* (KK) is the first control input ofi (k), solution to the optimization problef (x).

Note that the control horizon of the optimization probleméduced at each sample time. Therefore,
this optimization problem is only defined fear= 0 tok = N — 1. In the next section it will be proved that
the system reaches the terminal regioMNisteps, i.exy € Q, and, hence, the local control law= h(x)
makes the system remains Consequently, the controller is well defined.

The approach proposed in this paper is different to the oopgsed in [8]: the notion of reachable set
is added and hence the effect of the uncertainty is considdomg the control horizon. This fact allows us
to consider the constraints on the states in a more natusal @ansequently, it is not necessary to use a
more conservative terminal region as in [8].

We propose the use of local procedures for the computatidheofpproximate reachable sets. This

constitutes the main difference with respect to [8], wheggodal Lipschitz constant is used. Hence, our

method is potentially less conservative, which leads tageladomain of attraction.

4  Stability analysis

Since the uncertainties are merely bounded and they mayendétaying, the origin is not a steady state
of the uncertain system. Hence, the aim of a stabilizingrodiet is to steer the state to a neighborhood of
the origin and keep the state evolution in it. This set is aisbipositively invariant set for the closed loop
system and its size depends on the bound on the uncertaifiiesefore, the notion of asymptotic stability

is not suitable and the definition of system ultimately baeohds introduced:

Definition 6 ([19]) A system is asymptotically ultimately bounded if the systestves asymptotically to a
bounded set, i.e. there exist positive constants b and cthatlor everya € (0,c), there is a K such that

for all ||Xo|| < a then||xk|| < b, Yk > k*.

This definition of stability is closely related to the notiohinput-to-state stability (ISS). In this case,
sufficient stability conditions are imposed by means of thealled ISS-Lyapunov function. See for in-

stance [22] where an ISS MPC controller is proposed.
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As itis proved in the following theorem, for any feasibletiai state, the proposed controller steers the
uncertain system to the terminal region where it remaingliche time. Hence, the closed loop system is

ultimately bounded.

Theorem 2 (Stability) Consider a system (1) with additive uncertainties sub@(2} and with constraints
on the statesk € X and on the inputsiy € U. Consider a robust invariant set for the systénwith an
associated local controllen = h(x) such that both satisfy assumption 2. Consider that a proeetiu
compute the approximate reachable sets satisfying assampts available. Then the system controlled

by u = Kdoc(x«) is ultimately bounded for akto such that the optimization problen§ o) is feasible.

Proof: The stability is based on the feasibility of the optimizatjgroblem for all the time. That is, if the
initial statexg is feasible, then the optimization probld?ﬂ(xk) is feasible for alk > 0. Since the control
horizon is reduced at each sampling time, the system redbketerminal region irN steps. Once the
system is inQ, the controller switches th(x) and this controller makes the system never l€@ve

Feasibility is proved by induction. By assumptiof,is such that the optimization probleR§ (xo) is
feasible. Assume that ix_1 the optimization problen®d , (xc_1) is feasible and the optimal (a feasible)
solution is

ug (k— 1) = {u*(k— 1|k — 1), u"(Kk— 1), -, u" (N — 1k — 1)}

Letxx = f(X-_1, K,?Apc(xk,l)) +Wi_1 be the state where the uncertain system evolvisaatd letur (k) be

a sequence of control inputs given by
Ur (K) = {u” (Kk—1),u" (k+ 1k — 1), ,u"(N — Lk — 1)} (12)
then we are going to prove thag (K) is a feasible solution tB () for all possible uncertaintyi_1 € W.

e Input constraints: Sinceg (k— 1) is a feasible solution t&¢ , (xc_1), thenu*(jlk— 1) € U for all

j=k—-1,--- ,N—1. Therefore, from (12) we derive thag (k) is admissible.
e State constraints: It is clear that € Xl(xk,l, ug (k—1)); then in virtue of property 1 we have that
Xj_1(%, Ur (K)) € Xj(xx_1,ut (k—=1)) CX for j=2,--- . N—k+1
e Terminal constraint: From the state constraints we alsivelénat
Xk (%, UF (K)) € Xk (Xe_1, U (k— 1)) € Q (13)

13



Therefore g (K) is a feasible solution d®¢(x) and by induction, the optimization problem is feasible for
all the time.

Now, we are going to prove that the state of the closed loofesysat timeN is in the terminal region,
i.e.xn € Q. In effect, from (13), we have that at sampling tikne N — 1, the control action must guarantee
that X1 (xn_1,u*(N—1JN — 1)) C Q, and hence, due tay € X1 (xn_1,u*(N —1|N— 1)) for all wy_1 € W,
we derive thaky € Q.

Once the system reaches the terminal set the controllecissto the local controller = h(x) which,
by assumption 2, guarantees that the closed loop systeratievolemains into the terminal regid® .

Thus, the closed loop system is ultimately bounded.

Remark 1 Note that the stability is guaranteed thanks to the feasjbilf the computed control action at
each sample time. Hence, optimality is not required and aptiimal solution of the optimization problem
suffices to guarantee stability. This property allows ustax the computational burden of the optimization
problem.

Moreover, from the stability proof we derive that at each plng time we can compute an initial feasible
solution based on the solution obtained at the previous §ampme; this initial state is a hot start for the
optimization problem. This property and the relaxationha bptimality requirement allow us to reduce the

computational burden necessary to compute the contrabaett each sampling time.

Remark 2 The feasibility is guaranteed by means of the reduction@ttntrol horizon at each sampling
time. In order to maintain the horizon considered in the dostminimize, a constant prediction horizon
N, can be considered. In this case, the local control law is usepredict the evolution from the control

horizon to the prediction horizon [23]. This is equivaleatuse he following modified terminal cost

Np
VENK) = 5 LX(k+ jlk), h(x(k+ k) (14)
j=N—k

whereX(k+ j +1|k) = f(X(k+ j|k),h(X(k+ j|k))) for j =N —K,---,Np.

Note that stability is independent on both the stage costthaderminal cost. Thus, this choice of the
terminal cost function has only effect on the performandenbtion the stability of the closed-loop system.
The proposed controller can be extended to fixed controlzZborconsidering the robust invariance condi-

tion [24].
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Remark 3 The proposed controller is able to stabilize the system gtfaasible initial state. Thus, the
size of the domain of attraction of the closed loop systeneleed with the considered bounds of the
uncertainties; in fact, if the uncertainty is reduced, thendhin of attraction is enlarged. The open-loop
nature of the proposed robust MPC makes the controller cvasige in the sense that the resulting domain
of attraction is probably smaller than the robustly stabélble region.

This conservativeness can be reduced considering a pbalistgion policy. This provides some degree of
feedback in the prediction (although it is not a closed-léopnulation). Note that in this case, the input
constraints are interval constraints, since an intervalirestion of the control action for every approximate
reachable set is required.

Additionally, this technique can also improve the accuratyhe approximation of the reachable sets, as
it was shown in the section 2.3. Another technique to redueeonservativeness is to consider zonotopic

estimations of the approximate reachable sets [18].

5 Application to a CSTR model

To illustrate the proposed robust MPC controller, it is &xpto a benchmark system [23]: the continuous
stirred tank reactor (CSTR). A CSTR for an exothermic, iersible reactiorA — B with constant liquid
volume is considered. The continuous time model is derivenh fthe mass and energy balances and it is

given by [25, 23]:

dCA . q E

. \7'<CAf‘CA>"‘°'eXp(‘ﬁ)'C“WCA

dT ¢ AH ko E U-A

5 = \_/.(Tf -T)— oC, 'EXp(_—R-T) 'CA—'—V-p.Cp'(TC_T)—'—WT

whereCa is the concentration oA in the reactor[ is the reactor temperature amgis the temperature of
the coolant streamwc, andwr model the uncertainty on both states.

The considered parameters of the model [28} 1000 g/I,C, = 0.239 J/g K,AH = -5 x 10* J/mol,
E/R=28750K,ky = 7.2 x 109 min~%, U-A = 5 x 10*J/min K. The nominal operating conditions are given
by[23]: g =100 I/min, T = 350 K,V =100 I, Cas = 1.0 mol/l. In these conditions, the steady state is
CR = 0.5 mol/l, T° = 350 K andT@ = 300 K, which is an unstable equilibrium point. The tempemeif

the coolant is constrained to 280KT; < 370K, the concentration & is constrained to. @ mol/l < Ca <
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0.6mol/l. As in [23], the model is discretized using a sampling pefig= 0.03 min. We consider that the

uncertainties are bounded by
Wc,| <0.1mol/(Imin) and |wr| <8°K/min

The objective is to regulate in an admissible way the comagohCpa and the reactor temperaturearound
the steady state manipulating the temperature of the coiolé&s admissible range, for any possible uncer-
tainty.

In order to improve the robust controller, a pre-stabil@aatstructure is considered. This controller
stabilizes locally the system, thus it is used also as lomatrol law for the dual-mode MPC controller. The
control law is

K(x) = (33.46— 7.2~1012exp< E )) -Ca—1.868T +987.07

“RT
The closed loop system has been approximated by a LDI to cengpwbust invariant s€. The obtained
polytope is used as terminal region in the MPC formulatios.tétminal cost is considered a cost function

given by (14), withN p= 50. The considered stage cagk,u) = x"-Q-x + u"-R-u, with

2.0 0
Q= and R=33310
0 29103
as in [23]. The MPC controller has been executed with a cbhtrozonN = 15. In figure 1, the sequence
of N approximate reachable sets computed for the optimal salirtia given initial state is shown.

To illustrate the evolution of the system, the uncertairayg heen considered as constant along the time
with an extreme value. Thus, four different scenarios haenlconsidered: scenario #1 witlg, = 0.1
andwr = 8, scenario #2 witlwc, = 0.1 andwy = —8, scenario #3 witlwc, = —0.1 andwy = —8 and
scenario #4 wittwe, = —0.1 andwr = 8. The state portrait of the closed loop evolution for selveitial
points in the four considered scenarios are depicted ind&g@r 3, 4 and 5 respectively. In these ones, the
admissible convergence of the closed loop system in spitieeofincertainties is demonstrated. Moreover,
the collection of the chosen initial state shows the sizehefdomain of attraction of the controller. It
is worth remarking that in these figures, the system evoleemtsteady state which is different at each

scenario due to the uncertainties; the steady state istddpidth a circle. Note how the uncertainties affect

to this steady state, which gives an idea of the amount oflcentainty considered.
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6 Conclusions

In this paper, a robust dual-mode MPC controller for comsé discrete-time nonlinear systems with
additive uncertainties is presented. It is based on theiaddif the uncertain prediction of the system in
the MPC optimization problem. This is done via the so-cadlpdroximate reachable sets, which provide a
tractable way of considering the effect of the uncertaitie the predictions. It has been demonstrated that
interval arithmetic is an appropriate and tractable tegtmaifor the on-line computation of the approximate
reachable sets.

Based on the computation of the approximate reachablessatbust dual-mode MPC strategy is pro-
posed. Considering a robust positively invariant set anitel region, any feasible initial state is robustly
steered to the terminal set, where it remains. Thus, undsitféity of the optimization problem in the ini-
tial state, robust stability and feasibility of the clodedp system is guaranteed. The local character of the
approximate reachable sets makes that the proposed dentnoproves previous robust dual-mode MPC
formulations. Furthermore, suboptimal solution of themjatation problem guarantees stability and hence
optimality is not necessary. Finally, the proposed coterdias been applied to a CSTR model in order to

illustrate some of its properties and how interval arithmistused to compute the uncertain evolution sets.

7 Acknowledgements

The authors would like to thank the anonymous reviewers hadtditor for their helpful comments. We
would like acknowledge also MCYT-Spain (contracts DPI-PAXB80-03-01 and DPI-2002-4375-C02-01)

for funding this work.

References

[1] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaednstrained model predictive control:
Stability and optimality Automatica 36:789-814, 2000.

[2] E. F. Camacho and C. Bordonslodel Predictive Control Springer-Verlag, 2 edition, 1999.

[3] S.J. Qinand T. A. Badgwell. A survey of industrial modeégictive control technologyControl

Engineering Practicel1:733-764, 2003.

17



[4] F. Allgdwer, T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J. Wridtbnlinear model predictive
control and moving horizon estimation - an introductorymi@w. In P. M. Frank, editorAdvances

in Control, pages 391-449. Springer, 1999.

[5] D. Q. Mayne. Nonlinear model predictive control: Chalies and opportunities. In F.Abbgver and

A.Zheng, editorsNonlinear Model Predictive Contrppages 23-44. Birkhauser, 2000.

[6] P. O. M. Scokaert, J. B. Rawlings, and E. S. Meadows. [Bigctime stability with perturbations:

Application to model predictive controAutomatica 33(3):463-470, 1997.

[7] D. Limon, T. Alamo, and E. F. Camacho. Stability analysisystems with bounded additive uncer-

tainties based on invariant sets: Stability and feasybdftMPC. InProceedings of the AGR002.

[8] H. Michalska and D. Q. Mayne. Robust receding horizontewrof constrained nonlinear systems.

IEEE Transactions on Automatic Contr@8(11):1623-1633, 1993.

[9] P. O. M. Scokaert and D. Q. Mayne. Min-max feedback modebjetive control for constrained

linear systemslEEE Transactions on Automatic Contrdl3(8):1136-1142, 1998.

[10] V. Sakizlis, N. M. P. Kakalis, V. Dua, J. D. Perkins, andNE Pistikopoulos. Design of robust model-

based controllers via parametric programmidgurnal of Process Contrp#0:189-201, 2004.

[11] E. Moore.Interval analysis Prentice Hall, 1996.

[12] A. Neumaier.Interval methods for systems of equatio@ambridge University Press, 1990.

[13] W. Kilhn. Rigorous computed orbits of dynamical systems wittieeitvrapping effectComputing

61:47-67, 1998.

[14] R. B. Keartfort.Rigorous global search: continuous probleniuwer Academic Publishers, 1996.

[15] J. Papamichail and C. S. Adjiman. A rigorous global myitiation algorithm for problems with ordi-

nary differential equationslournal of Global Optimization24:1-33, 2002.

[16] W. R. Esposito and C. A. Floudas. Global optimizationtlte parameter estimation of differential-

algebraic systemdnd. Eng. Chem. Re89:1291-1310, 2000.

[17] E. HansenGlobal optimization using interval analysiMarcel Dekker, Inc., 1992.

18



[18] J. M. Bravo, D. Limon, T. Alamo, and E.F. Camacho. RobMRC of constrained discrete-time

nonlinear systems based on zonotopeg=uropean Control Conferenc2003.

[19] H. Khalil. Nonlinear Systemdrentice-Hall, 2 edition, 1996.

[20] H. Chen and F. Allgwer. A quasi-infinite horizon nonlinear model predictiventrol scheme with

guaranteed stabilityAutomatica 34(10):1205-1218, 1998.

[21] F. Blanchini. Setinvariance in controAutomatica35:1747-1767, 1999.

[22] D. Limon, T. Alamo, and E. F. Camacho. Input-to-statebte# MPC for constrained discrete-time

nonlinear systems with bounded additive uncertaintie®réceedings of the CDR002.

[23] L. Magni, G. De Nicolao, L. Magnani, and R. Scattolini.sfabilizing model-based predictive control

algorithm for nonlinear system#utomatica 37:1351-1362, 2001.

[24] D. Limon. Control Predictivo de Sistemas no lineales con restrice®restabilidad y robustehD

thesis, Universidad de Sevilla, 2002.

[25] D. E. Seborg, T.F. Edgar, and D.A. Mellichanmfrocess Dynamics and ContrdlViley, 1989.

19



List of Figures

1 Sequence of predicted approximate reachable sets of timabgolution atk = 0.

2 Scenario #1: trajectories of the closed loop system. . . . . . . .. ... ... ....
3 Scenario #2: trajectories of the closed loopsystem. . . . .. ... ... ... ....
4  Scenario #3: trajectories of the closed loop system. . . . . . . .. ... ... ....

5  Scenario #4: trajectories of the closed loop system. . . . . . . ... ... ... ...

20



360

350 / L |
o ] -
]
3301 | 1
.
| —
—
320 . —
—/
—
310t . 1
300 —
i i i i i
0.4 045 05 055 06
CA

Figure 1: Sequence of predicted approximate reachableftts optimal solution at = 0.
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Figure 2: Scenario #1: trajectories of the closed loop syste
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Figure 3: Scenario #2: trajectories of the closed loop syste
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Figure 4: Scenario #3: trajectories of the closed loop syste
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Figure 5: Scenario #4: trajectories of the closed loop syste
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