

Combining Heuristics in
Assembly Sequence Planning

Carmelo DEL VALLE1, Miguel TORO1, Eduardo F. CAMACHO2, Rafael M. GASCA1

1Dept. Lenguajes y Sistemas Informáticos, Univ. Sevilla, Spain
2Dept. Ingeniería de Sistemas y Automática, Univ. Sevilla, Spain

Abstract. Assembly Sequence Planning is tackled by modelling and solving a
planning problem that considers the execution of the plan in a system with multiple
assembly machines. The objective of the plan is the minimization of the total
assembly time (makespan). To meet this objective, the model takes into account the
durations and resources for the assembly tasks, the change of configuration in the
machines, and the transportation of intermediate subassemblies between different
workstations. In order to solve the problem, different heuristics has been defined
from two relaxed model of it, one considering only the precedence constraints among
tasks, and the other one considering only the use of shared resources. From these
basic heuristics, other ones have been defined, combining both types of information
from the problem, so that the refinement produces substantial improvements over the
initial heuristics.

1. Introduction

Assembly planning is a very important problem in the manufacturing of products. It
involves the identification, selection and sequencing of assembly operations, stated as their
effects on the parts. The identification of assembly operations is done through the analysis
of the product structure, using interactive planners [1] [2], or automatically from a
geometric and relational model of the assembly [3] and from a CAD model and other non-
geometric information [4] [5]. The identification of assembly operations usually leads to the
set of all feasible assembly plans. The number of them grows exponentially with the
number of parts, and depends on other factors, such as how the single parts are
interconnected in the whole assembly, represented in the graph of connections. In fact, this
problem has been proved to be NP-complete [6].
 The representation of assembly plans is an important issue within this scope. The
use of And/Or graphs for this purpose [7] has became one of the most standard ways of
representing all possible assembly plans. The result is a representation which is adequate for
a goal-directed approach. Moreover, this structure is more efficient in most cases than other
enumerative ones [7] [8].
 Two kinds of approaches have been used for searching the optimal assembly plan.
One, the more qualitative, uses rules in order to eliminate assembly plans that include
difficult tasks or awkward intermediate subassemblies. A more quantitative approach uses
an evaluation function that computes the merit of assembly plans. Several of these
proposals can be found in [9] and [10].
 The criterion followed in this work is the minimization of the total assembly time
(makespan) of the plan executed in a system with multiple machines [11]. To meet this

objective, a scheduling-based model is used [12], which takes into account all factors
having an effect on the makespan: an estimation of the duration of tasks; the resources used
for them (machines and configurations); the times needed for changing tools in the robots;
and the delays due to the transportation of intermediate subassemblies between different
workstations.
 The rest of the paper is organized as follows: Section 2 describes the assembly
sequence planning problem and the model proposed. The details of the A* algorithm are
described in Section 3. Section 4 presents the basic heuristics taken from two relaxed
models of the problem, and Section 5 shows how these heuristics are combined in order to
improve their estimations. Some comparative results when using the different heuristics are
shown in Section 6, and some final remarks are made in the concluding section.

2. Assembly Sequence Planning

The process of joining parts together to form a unit is known as assembly. An assembly
plan is a set of assembly tasks with ordering amongst its elements. Each task consists of
joining a set of sub-assemblies to give rise to an ever larger sub-assembly. A sub-assembly
is a group of parts that can be assembled independently of other parts of the product. This
works supposes that in an assembly task there are two initial sub-assemblies to form a final
one. An assembly sequence is an ordered sequence of the assembly tasks satisfying all the
ordering constraints. Each assembly plan corresponds to one or more assembly sequences.
 An And/Or graph [7] is a representation of the set of all assembly plans for a
product. The Or nodes correspond to sub-assemblies, the top node corresponding to the
whole assembly, and the leaf nodes to the individual parts. Each And node corresponds to
the assembly task joining the sub-assemblies of its two Or nodes below it producing the
sub-assembly of the Or node above it. An And/Or graph consists on several trees whose top
nodes are the top node of the And/Or graph and whose leaf nodes are the leaf nodes of the
And/Or graph. Each tree is associated to an assembly plan, and is referred to as an assembly
tree. An important advantage of this representation, used in this work, is that the And/Or
graph shows how different assembly tasks can be executed in parallel. Figure 1 shows an
example of this representation, where Or nodes are represented as rectangles, and And
nodes are represented as hyperarcs.
 This work is about the selection of the best assembly plan, that is, one of the And/Or

A B C D E

A B C D

A C D

A B A C A D C D B E

A B C D E

T1 T2

T3
T4

T5 T6

T7 T8 T9
T10 T11

Figure 1. And/Or graph of product ABCDE

trees of the And/Or graph. Most of approaches used up to now make this selection in a
planning phase in which neither the assembly system, nor how the assembly tasks within it
will be materialized, is taken into account.

This work takes into account the physical realization of the assembly. It is assumed
that the assembly tasks corresponding to the And/Or graph have been evaluated separately,
in order to estimate the resources necessary for their realization (robots, tools, fixtures...) as
well as their approximate duration times. For an And/Or graph with a large number of
nodes this is not an easy task, and the help of a computer-aided system is necessary. The
nodes corresponding to tasks which are not realizable are eliminated from the And/Or
graph, as the sub-assemblies which cannot be part of a solution.
 An assembly plan can be defined by means of the assembly tasks that form the
successive sub-assemblies until the final product is made. An assembly task is defined from
the initial and final sub-assemblies involved. An assembly task is defined to be performed
in an assembly machine with a determined configuration, and has an estimated duration. If
there are different ways (machine-configuration-duration) of joining two sub-assemblies to
form another larger sub-assembly, we refer to those as different assembly tasks, which
would correspond to additional And nodes in the And/Or graph.
 The selection of the assembly plan is made through evaluating the optimal
sequencing of their tasks, so that we would be solving at the same time a planning and
scheduling problem. In order to evaluate more precisely the cost of the solutions, i.e. the
total assembly time, other factors have been taken into account: the change of
configurations in the machines and the transportation of subassemblies between different
machines. The corresponding tasks (actions) are easily generated and sequenced from the
set of assembly tasks defined by the sub-assemblies involved in them: for each two
successive assembly tasks executed in a machine using different configurations there will
be an adequate change of configuration task on the machine between them; if a sub-
assembly is generated by an assembly task in a machine and it is required to be used as an
initial sub-assembly by another assembly task in another machine, there will be a
transportation task of this sub-assembly from one machine to the other one between the
execution of the two assembly tasks.
 Since assembly plans and assembly sequences are defined using only the assembly
tasks, some delays are used for modelling both auxiliary tasks: Δcht(M, C, C') denotes the
time needed for changing the configuration of the machine M from C to C'; and, on the
other hand, Δmov(SA, M, M') denotes the time needed for transporting the subassembly SA
from machine M to machine M'.
 The model proposed supposes a well-dimensioned system, with a perfect planning
when executing the assembly plan, so that, when a part would be required in a machine for
executing an assembly task, it will be present there. The same cannot be guaranteed for an
intermediate sub-assembly, because it could be built in a machine and required immediately
in another one to form another subassembly.
 In order to an easier reasoning, we will suppose in the rest of the paper that the
precedence constraints are in the opposite direction, so that we will refer to a task preceding
another one if the first one appears higher in the And/Or graph. This is as if we think about
the opposite problem, that of the disassembly. To get the correct solution of the problem,
we must only reverse the sequence given by the algorithm.
 As mentioned above, with this model, the choice is not limited to the assembly plan,
but also it can be specified when each assembly task is to be carried out in order to
minimize the makespan (some assembly tasks which could potentially be carried out in
parallel have to be delayed because they need common resources).

 The results derived from this model can be used in different stages of the whole
planning process, from the design of the product and of the manufacturing system, to the
final execution of the assembly plan.

3. The A* Algorithm

An algorithm, based on the A* search [13], has been developed to solve the problem stated
in the previous section. The algorithm has two well-differentiated parts: one of them
considers the sequential execution of assembly tasks imposed by the precedence constraints
defined in the And/Or graph, i.e. in the high part of the And/Or graph. The other solves the
parallel execution of assembly tasks (the representation through the And/Or graph allows a
natural study of this stage). This is actually the most complex section, because the execution
of tasks on one side of the global assembly is not independent of the rest, and can influence
the execution of tasks in the other part of assembly.
 The algorithm starts from the root of the And/Or graph. The sequential part of the
algorithm is used while the tasks considered involves only one non-trivial sub-assembly
below the corresponding And node. It is the case of tasks T1 and T4 in Figure 1. When an
assembly task takes two non-trivial sub-assemblies (for example, task T2 in Figure 1), the
parallel part of the algorithm is used for obtaining the solution from the node in the search
tree. In that moment, the algorithm generates all the assembly trees below that And node.
Each of them is used for obtaining an optimal order for the tasks included in them, through
a separate A* algorithm. The global algorithm orders previously all these trees using an
estimation of the time needed for the execution of its tasks, so that not all the trees must
been completely solved, because of the pruning of the search.
 In the search tree of the algorithm, a node represents a state corresponding to the
execution of the set of assembly tasks that have been included into the solution in the
previous steps (with the corresponding auxiliary tasks –see Section 2). The order of
including assembly tasks specifies the order of execution of them. So, an assembly task will
not be included until all its predecessor assembly tasks in the And/Or graph have been
included. This strategy allows verifying the precedence constraints of the problem. The state
of a node n can be obtained also through the set of assembly tasks cand(n) that can be
included in the next expansion step, denoted candidates. For each candidate assembly task
T we take the earliest start time, est(T), if it were introduced in the next step. The
description of the state of n is completed with the time corresponding to the last used of
each machine M due to the tasks that have been included, lastTime(n, M), and the last
configuration used in each machine, lastConf(n, M). An expansion step of the algorithm
corresponds to selecting a candidate assembly task T, and including it in the partial solution
as it is executed starting at est(T), recalculating the state for the successor node and
including in the set of candidate tasks the successor assembly tasks of T.
 The objective function, f(n), is given by the time needed for the execution of the
tasks included in n, g(n), plus an estimation of the time needed to complete a solution, h(n).
Function g(n) can be defined as:
 () ()()()

() max max (,) , max (,)
i i

i iT cand n M machines
g n est n T lastTime n M

∈ ∈
= (1)

 Some different heuristic functions can be defined for h(n). In order to maintain the
admissibility of the A* algorithm, h(n) must be an optimistic estimation of the remaining
time for an optimal solution from n. In order to calculate properly the objective function f
from g and h, two different types of slack have been defined, one for the candidate tasks,
e(n, T) = g(n) – est(n, T), and another one for the machines, e(n, M) = g(n) – lastTime(n, M).

4. Basic Heuristic Functions

For the sequential part of the algorithm, h(n) can be defined as:
 ()()

() min ()
i

iT ntOr n
h n hs T

∈
= (2)

ntOr(n) denoting the non trivial Or nodes below the last task introduced in n, and
 () ()

1 2() ()
() () max min () , min ()

i i
i iT Or T T Or T

hs T dur T hs T hs T
∈ ∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

= + (3)

where dur(T) is the duration of task T and Or1(T) and Or2(T) are the Or nodes
corresponding to the initial sub-assemblies involved in task T. In these expressions, T∈Or
represents the tasks T immediately below the Or node in the And/Or graph.
 Notice that only the precedence constraints have been used in the definition of h(n)
for the sequential part of the algorithm. For the parallel part, the constraints due to the use
of resources can be taken into account. Because of the separation of the assembly trees, for
each sub-problem all tasks are defined, i.e. there are not alternative tasks, and then the
amount of usages for the different resources are known.
 Two basic heuristic functions can be defined for the parallel part of the A*
algorithm, considering separately the two types of constraints: the precedence of tasks, and
the use of resources.

4.1 The heuristic function h1: precedence of tasks

It corresponds to an estimation of the time remaining if the interdependencies between
different branches in the tree are not taken into account. It is looked at only in depth. It can
be defined with following equations:
 ()()1 1()

() max 0, max () (,)
i

i icand nT
h n h T e n T

∈
= − (4)

 ()()1 1()
() () max () ,

i
i mov isuc TT

h T dur T h T T T
∈

= + + τ (5)

 () () ()(), max , (), () , (), (), ()mov i i mov i iT T T M T C T sa T M T M Tτ = τ Δ (6)
 ())()()1() 1(, ,) max 0, max () , (), () ()

i
i iT suc T

T M C h T T M T C T h T
∈

τ = + τ − (7)

In the above expressions, M(T) and C(T) are the machine and configuration necessary for
the execution of the assembly task T. τ(T, M, C) is the added delay, due to the fact that the
configuration C is being used by machine M in task T and successors, because of the
necessary changes in configuration. The equation (7) defines τ(T, M, C) when M≠M(T). In
the case M=M(T), τ(T, M, C) is defined as Δcht(M, C(T), C) (that could be zero if C=C(T)).
Finally, τmov(T, T') is the delay considering the possible transportation of the intermediate
subassembly generated between the execution of T and T', and that of the possible change
of configurations.
 Notice that h1(T) does not depend on the expansion nodes, so that it can be
calculated for each task prior to using the A* algorithm for the assembly trees.

4.2 The heuristic function h2: use of resources

It corresponds to an estimation of the time needed if only the remaining usage times of each
machine are taken into account, further supposing the number of changes of configuration
to be at a minimum. It can be defined as follows:

 ()2 2() max (,) (,)
i

i iM machines
h n h n M e n M

∈
= − (8)

where h2(n, Mi) is the minimum time of use of machine Mi without considering the task
precedence constraints. If each configuration is associated with only one robot, the
calculation of h2(n, M) is equivalent to the traveling salesman problem, when considering
the configurations used by the tasks that still have not been included in n as the cities and an
origin corresponding to the last-used configuration in the machine M:

()2 2
()

(,) (,) , ()
j i

i j cht
C M T cand n

h n M h T C n M
∈ ∈

⎛ ⎞
= +# Δ$ %$ %
& '
! ! (9)

with h2(T, C) the remaining time of usage of configuration C by task T and its successors.
The term (), ()chtn M∑ Δ refers to the time needed for the changes of configuration. In the
usual case that times for change of configurations do not depend on the types of
configuration, it can be calculated easily. Without any precedence information, an in order
to maintain the admissibility of the heuristic, it must be supposed that each remaining
configuration will be established only once.

5. Combination of heuristics

The heuristics defined in the last section take into account different elements of the
problem: h1 uses the precedence constraints taken from the And/Or graph in order to
estimate the most unfavourable path from an assembly task to a leaf assembly task,
supposing that tasks from different branches, i.e. not related by precedence constraints, can
be executed independently, that is, ignoring if they use the same machine. In the other way,
h2 ignores the precedence constraints and calculates the total usage time for each machine.
The two heuristics have different effects and are incomparable. Depending on the machines
used and the structure of the And/Or graph, one of them can obtain a better estimation than
the other one. For example, if there is only one machine, there is no parallel execution of
tasks, and h2 will obtain a more accurate estimation. In the other way, if each assembly ask
is executed in a different machine, h1 collects all the information about the problem and its
estimation is accurate.
 In the previous section h1 and h2 were defined related to n, the expansion node. But
the nature of the two heuristics are different: h1(n) is the maximum of the estimations of the
candidate tasks, and h2(n) adds the time of usage of machines for all the candidate tasks. In
order to combine properly the information from the two heuristics, we will use their
estimations referred to the candidate tasks. For h1 we have h1(T) defined in equations (5) to
(7). For h2 we can define h2(T) in a similar way than in (9):

() ()2 2 2() max (,) max (,) , ()
j i

i j cht imachines machines C M
h T h T M h T C T M

∈

⎛ ⎞⎛ ⎞
= = ⎧ +⎢ Δ ⎫⎧ ⎫⎧ ⎫⎧ ⎫

⎨ ⎬⎨ ⎬
⎢ (10)

where (), ()chtT M⎢ Δ refers to the time needed for the changes of configuration in M for
the execution of T and its successors.

5.1 Heuristic h3: refining h1 using h2

As h2(T) could be a better estimation than h1(T), both being optimistic, the first could be
taken into account into the calculation of the second, since in the recursive expression for
h1(T) it is required an estimation of the time needed for the execution of all the tasks in the
subtree below T. The new heuristic that it is obtained, h3, is defined based on equation (5),

substituting h1 for h3 and considering h2, as indicated. This way, a better estimation due to
h2 is propagated towards the predecessor tasks in the precedence tree. So, h3(T) is defined
as:

 ()()()3 3 2()
() max () max () , , ()

i
i mov iT suc T

h T dur T h T T T h T
∈

= + + τ (11)

 The definition of h3(n) is similar to that of h1(n), (equation (4)), resulting a more
informed heuristic than h1(n). However, h3(n) does not invalidate h2(n), because the last
considers all candidate tasks in the expansion node n.

5.2 Heuristic h4: estimating the intervals of machine usages

In the definition of h3(T), the time of usage of the most unfavourable machine, given by
h2(T), is supposed that can take place during the execution of all the tasks of the subtree
whose root is T. In some cases, it could be determined, by an analysis of the precedence
tree, that the interval of use is smaller, so that the estimation of the total time for the
execution of all tasks in the tree could be improved even more. Two new variables are
defined, δb and δe, indicating the intervals, at the start and the end respectively, of the
execution of all the tasks in the tree, in which the machine is not used.
 The calculation of δb is done using its recursive definition:

()()
()

0 if ()
(,) () min (,) max (), (,) if ()

i

b
b i mov cht iT suc T

M M T
T M dur T T M T T M M T

∈

=⎧⎪
δ = ⎨ ʹ+ δ + Δ ⋅ Δ ≠

⎪⎩
 (12)

where ()() (), (), ()mov mov i isa T M T M TΔ ⋅ ≡ Δ and (,)cht iT TʹΔ represents the delay due to the
possible change of configuration between the execution of Ti and T, defined by
 ()(), (), () if () ()

(,)
0 if () ()

cht i i
cht i

i

M T C T C T M T M T
T T

M T M T
Δ =⎧

ʹΔ = ⎨
≠⎩

 (13)

 In order to obtain a consistent definition, we take (,)b T Mδ =∞ when ()M M T≠
and ()suc T =∅ . This way, when a machine is not used by any task belonging to a
precedence subtree, the value of δb will be infinite.
 In the other way, δe is calculated by means of its recursive definition:
 ()

()
4()

()

min (,), () () si ()
(,)

min (,) si ()
i

i

e iT suc T
e

e iT suc T

T M h T dur T M M T
T M

T M M M T
∈

∈

⎧ δ − =
⎪

δ = ⎨
δ ≠⎪⎩

 (14)

 Again, for a consistent definition, we take (,)e T Mδ =∞ when ()M M T≠ and
()suc T =∅ .

 The definition of the new heuristic h4(T) has the same structure than h3(T), except
that instead of using h2(T) alone, we take into account δb and δe. Moreover, it is necessary to
separate the estimations of h2(T) for each machine, using h2(T, M):
 () ()()(

() () ()())
2

4 4()

2(,) 0

() max () max , ,

 max , , ,

i

i

i mov iT suc T

i b i e ih T M

h T dur T h T T T

h T M T M T M

∈

≠

= + + τ

+ δ + δ
 (15)

 The definition of h4(n) is similar to that of h1(n), (equation (4)), resulting again a
more informed heuristic than h1(n) and h3(n), but not necessarily better than h2(n), because
the last considers all candidate tasks in the expansion node n.

5.3 Heuristic h5: considering all machines in h1, h3 and h4

In the definition of the heuristics h1, h3 and h4 referring to a task T we have not taken into
account the use of all the different machines, but only that of the machine used for the task
T. In order to obtain this estimation we must define a new function related to the maximum
delay that can be done in the use of each machine. Based on h1, the new function, τ'(T, M,
C), is defined as
 ()

()()1 1()

, (), if ()
(, ,) max () , , () if ()

i

cht

i iT suc T

M C T C M M T
T M C h T T M C h T M M T

∈

Δ =⎧⎪ʹτ = ⎨ ʹ+ τ − ≠
⎪⎩

 (16)

and corresponds to the time before the execution of T at which the machine M must have
configuration C in order to the execution of T and its successors does not finish after h(T).
Notice that this definition is similar to that of τ(T, M, C) (equation (7)), but now we can
have negative values, indicating in that case a spare time for an eventual change of
configuration that could be necessary, or simply that it is possible to have the configuration
C in M after the execution of T has started, without altering the total execution time of T
and its successors.
 The same ideas used in defining the heuristics h3 and h4 can be employed in order to
have a better estimation of τ' when M≠M(T), preserving the same expression when
M=M(T). This way, for h3, τ'(T, M, C) can be defined, when M≠M(T), as
 () ()()(

)
3 3()

2 3

, , max max () , , () ,

 () (, ,) ()

i
i iT suc T

cht

T M C h T T M C h T

h T T M C h T

∈
ʹ ʹτ = + τ −

ʹ́+ Δ −
 (17)

where

()
2

2

2(,) 0

0 if (,) 0
(, ,) min (, ,) if (,) 0

j

cht
cht jh T C

h T C
T M C M C C h T C

>

>⎧⎪ʹ́Δ = ⎨ Δ =
⎪⎩

 (18)

that shows that it will be needed a change of configuration if C is not used below T.
 For h4, τ'(T, M, C) can be defined, when M≠M(T), as
 () ()()(

)
4 4()

2 4

, , max max () , , () ,

 () (,) (, ,) ()

i
i iT suc T

e cht

T M C h T T M C h T

h T T M T M C h T

∈
ʹ ʹτ = + τ −

ʹ́+ δ + Δ −
 (19)

 The new heuristic h5(n) is defined as
 () ()() ()()()5 () machines

() max max , , , ,
i

i i j j jT cand n
h n h T T M lastConf n M e n M

∈
ʹ= + τ − (20)

where h refers to the heuristic used in the definition of τ', giving three different heuristic
functions, named h51, h53 and h54.

6. Comparative results

There are different factors that affect the complexity of the problem proposed. Some of the
more important are the number of parts, the size and structure of the And/Or graph, and the
distribution of values for the durations and resources associated to the tasks.
 As it is known, one of the most important problems in applying A* algorithms is the
amount of memory wasted. In order to limit this consumption, the algorithm was adapted so
that it used a depth-first search periodically for finding a new solution whose value could be

used for pruning the search tree. Another improvement was done about detecting
symmetries, so that redundant nodes are avoided in the expansion.
 The results shown in Table 1, rather significant about the behaviour of the heuristics
that have been defined, are based on a hypothetical product with 30 parts, with 396 Or
nodes and 764 And nodes in the And/Or graph, so that the number of legal linear sequences
is about 1021. Each row of the table shows the results of 40 different problems solved using
the corresponding heuristic, considering 10 different combinations on durations and
resources among tasks, for each of four conditions in the resources used: 2 and 4 machines
and 2 and 4 configurations/machine.
 Table 1 shows, apart from the number of nodes and the time spent by the algorithm,
how many times the optimal solution was found by a depth-first movement (N-Df), how
many times the algorithm did not find the optimal solution in 30 seconds, when the
available memory was exhausted (N-F), and the error rate. The results show the successive
improvements that the heuristics have obtained. When analysing the results, it must be
taken into account that the optimal solution can have been found through a depth-first
movement, that is carried out from the best node just when this strategy is used, that
explains the apparent contradiction in the comparative results between different heuristics,
since the nodes used for the depth-first movements are (surely) different in each case.
Another improvement came from the combined use of the heuristic h2, of additive nature,
with the others, which consider the most unfavourable candidate task for the calculation of
the corresponding estimation for each expansion node.

7. Conclusions

Different heuristics have been defined for selecting optimal assembly sequences. The first
two ones are based on both relaxed models of the problem, each one considering only a type
of constraints, one related to the precedence constraints, and the other one to the use of
shared resources. From them, other heuristics have been defined, combining both types of
information, obtaining successive improvements, as it is shown in the results obtained.

Table 1. Comparative results of the heuristics.

Nodes visited Time (ms)
Heuristic

Ave Max Min Ave Max Min
N-Df N-F %

Error

h1 30297 93376 32 13224 30930 0 11 15 0,985
h2 4797 42775 32 668 6420 0 9 0 0,000
h3 26414 88102 32 12408 30810 0 11 14 1,114
h4 27046 87456 32 13321 30920 0 11 15 1,279
h51 28745 92326 32 12892 31420 0 11 14 0,909
h53 25641 81332 32 12598 30820 0 16 15 1,233
h54 21698 54860 32 11462 30420 0 17 13 1,279

max(h1, h2) 6008 71585 32 1453 30050 0 9 1 0,062
max(h3, h2) 3267 23167 32 535 4230 0 8 0 0,000
max(h4, h2) 4450 63996 32 1266 30050 0 6 1 0,041
max(h51, h2) 5925 70432 32 1408 30150 0 8 1 0,062
max(h53, h2) 2724 18254 32 465 4280 0 9 0 0,000
max(h54, h2) 2459 18165 32 418 4280 0 8 0 0,000

Acknowledgements

This work has been partially funded by the Spanish Ministerio de Ciencia y Tecnología
under grant DPI2003-07146-C02-01, and the European Regional Development Fund
(ERDF/FEDER).

References

[1] A. Bourjault. Contribution à une Approche Méthodologique de l'Assemblage Automatisé: Elaboration
Automatique des Séquences Opératoires. Thèse d'état, Université de Franche-Comté, Besançon, France,
1984.

[2] T.L. De Fazio and D.E. Whitney. Simplified Generation of All Mechanical Assembly Sequences. IEEE J.
Robotics and Automation, Vol. 3, No. 6, pp. 640-658, 1987. Also, Corrections, Vol. 4, No. 6, pp. 705-
708, 1988.

[3] L.S. Homem de Mello and A.C. Sanderson. A Correct and Complete Algorithm for the Generation of
Mechanical Assembly Sequences. IEEE Trans. on Robotics and Automation. Vol. 7, No. 2, pp. 228-240,
1991.

[4] T. L. Calton. Advancing design-for-assembly. The next generation in assembly planning. Proceedings of
the 1999 IEEE Intl. Symp. on Assembly and Task Planning, pp. 57-62, Porto, Portugal, July, 1999.

[5] B. Romney, C. Godard, M. Goldwasser, G. Ramkumar. An Efficient System for Geometric Assembly
Sequence Generation and Evaluation. Proceedings of the 1995 ASME International Computers in
Engineering Conference, pp. 699-712, 1995.

[6] R.H. Wilson, L. Kavraki, T. Lozano-Pérez and J.C. Latombe. Two-Handed Assembly Sequencing.
International Journal of Robotic Research. Vol. 14, pp. 335-350, 1995.

[7] L.S. Homem de Mello and A.C. Sanderson. And/Or Graph Representation of Assembly Plans. IEEE
Transactions on Robotics and Automation. Vol. 6, No. 2, pp. 188-199, 1990.

[8] J. Wolter. A Combinatorial Analysis of Enumerative Data Structures for Assembly Planning. Journal of
Design and Manufacturing. Vol 2, No. 2, June 1992, pp. 93-104.

[9] M.H. Goldwasser and R. Motwani. Complexity measures for assembly sequences. International Journal
of Computational Geometry and Applications, 9:371-418, 1999.

[10] L.S. Homem de Mello and S. Lee (eds.) Computer-Aided Mechanical Assembly Planning. Kluwer
Academic Publishers, 1991.

[11] C. Del Valle and E.F. Camacho. Automatic Assembly Task Assignment for a Multirobot Environment.
Control Engineering Practice, Vol. 4, No. 7, pp. 915-921, 1996.

[12] C. Del Valle, M. Toro, E.F. Camacho and R.M. Gasca. A Scheduling Approach to Assembly Sequence
Planning. Proceedings of the 2003 IEEE Intl. Symp. on Assembly and Task Planning, pp. 103-108,
Besançon, France, 2003.

[13] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Reading, MA,
Addison-Wesley, 1984.

View publication statsView publication stats

https://www.researchgate.net/publication/252879319

