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Abstract. Assembly Sequence Planning is tackled by modelling and solving a 
planning problem that considers the execution of the plan in a system with multiple 
assembly machines. The objective of the plan is the minimization of the total 
assembly time (makespan). To meet this objective, the model takes into account the 
durations and resources for the assembly tasks, the change of configuration in the 
machines, and the transportation of intermediate subassemblies between different 
workstations. In order to solve the problem, different heuristics has been defined 
from two relaxed model of it, one considering only the precedence constraints among 
tasks, and the other one considering only the use of shared resources. From these 
basic heuristics, other ones have been defined, combining both types of information 
from the problem, so that the refinement produces substantial improvements over the 
initial heuristics. 

1. Introduction  

Assembly planning is a very important problem in the manufacturing of products. It 
involves the identification, selection and sequencing of assembly operations, stated as their 
effects on the parts. The identification of assembly operations is done through the analysis 
of the product structure, using interactive planners [1] [2], or automatically from a 
geometric and relational model of the assembly [3] and from a CAD model and other non-
geometric information [4] [5]. The identification of assembly operations usually leads to the 
set of all feasible assembly plans. The number of them grows exponentially with the 
number of parts, and depends on other factors, such as how the single parts are 
interconnected in the whole assembly, represented in the graph of connections. In fact, this 
problem has been proved to be NP-complete [6]. 
 The representation of assembly plans is an important issue within this scope. The 
use of And/Or graphs for this purpose [7] has became one of the most standard ways of 
representing all possible assembly plans. The result is a representation which is adequate for 
a goal-directed approach. Moreover, this structure is more efficient in most cases than other 
enumerative ones [7] [8]. 
 Two kinds of approaches have been used for searching the optimal assembly plan. 
One, the more qualitative, uses rules in order to eliminate assembly plans that include 
difficult tasks or awkward intermediate subassemblies. A more quantitative approach uses 
an evaluation function that computes the merit of assembly plans. Several of these 
proposals can be found in [9] and [10]. 
 The criterion followed in this work is the minimization of the total assembly time 
(makespan) of the plan executed in a system with multiple machines [11]. To meet this 



objective, a scheduling-based model is used [12], which takes into account all factors 
having an effect on the makespan: an estimation of the duration of tasks; the resources used 
for them (machines and configurations); the times needed for changing tools in the robots; 
and the delays due to the transportation of intermediate subassemblies between different 
workstations. 
 The rest of the paper is organized as follows: Section 2 describes the assembly 
sequence planning problem and the model proposed. The details of the A* algorithm are 
described in Section 3. Section 4 presents the basic heuristics taken from two relaxed 
models of the problem, and Section 5 shows how these heuristics are combined in order to 
improve their estimations. Some comparative results when using the different heuristics are 
shown in Section 6, and some final remarks are made in the concluding section. 

2. Assembly Sequence Planning 

The process of joining parts together to form a unit is known as assembly. An assembly 
plan is a set of assembly tasks with ordering amongst its elements. Each task consists of 
joining a set of sub-assemblies to give rise to an ever larger sub-assembly. A sub-assembly 
is a group of parts that can be assembled independently of other parts of the product. This 
works supposes that in an assembly task there are two initial sub-assemblies to form a final 
one. An assembly sequence is an ordered sequence of the assembly tasks satisfying all the 
ordering constraints. Each assembly plan corresponds to one or more assembly sequences. 
 An And/Or graph [7] is a representation of the set of all assembly plans for a 
product. The Or nodes correspond to sub-assemblies, the top node corresponding to the 
whole assembly, and the leaf nodes to the individual parts. Each And node corresponds to 
the assembly task joining the sub-assemblies of its two Or nodes below it producing the 
sub-assembly of the Or node above it. An And/Or graph consists on several trees whose top 
nodes are the top node of the And/Or graph and whose leaf nodes are the leaf nodes of the 
And/Or graph. Each tree is associated to an assembly plan, and is referred to as an assembly 
tree. An important advantage of this representation, used in this work, is that the And/Or 
graph shows how different assembly tasks can be executed in parallel. Figure 1 shows an 
example of this representation, where Or nodes are represented as rectangles, and And 
nodes are represented as hyperarcs. 
 This work is about the selection of the best assembly plan, that is, one of the And/Or 
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Figure 1. And/Or graph of product ABCDE 



trees of the And/Or graph. Most of approaches used up to now make this selection in a 
planning phase in which neither the assembly system, nor how the assembly tasks within it 
will be materialized, is taken into account. 

This work takes into account the physical realization of the assembly. It is assumed 
that the assembly tasks corresponding to the And/Or graph have been evaluated separately, 
in order to estimate the resources necessary for their realization (robots, tools, fixtures...) as 
well as their approximate duration times. For an And/Or graph with a large number of 
nodes this is not an easy task, and the help of a computer-aided system is necessary. The 
nodes corresponding to tasks which are not realizable are eliminated from the And/Or 
graph, as the sub-assemblies which cannot be part of a solution. 
 An assembly plan can be defined by means of the assembly tasks that form the 
successive sub-assemblies until the final product is made. An assembly task is defined from 
the initial and final sub-assemblies involved. An assembly task is defined to be performed 
in an assembly machine with a determined configuration, and has an estimated duration. If 
there are different ways (machine-configuration-duration) of joining two sub-assemblies to 
form another larger sub-assembly, we refer to those as different assembly tasks, which 
would correspond to additional And nodes in the And/Or graph. 
 The selection of the assembly plan is made through evaluating the optimal 
sequencing of their tasks, so that we would be solving at the same time a planning and 
scheduling problem. In order to evaluate more precisely the cost of the solutions, i.e. the 
total assembly time, other factors have been taken into account: the change of 
configurations in the machines and the transportation of subassemblies between different 
machines. The corresponding tasks (actions) are easily generated and sequenced from the 
set of assembly tasks defined by the sub-assemblies involved in them: for each two 
successive assembly tasks executed in a machine using different configurations there will 
be an adequate change of configuration task on the machine between them; if a sub-
assembly is generated by an assembly task in a machine and it is required to be used as an 
initial sub-assembly by another assembly task in another machine, there will be a 
transportation task of this sub-assembly from one machine to the other one between the 
execution of the two assembly tasks.  
 Since assembly plans and assembly sequences are defined using only the assembly 
tasks, some delays are used for modelling both auxiliary tasks: Δcht(M, C, C') denotes the 
time needed for changing the configuration of the machine M from C to C'; and, on the 
other hand, Δmov(SA, M, M') denotes the time needed for transporting the subassembly SA 
from machine M to machine M'. 
 The model proposed supposes a well-dimensioned system, with a perfect planning 
when executing the assembly plan, so that, when a part would be required in a machine for 
executing an assembly task, it will be present there. The same cannot be guaranteed for an 
intermediate sub-assembly, because it could be built in a machine and required immediately 
in another one to form another subassembly.  
 In order to an easier reasoning, we will suppose in the rest of the paper that the 
precedence constraints are in the opposite direction, so that we will refer to a task preceding 
another one if the first one appears higher in the And/Or graph. This is as if we think about 
the opposite problem, that of the disassembly. To get the correct solution of the problem, 
we must only reverse the sequence given by the algorithm. 
 As mentioned above, with this model, the choice is not limited to the assembly plan, 
but also it can be specified when each assembly task is to be carried out in order to 
minimize the makespan (some assembly tasks which could potentially be carried out in 
parallel have to be delayed because they need common resources). 



 The results derived from this model can be used in different stages of the whole 
planning process, from the design of the product and of the manufacturing system, to the 
final execution of the assembly plan. 

3. The A* Algorithm 

An algorithm, based on the A* search [13], has been developed to solve the problem stated 
in the previous section. The algorithm has two well-differentiated parts: one of them 
considers the sequential execution of assembly tasks imposed by the precedence constraints 
defined in the And/Or graph, i.e. in the high part of the And/Or graph. The other solves the 
parallel execution of assembly tasks (the representation through the And/Or graph allows a 
natural study of this stage). This is actually the most complex section, because the execution 
of tasks on one side of the global assembly is not independent of the rest, and can influence 
the execution of tasks in the other part of assembly. 
 The algorithm starts from the root of the And/Or graph. The sequential part of the 
algorithm is used while the tasks considered involves only one non-trivial sub-assembly 
below the corresponding And node. It is the case of tasks T1 and T4 in Figure 1. When an 
assembly task takes two non-trivial sub-assemblies (for example, task T2 in Figure 1), the 
parallel part of the algorithm is used for obtaining the solution from the node in the search 
tree. In that moment, the algorithm generates all the assembly trees below that And node. 
Each of them is used for obtaining an optimal order for the tasks included in them, through 
a separate A* algorithm. The global algorithm orders previously all these trees using an 
estimation of the time needed for the execution of its tasks, so that not all the trees must 
been completely solved, because of the pruning of the search. 
 In the search tree of the algorithm, a node represents a state corresponding to the 
execution of the set of assembly tasks that have been included into the solution in the 
previous steps (with the corresponding auxiliary tasks –see Section 2). The order of 
including assembly tasks specifies the order of execution of them. So, an assembly task will 
not be included until all its predecessor assembly tasks in the And/Or graph have been 
included. This strategy allows verifying the precedence constraints of the problem. The state 
of a node n can be obtained also through the set of assembly tasks cand(n) that can be 
included in the next expansion step, denoted candidates. For each candidate assembly task 
T we take the earliest start time, est(T), if it were introduced in the next step. The 
description of the state of n is completed with the time corresponding to the last used of 
each machine M due to the tasks that have been included, lastTime(n, M), and the last 
configuration used in each machine, lastConf(n, M). An expansion step of the algorithm 
corresponds to selecting a candidate assembly task T, and including it in the partial solution 
as it is executed starting at est(T), recalculating the state for the successor node and 
including in the set of candidate tasks the successor assembly tasks of T.  
 The objective function, f(n), is given by the time needed for the execution of the 
tasks included in n, g(n), plus an estimation of the time needed to complete a solution, h(n). 
Function g(n) can be defined as: 
 ( ) ( )( )( )

( ) max max ( , ) , max ( , )
i i

i iT cand n M machines
g n est n T lastTime n M

∈ ∈
=  (1)

 Some different heuristic functions can be defined for h(n). In order to maintain the 
admissibility of the A* algorithm, h(n) must be an optimistic estimation of the remaining 
time for an optimal solution from n. In order to calculate properly the objective function f 
from g and h, two different types of slack have been defined, one for the candidate tasks, 
e(n, T) = g(n) – est(n, T), and another one for the machines, e(n, M) = g(n) – lastTime(n, M). 



4. Basic Heuristic Functions 

For the sequential part of the algorithm, h(n) can be defined as: 
 ( )( )

( ) min ( )
i

iT ntOr n
h n hs T

∈
=  (2)

ntOr(n) denoting the non trivial Or nodes below the last task introduced in n, and 
 ( ) ( )

1 2( ) ( )
( ) ( ) max min ( ) , min ( )

i i
i iT Or T T Or T

hs T dur T hs T hs T
∈ ∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

= +  (3)

where dur(T) is the duration of task T and Or1(T) and Or2(T) are the Or nodes 
corresponding to the initial sub-assemblies involved in task T. In these expressions, T∈Or 
represents the tasks T immediately below the Or node in the And/Or graph.  
 Notice that only the precedence constraints have been used in the definition of h(n) 
for the sequential part of the algorithm. For the parallel part, the constraints due to the use 
of resources can be taken into account. Because of the separation of the assembly trees, for 
each sub-problem all tasks are defined, i.e. there are not alternative tasks, and then the 
amount of usages for the different resources are known. 
 Two basic heuristic functions can be defined for the parallel part of the A* 
algorithm, considering separately the two types of constraints: the precedence of tasks, and 
the use of resources. 

4.1 The heuristic function h1: precedence of tasks 

It corresponds to an estimation of the time remaining if the interdependencies between 
different branches in the tree are not taken into account. It is looked at only in depth. It can 
be defined with following equations: 
 ( )( )1 1( )

( ) max 0, max ( ) ( , )
i

i icand nT
h n h T e n T

∈
= −  (4)

 ( )( )1 1( )
( ) ( ) max ( ) ,

i
i mov isuc TT

h T dur T h T T T
∈

= + + τ  (5)

 ( ) ( ) ( )( ), max , ( ), ( ) , ( ), ( ), ( )mov i i mov i iT T T M T C T sa T M T M Tτ = τ Δ  (6)
 ( ) )( )( )1( ) 1( , , ) max 0, max ( ) , ( ), ( ) ( )

i
i iT suc T

T M C h T T M T C T h T
∈

τ = + τ −  (7)

In the above expressions, M(T) and C(T) are the machine and configuration necessary for 
the execution of the assembly task T. τ(T, M, C) is the added delay, due to the fact that the 
configuration C is being used by machine M in task T and successors, because of the 
necessary changes in configuration. The equation (7) defines τ(T, M, C) when M≠M(T). In 
the case M=M(T), τ(T, M, C) is defined as Δcht(M, C(T), C) (that could be zero if C=C(T)). 
Finally, τmov(T, T') is the delay considering the possible transportation of the intermediate 
subassembly generated between the execution of T and T', and that of the possible change 
of configurations. 
 Notice that h1(T) does not depend on the expansion nodes, so that it can be 
calculated for each task prior to using the A* algorithm for the assembly trees. 

4.2 The heuristic function h2: use of resources 

It corresponds to an estimation of the time needed if only the remaining usage times of each 
machine are taken into account, further supposing the number of changes of configuration 
to be at a minimum. It can be defined as follows: 



 ( )2 2( ) max ( , ) ( , )
i

i iM machines
h n h n M e n M

∈
= −  (8)

where h2(n, Mi) is the minimum time of use of machine Mi without considering the task 
precedence constraints. If each configuration is associated with only one robot, the 
calculation of h2(n, M) is equivalent to the traveling salesman problem, when considering 
the configurations used by the tasks that still have not been included in n as the cities and an 
origin corresponding to the last-used configuration in the machine M: 
 

( )2 2
( )

( , ) ( , ) , ( )
j i

i j cht
C M T cand n

h n M h T C n M
∈ ∈

⎛ ⎞
= +# Δ$ %$ %
& '
! !  (9)

with h2(T, C) the remaining time of usage of configuration C by task T and its successors. 
The term ( ), ( )chtn M∑ Δ  refers to the time needed for the changes of configuration. In the 
usual case that times for change of configurations do not depend on the types of 
configuration, it can be calculated easily. Without any precedence information, an in order 
to maintain the admissibility of the heuristic, it must be supposed that each remaining 
configuration will be established only once. 

5. Combination of heuristics 

The heuristics defined in the last section take into account different elements of the 
problem: h1 uses the precedence constraints taken from the And/Or graph in order to 
estimate the most unfavourable path from an assembly task to a leaf assembly task, 
supposing that tasks from different branches, i.e. not related by precedence constraints, can 
be executed independently, that is, ignoring if they use the same machine.  In the other way, 
h2 ignores the precedence constraints and calculates the total usage time for each machine. 
The two heuristics have different effects and are incomparable. Depending on the machines 
used and the structure of the And/Or graph, one of them can obtain a better estimation than 
the other one. For example, if there is only one machine, there is no parallel execution of 
tasks, and h2 will obtain a more accurate estimation. In the other way, if each assembly ask 
is executed in a different machine, h1 collects all the information about the problem and its 
estimation is accurate. 
 In the previous section h1 and h2 were defined related to n, the expansion node. But 
the nature of the two heuristics are different: h1(n) is the maximum of the estimations of the 
candidate tasks, and h2(n) adds the time of usage of machines for all the candidate tasks. In 
order to combine properly the information from the two heuristics, we will use their 
estimations referred to the candidate tasks. For h1 we have h1(T) defined in equations (5) to 
(7). For h2 we can define h2(T) in a similar way than in (9): 
 

( ) ( )2 2 2( ) max ( , ) max ( , ) , ( )
j i

i j cht imachines machines C M
h T h T M h T C T M

∈

⎛ ⎞⎛ ⎞
= = ⎧ +⎢ Δ ⎫⎧ ⎫⎧ ⎫⎧ ⎫

⎨ ⎬⎨ ⎬
⎢  (10)

where ( ), ( )chtT M⎢ Δ  refers to the time needed for the changes of configuration in M for 
the execution of T and its successors.  

5.1 Heuristic h3: refining h1 using h2 

As h2(T) could be a better estimation than h1(T), both being optimistic, the first could be 
taken into account into the calculation of the second, since in the recursive expression for 
h1(T) it is required an estimation of the time needed for the execution of all the tasks in the 
subtree below T. The new heuristic that it is obtained, h3, is defined based on equation (5), 



substituting h1 for h3 and considering h2, as indicated. This way, a better estimation due to 
h2 is propagated towards the predecessor tasks in the precedence tree. So, h3(T) is defined 
as: 

 ( )( )( )3 3 2( )
( ) max ( ) max ( ) , , ( )

i
i mov iT suc T

h T dur T h T T T h T
∈

= + + τ  (11)

 The definition of h3(n) is similar to that of h1(n), (equation (4)), resulting a more 
informed heuristic than h1(n). However, h3(n) does not invalidate h2(n), because the last 
considers all candidate tasks in the expansion node n. 

5.2 Heuristic h4: estimating the intervals of machine usages 

In the definition of h3(T), the time of usage of the most unfavourable machine, given by 
h2(T), is supposed that can take place during the execution of all the tasks of the subtree 
whose root is T. In some cases, it could be determined, by an analysis of the precedence 
tree, that the interval of use is smaller, so that the estimation of the total time for the 
execution of all tasks in the tree could be improved even more. Two new variables are 
defined, δb and δe, indicating the intervals, at the start and the end respectively, of the 
execution of all the tasks in the tree, in which the machine is not used.  
 The calculation of δb is done using its recursive definition: 
 

( )( )
( )

0 if ( )
( , ) ( ) min ( , ) max ( ), ( , ) if ( )

i

b
b i mov cht iT suc T

M M T
T M dur T T M T T M M T

∈

=⎧⎪
δ = ⎨ ʹ+ δ + Δ ⋅ Δ ≠

⎪⎩
 (12)

where ( )( ) ( ), ( ), ( )mov mov i isa T M T M TΔ ⋅ ≡ Δ  and ( , )cht iT TʹΔ  represents the delay due to the 
possible change of configuration between the execution of Ti and T, defined by 
 ( )( ), ( ), ( ) if ( ) ( )

( , )
0 if ( ) ( )

cht i i
cht i

i

M T C T C T M T M T
T T

M T M T
Δ =⎧

ʹΔ = ⎨
≠⎩

 (13)

 In order to obtain a consistent definition, we take ( , )b T Mδ =∞  when ( )M M T≠  
and ( )suc T =∅ . This way, when a machine is not used by any task belonging to a 
precedence subtree, the value of δb will be infinite.  
 In the other way, δe is calculated by means of its recursive definition:  
 ( )

( )
4( )

( )

min ( , ), ( ) ( ) si ( )
( , )

min ( , ) si ( )
i

i

e iT suc T
e

e iT suc T

T M h T dur T M M T
T M

T M M M T
∈

∈

⎧ δ − =
⎪

δ = ⎨
δ ≠⎪⎩

 (14)

 Again, for a consistent definition, we take ( , )e T Mδ =∞  when ( )M M T≠  and 
( )suc T =∅ . 

 The definition of the new heuristic h4(T) has the same structure than h3(T), except 
that instead of using h2(T) alone, we take into account δb and δe. Moreover, it is necessary to 
separate the estimations of h2(T) for each machine, using h2(T, M): 
 ( ) ( )( )(

( ) ( ) ( )( ))
2

4 4( )

2( , ) 0

( ) max ( ) max , ,

 max , , ,

i

i

i mov iT suc T

i b i e ih T M

h T dur T h T T T

h T M T M T M

∈

≠

= + + τ

+ δ + δ
 (15)

 The definition of h4(n) is similar to that of h1(n), (equation (4)), resulting again a 
more informed heuristic than h1(n) and h3(n), but not necessarily better than h2(n), because 
the last considers all candidate tasks in the expansion node n. 



5.3 Heuristic h5: considering all machines in h1, h3 and h4 

In the definition of the heuristics h1, h3 and h4 referring to a task T we have not taken into 
account the use of all the different machines, but only that of the machine used for the task 
T. In order to obtain this estimation we must define a new function related to the maximum 
delay that can be done in the use of each machine. Based on h1, the new function, τ'(T, M, 
C), is defined as 
 ( )

( )( )1 1( )

, ( ), if ( )
( , , ) max ( ) , , ( ) if ( )

i

cht

i iT suc T

M C T C M M T
T M C h T T M C h T M M T

∈

Δ =⎧⎪ʹτ = ⎨ ʹ+ τ − ≠
⎪⎩

 (16)

and corresponds to the time before the execution of T at which the machine M must have 
configuration C in order to the execution of T and its successors does not finish after h(T). 
Notice that this definition is similar to that of τ(T, M, C) (equation (7)), but now we can 
have negative values, indicating in that case a spare time for an eventual change of 
configuration that could be necessary, or simply that it is possible to have the configuration 
C in M after the execution of T has started, without altering the total execution time of T 
and its successors. 
 The same ideas used in defining the heuristics h3 and h4 can be employed in order to 
have a better estimation of τ' when M≠M(T), preserving the same expression when 
M=M(T). This way, for h3, τ'(T, M, C) can be defined, when M≠M(T), as 
 ( ) ( )( )(

)
3 3( )

2 3

, , max max ( ) , , ( ) ,

                                ( ) ( , , ) ( )

i
i iT suc T

cht

T M C h T T M C h T

h T T M C h T

∈
ʹ ʹτ = + τ −

ʹ́+ Δ −
 (17)

where 
 

( )
2

2

2( , ) 0

0 if ( , ) 0
( , , ) min ( , , ) if ( , ) 0

j

cht
cht jh T C

h T C
T M C M C C h T C

>

>⎧⎪ʹ́Δ = ⎨ Δ =
⎪⎩

 (18)

that shows that it will be needed a change of configuration if C is not used below T. 
 For h4, τ'(T, M, C) can be defined, when M≠M(T), as   
 ( ) ( )( )(

)
4 4( )

2 4

, , max max ( ) , , ( ) ,

                                ( ) ( , ) ( , , ) ( )

i
i iT suc T

e cht

T M C h T T M C h T

h T T M T M C h T

∈
ʹ ʹτ = + τ −

ʹ́+ δ + Δ −
 (19)

 The new heuristic h5(n) is defined as 
 ( ) ( )( ) ( )( )( )5 ( ) machines

( ) max max , , , ,
i

i i j j jT cand n
h n h T T M lastConf n M e n M

∈
ʹ= + τ −  (20)

where h refers to the heuristic used in the definition of τ', giving three different heuristic 
functions, named h51, h53 and h54. 

6. Comparative results 

There are different factors that affect the complexity of the problem proposed. Some of the 
more important are the number of parts, the size and structure of the And/Or graph, and the 
distribution of values for the durations and resources associated to the tasks.  
 As it is known, one of the most important problems in applying A* algorithms is the 
amount of memory wasted. In order to limit this consumption, the algorithm was adapted so 
that it used a depth-first search periodically for finding a new solution whose value could be 



used for pruning the search tree. Another improvement was done about detecting 
symmetries, so that redundant nodes are avoided in the expansion. 
 The results shown in Table 1, rather significant about the behaviour of the heuristics 
that have been defined, are based on a hypothetical product with 30 parts, with 396 Or 
nodes and 764 And nodes in the And/Or graph, so that the number of legal linear sequences 
is about 1021. Each row of the table shows the results of 40 different problems solved using 
the corresponding heuristic, considering 10 different combinations on durations and 
resources among tasks, for each of four conditions in the resources used: 2 and 4 machines 
and 2 and 4 configurations/machine.  
 Table 1 shows, apart from the number of nodes and the time spent by the algorithm, 
how many times the optimal solution was found by a depth-first movement (N-Df), how 
many times the algorithm did not find the optimal solution in 30 seconds, when the 
available memory was exhausted (N-F), and the error rate. The results show the successive 
improvements that the heuristics have obtained. When analysing the results, it must be 
taken into account that the optimal solution can have been found through a depth-first 
movement, that is carried out from the best node just when this strategy is used, that 
explains the apparent contradiction in the comparative results between different heuristics, 
since the nodes used for the depth-first movements are (surely) different in each case. 
Another improvement came from the combined use of the heuristic h2, of additive nature, 
with the others, which consider the most unfavourable candidate task for the calculation of 
the corresponding estimation for each expansion node. 

7. Conclusions 

Different heuristics have been defined for selecting optimal assembly sequences. The first 
two ones are based on both relaxed models of the problem, each one considering only a type 
of constraints, one related to the precedence constraints, and the other one to the use of 
shared resources.  From them, other heuristics have been defined, combining both types of 
information, obtaining successive improvements, as it is shown in the results obtained. 

 

Table 1. Comparative results of the heuristics. 

Nodes visited Time (ms) 
Heuristic 

Ave Max Min Ave Max Min 
N-Df N-F % 

Error 

h1 30297 93376 32 13224 30930 0 11 15 0,985 
h2 4797 42775 32 668 6420 0 9 0 0,000 
h3 26414 88102 32 12408 30810 0 11 14 1,114 
h4 27046 87456 32 13321 30920 0 11 15 1,279 
h51 28745 92326 32 12892 31420 0 11 14 0,909 
h53 25641 81332 32 12598 30820 0 16 15 1,233 
h54 21698 54860 32 11462 30420 0 17 13 1,279 

max(h1, h2) 6008 71585 32 1453 30050 0 9 1 0,062 
max(h3, h2) 3267 23167 32 535 4230 0 8 0 0,000 
max(h4, h2) 4450 63996 32 1266 30050 0 6 1 0,041 
max(h51, h2) 5925 70432 32 1408 30150 0 8 1 0,062 
max(h53, h2) 2724 18254 32 465 4280 0 9 0 0,000 
max(h54, h2) 2459 18165 32 418 4280 0 8 0 0,000 
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