ARCHITECTURES AND BUILDING BLOCKS FOR CMOS VLSI
ANALOG “NEURAL” PROGRAMMABLE OPTIMIZERS

R. Dominguez-Castro, A. Rodriguez-Vazquez, J.L. Huertas and E. Sanchez-Sinencio.

Dept. of Design of Analog Circuits.
Centro Nacional de Microelectrénica. Sevilla, SPAIN

Abstract

A modular reconfigurable serial architecture is
presented for the analog/digital implementation of
constrained optimization algorithms with digital
programmability of the problem weights. Area
overhead due to programmability is reduced by using a
time multiplexing methodology. It allows all the
weights of each multiple inputs processing unit to be
digitally-controlled by just using one weighted
component array. The proposed architecture is very
well suited for MOS VLSI realization using Switched-
Capacitor (SC) techniques. SC schematics for the
different building blocks are presented and
demonstrated via empirical results.

Introduction

It has been recently demonstrated that the problem
of minimizing a multivariable cost function ®(x)
subjected to a set of constraints FR(%X)=0, (1= k=Q),
can be solved in real-time by using analog neural
feedback networks [1], [2], [3]. These networks show
potential for those applications where on-line
optimization is required as in robotics, satellite
guidance, etc. Previously reported architectures are of
the parallel type and do not realistically consider the
case where either the problem cost function or the
constraints can be electronically controlled. They hence
serve just as vehicles to demonstrate the possibility of
solving programming problems via integrated analogue
circuits but not to support practical applications of this
kind of circuits. To this purpose, electrical
programmability is a crucial issue to be covered.

Programmability in an analog optimizer can be
incorporated by following one of two basic approaches:
a) Using electrically controlled devices, like for instance
the transconductance of a differential pair; b) using
digitally-controlled component arrays. The first
approach may perhaps be more convenient for trainable
networks [4]. However in case the weights are to be
externally set, as it happens in our application, the use

of weighted component arrays leads to much more
accurate system implementations.

In this paper a mixed-mode sampled-data
architecture is presented which efficiently combines
digital and analog techniques for the implementation or
programmable real-time optimizers. In order to reduce
area overhead due to the use of one weighted component
array per input, as would be needed in a parallel
architecture, the herein proposed architecture is of the
serial type. A time multiplexing methodology is used
allowing all the weights of each processing unit to be
digitale controlled by just using one weighted
component array. The proposed architecture is
appropriate for different analoi sampled-data
tecﬁniques, being demonstrated in the paper for the
case of switched-capacitor circuits.

Algorithms for Sampled-Data Optimizers.

Let consider the problem of minimizing a quadratic
cost function with linear constraints:

minimize
N J(NN
Hx)= 2 ez + 5{ zzgu‘t",}. 0 8y=8j
i=1 i=1j=1
(1)

subjected to
N
F(x)= 21 by ¥ +by=0 , 1<sksQ
i

The solution of this problem using sampled-data
techniques requires to firstly map it onto a discrete-
time algorithm. Among different alternatives {5], three
approaches will be considered herein: a) The use of the
modified external penalty technique [3]; b) The use of
the external quadratic penalty [2], [5] and ¢) The use of
Lagrange multipliers [6]. The algorithm for each one of
these techniques can be formulated in the form of a
discrete-time state equation, respectively:

yJ

N Q
1
xn+ D)=z - = [U(F) {ﬂi + Zlg.-x.(n)} —kaIU(—F,,)b,“.] (2)
. = -

1

for the modified external penalty,

N Q
xi(n+1)= xi(n) - Ii [- {ai + ngﬁxj(n)] + ;1 bquU(—Fh)] (3)
(] j= =

0-7803-0593-0/92 $3.00 1992 IEEE

for the quadratic penalty, and

xi(n+l)= x.(n) — I
¢ T
o

1
Aynt D=2, (n) + —pF (WUT-2, ()]
[4

for the Lagrange multipliers technique. In previous

expressions U(F) and U(-F;) are threshold operators
defined as follows:
1 for F <0
ul _F") = [0 othirwise *
5)
U(F)—[1, if F =0 for every k
0, otherwise

For accuracy of those solutions located on the border
of the feasibility region defined by the constraints,
parameter y in (3) has to be large enough [5], [7]. Quite
in the contrary the value of this parameter (called
penalty multiplier) is not critical for (2). Actually in
this latter case it is possible to choose p=1 without
compromising the accuracy of the solution. However the
modified external penalty has the drawback that
asymptotic stability is not guaranteed in case the
equilibrium point (it is to say the solution point) is on
the border of the feasibility region. It imposes the need
to use large time constants (parameter vy) [5]. The
drawbacks of both penalty techniques can be overcome
by resorting to (3) where accurate asymptotically stable
solutions can be obtained with moderate values of the
penalty multiplier. The price to be paid for is a
significant increase of the hardware. This can be seen
from Fig.1, where conceptual representations are shown
for each one of the considered algorithms.

Sampled-Data Serial Programmable Optimizers

The different terms involved in the summations
appearing in Fig.1 can be added simultaneously (as it
happens in a parallel architecture) or via an
accumulative serial process. Using this latter approach
allows multiplexing of the components used to
implement the weights in the summation blocks. Let us
to the purpose of illustration consider the algorithm in
(3). During the (n+ 1)-th computation cycle (defined as
the time required to complete one iteration of (3)) the
following summations must be made:

1(9; N g; Q
Ax(n+1)=— —[— + > Ham+ D b,".Fk[n]U(—Fk)} (6a)
k=1

ot B =1
N
F(n+1)= Zlb,”.xj(nnbw (6b)
j=
for i=1,2,...,N and k=1,2,...,Q. Also a comparison per

constraint is required to evaluate the corresponding
threshold operator.

Fig.2 shows SC schematics of the processing units
required for the implementation of (6) using a serial
architecture. Fig.2a is used for the computation of (6a)
while Fig.2b corresponds to (6b). Fig.2¢ serves a double

N Q
@+ > guxm+ 2 bh MU W]+ by uF, UL F, ()]
Jj=1 k=1

1526

(4a)

(4b)

purpose. At the end of each computation cycle it stores
the corresponding calculated values for x;(n) and
F,U(-F,). Then, during the next computation cycle,
these values are one by one sequentially transferred to
the output of this unit and hence to the input of the
other processing units.

(a)

: “Cki
WFUCF,) o>

<D
LU o

Conceptual processing units for
different optimization algorithms.

Figurel:

(b) —!
dumy, :

1 o—” | 11— 52 :

Sg I o !

e
M(i+1) B

so—— / 3 |
F\U(-F,) SuN+k+1) :
Wl s §

iFQU(-Fg) I duN+Q+1) ;
;(c) /ss I :
Figure2: SC buidings blocks for the quadratic

penalty optimization algorithm.

Computation flow in the proposed serial architecture
is controlled by the clock signals shown in Fig.3. The
master clock comprises two nonoverlapping clock
phases, ¢¢ and ¢°, whose functions are to establish the
general timing of the system and to control the transfer
of charge among capacitors in the SC computational
units. One transfer of charge is made per period of this
master clock. As it can be seen from Fig.3, the
computation cycle contains N+Q+1 periods of the
master clock while the initialization cycle contains just
two of these periods. Switches labeled S; and S, are
respectively controlled by ¢° and ¢° all the time. In a
similar way S; is controlled by ¢y, while ¢;; controls the
switch S and the complement of this signal is used to
control S7. Remaining switches in Fig.2c are controlled
by the clock signals ¢u; to dmv+q@+p Shown at the
bottom of Fig.3. On the other hand, switching schedule
of S; and S; depends on whether the system is in the
computation or in the initialization cycle, being:

[e e e e m e m e e m e .
i nnnnnn_’mnrnni
e _Mmnnnnn..nnnn.|
Eq)‘ ~—d computation cycle i
i P 4 initialization cycle :
- Y - M
H . ;
b n
t 1]
i‘bm ___,—1 i
! e — ;
i . . '
i . . i
iq)mmnfn m * |
Lic.e oSS oo oo oo oo T . T oo oL i

Figure 3:Timing schedule of the serial architecture

1527

s2=¢°
s2=ON.

Computation cycle:
Initialization cycle:

s1=¢°
s;=OFF

Computation is made as follows. During the (n+1)-
th initialization cycle the previously calculated values
are stored in the capacitors of Fig.2c¢ (for ¢;; high). Also,
when ¢;; becomes high the feedback capacitors of the
units used to evaluate the constraints are zeroed. Then,
during the (n+1)-th computation cycle the output of
Fig.2c sequentially takes the values 1,x;(n), x2(n), ...,
xn(n), Fi(n)U(-Fp), Fo(n)U(-Fy), ..., Fe(n)U(-Fg), one per
period of the master clock. This sequence is applied to
the input of Fig.2a and Fig.2b, resulting in the
following sequence at the corresponding outputs,

respectively:
w.
x.(n+ ﬁ)a(,ﬁ m—1 >+y(u+ﬁ>_‘ (7a)
' M 4 M/,
m m-1 m
e)= T e 5 Jo (7b)

for m=12,...,, N+Q+1 and where M=N+Q+1and,
remind, F(n)=0.

We can hence see that the accumulation process
formulated in (7) yields (6), after N+ @ + I cycles of the
master clock, provided w; and w; changes during the
computation cycle according to what is required by (6).
In practice this can be achieved by implementing the
associated variable capacitors via binary weighted
capacitors arrays controlled by a cyclic memory
containing the weights codes, as it is illustrated in
Fig4.

The proposed architecture can be modified in a very
simple way for the implementation of the algorithm in
(2). In this case a scheme similar to that enclosed by
broken lines in Fig.2(b) has to be used to multiply the
output of the processing unit of Fig.2(a) by the threshold
operator U(F). This operator can be evaluated as the
result of the logical NOR operation among the @
individual operators U(-F,). Adaptation of the
architecture for the implementation of the Lagrange
multiplier technique given by (3) is also possible. In this
case, as it can be seen from Fig.1, @ more processing
units are required as compared to the quadratic penalty
algorithm. The SC schematics for these new units is
similar to the one in Fig.2¢c.

Programmability Reconfigurability Issues
Since weights in the proposed serial architecture are
stored in digital form, programmability issues can be
very easily incorporated. It just requires the setting of a

digital circuitry allowing digital weights to be
externally modified. An important programmability

dy 2DC0 :
/ i
dr I 2C, | i

A | i

.......... e W S U

Binary capacitor array and cyclic
control memory.

issue is related to the control of the integrator time
constant, which may significantly influence the
stability versus operation speed tradeoff. Since accurate
control of the time constant value is nor crucial for
proper operation, we can resort to this purpose to the
use of a C-2C ladder, as the one shown in Fig.5

Reconfigurability can be also easily incorporated to
the proposed serial architecture. Observe the
functionality provided by Fig.2a is the same as for the
first stage of Fig.2b, the difference being in that the
feedback capacitor in this latter figure is zeroed during
each initialization cycle. Thus a modular reconfigurable
serial architecture can be built containing only
processing units as the one inn Fig.2b plus some extra
reconfiguration logic and corresponding control buses.

The combined programmability and recon-
figurability features allows easier incorporation of
testability issues. A testing mode of operation can be
selected bg' the control logic where each processing unit
is isolated and its operation is compared to that of a
reference. The reconfigurability properties of the
architecture can also be exploited to bypass faulty units
and hence provide fault tolerance.

Stability is another system level issue that must be
assessed for practical implementations. Since the
herein considered implementations do not exhibit
continuous-time feedback loops, potential instability
problems are of the numerical type. Stability analysis of
the different algorithms, for solutions inside and on the
border of the feasibility region, allows the calculation of
design conditions ensuring stability. Knowing these
conditions allows in his turn to optimize the stability
versus speed tradeoff. For instance for the Lagrange
multipliers the following can be calculated for a linear
problem to be solved at a maximum speed:

=2
%o (7a)
4

p=

o

(7b)

2
B,
k=1

Similar conditions can be calculated for the other
algorithms [5].

Discussion of Results

Floorplanning strategies for serial input
architectures have been devised for us and the
corresponding area occupation for each case has been
calculated. Fig.6 shows such area as function of the
number of processing units. For the purpose of
comparison the estimated area figure for a parallel
architecture has been also drawn. The area estimation
has been made on the basis of assuming identical

:

) Y F N ELdh] v v

; iC o e i
2 I virtualz
i C ¢ groundi
!]
1)
i — 1
| R SR o (B
1

e I i
1 h]
L e i —md
Figure5: C-2Cladder for time constant control.

1528

Porallel
Architecture

Serial

AREA mm?

PO PO PR S pwtaton i I OISRt d
Figure6: Comparative area figures for the serial
and the paralell architecture.

opamps and unit capacitors values for both
architectures. As it can be seen, an important area
reduction can be achieved by using the serial input
architecture. On the other hand, power consumption for
the two architectures have been estimated by us to be
very similar while operation speed for a given power
can be also shown to be similar. (For a given opamp the
finest clock signal in the serial architecture can be
made to be about N+@Q+1 times faster than the clock
signal for the parallel inputs architecture).

References

D.A. Tank and J.J. Hopfield: "Simple Neural
Optimization Networks: An A/D Converter,
Signal Decision Circuit, and a Linear
Programming Circuit”. IEEE Trans. Circuit and
Systems, V0l.33, pp 533-541, May 1986.

M.P. Kennedy and L.O. Chua: *Neural Networks
for Nonlinear Programming”. IEEE Trans.
Circsuits and Systems, Vol. 35, pp 554-562, May
1988.

A. Rodriguez-Vézquez, et al: “Nonlinear
Switched-Capacitor “Neural” Networks for
Optimization Problems”. ibid, Vol. 37, pp. 384-
397, March 1990.

C.Mead and M. Ismail (ed): “Analog VLSI
Implementation of Neural Systems”. Kluwer
Academic 1989.

R. Dominguez-Castro, et al: “Modeling and
Design of Analog VLSI “Neural” Optimizers”.
Proc. of the 1991 ECCTD, pp. 489-497, 1991.
R.Fletcher: “Practical Methods of
Optimization”, John Wiley & Sons, Vol.2 1980
G.V. Vanderplaats: “Numerical Optimization
Techniques for Engineering Design: with
Applications”, Mc. Graw-Hill 1984,

(1]

(2]

{31

(4]

151

161
[71

