
 
 

 

 

 

 

 

 

Design of biological sensors based on the 
OpvAB phase variation system of 

Salmonella enterica 
 

 

 

 

 

 

 

David Rodríguez Olivenza 

Tesis doctoral 





 

 

 
Design of biological sensors based on the 

OpvAB phase variation system of 
Salmonella enterica 

 

 

 

Memoria elaborada por David Rodríguez Olivenza para optar al título de 

Doctor por la Universidad de Sevilla 
 

 

Tesis realizada bajo la dirección del Dr. Josep Casadesús Pursals y la       

Dr. Mireille Ansaldi en el Departamento de Genética de la Facultad de 

Biología de la Universidad de Sevilla 
 

 

 

Josep Casadesús Pursals Mireille Ansaldi 

 

 

 

David Rodríguez Olivenza 

 

Sevilla 2019



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A mis padres y a mi hermano Antonio 

A mi familia 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
“Messieurs, ce sont les microbes qui auront le dernier mot!” 

 
 LOUIS PASTEUR 
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Este trabajo se ha basado en investigaciones previas de nuestro grupo sobre el operón 

opvAB de Salmonella enterica y ha utilizado dichos conocimientos para diseñar y 

desarrollar tres aplicaciones biotecnológicas: (i) la formación de subpoblaciones 

bacterianas que difieran en un fenotipo específico elegido a voluntad, (ii) el desarrollo 

de un biosensor capaz de detectar bacteriófagos, y (iii) la detección de inhibidores de la 

metilación del DNA. 

 

(i) Estudios previos habían establecido que la transcripción del operón opvAB 

está sujeta a biestabilidad reversible (cambio de fase). Este trabajo describe 

que la clonación de un fragmento de 689 pares de bases que contiene el 

promotor y la región reguladora (UAS) de opvAB es capaz de conferir 

biestabilidad reversible a genes heterólogos (ej., el operón lac y diversos 

genes de resistencia a antibióticos). El sistema de cambio de fase es 

exportable a Escherichia coli. La expresión de genes de resistencia a 

antibióticos bajo el control de opvAB genera subpoblaciones resistentes y 

sensibles al antibiótico en cuestión, y puede ser útil para el estudio de la 

heteroresistencia a antibióticos. La heteroresistencia es un fenómeno de gran 

relevancia clínica ya que la aparición de subpoblaciones resistentes es difícil 

de detectar y con frecuencia causa un fallo en el tratamiento de las 

infecciones.  

 

(ii) Los productos del operón opvAB son proteínas que acortan el antígeno O del 

lipopolisacárido, generando resistencia a bacteriófagos que usan el antígeno 

O como receptor. Esta propiedad ha permitido desarrollar biosensores para la 

detección de bacteriófagos. Dichos sensores se basan en la detección de 

fluorescencia emitida por la proteína verde fluorescente, GFP, y han sido 

generados por manipulación genética de la estirpe silvestre. Además de ser 

una alternativa al uso de los antibióticos, los bacteriófagos tienen 

importancia en ecología ya que participan activamente en el control de las 

comunidades bacterianas y en la transferencia de información genética entre 

bacterias. 

 

(iii) La transcripción del operón opvAB está regulada por metilación Dam, y la 

ausencia de metilación Dam origina expresión constitutiva. En una estirpe 
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que produce proteína verde fluorescente (GFP) bajo el control de opvAB, la 

inhibición de la metilación Dam se puede detectar como un aumento de 

fluorescencia. La funcionalidad de este sistema de detección se ha 

demostrado en presencia concentraciones muy bajas de sinefungina, un 

inhibidor comercial de la metilación del DNA. Esta prueba de concepto 

sugiere que el sensor puede ser útil en la búsqueda de nuevos inhibidores de 

la metilasa Dam, potencialmente útiles como fármacos antibacterianos.  
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The genus Salmonella 

The genus Salmonella belongs to the family Enterobacteriaceae, which is classified in 

the 𝛾-proteobacteria subdivision. Salmonella is phylogenetically close to the genera 

Escherichia, Shigella, and Citrobacter. The genus Salmonella includes facultative 

anaerobic, rod-shaped Gram-negative bacteria. Most Salmonellae are motile and are 

able to infect a wide variety of animal hosts including amphibians, reptiles, mammals, 

and birds. Current taxonomy divides the genus Salmonella into two species, Salmonella 

enterica and Salmonella bongori [1]. In turn, Salmonella enterica includes six 

subspecies [2]: enterica (I), salamae (II), arizonae (IIIa), diarizonae (IIIb), houtenae 

(IV) and indica (VI). 

 

Salmonella isolates from the same subspecies are further classified into serovars based 

on the White-Kauffman classification scheme [3], which relies on specific patterns of 

agglutination reactions based on antisera against two highly variable surface antigens, O 

(lipopolysaccharide O-antigen) and H (flagellar proteins) [2], [4]. There are more than 

2,500 Salmonella serovars, most of which belong to subsp. enterica [3]. Only serovars 

of this subspecies regularly colonize warm-blooded vertebrates [5], and so they account 

for 99% of human infections by Salmonella, while serovars of Salmonella bongori and 

other Salmonella enterica subspecies are usually associated to cold-blooded vertebrates 

or found in the environment [6]. 

 

 Serovars belonging to subsp. enterica differ in their host specificity and in the types of 

diseases they promote. Some serovars are host-restricted, while others can infect a wide 

variety of animal hosts [7, p. 2]. The diseases caused by subsp. enterica serovars vary 

from self-limiting gastroenteritis to life-threatening systemic infection, and the outcome 

of the disease depends on the specific serovar-host combination. An example of 

specialist is S. Typhi, the causing agent of typhoid fever. In contrast, S. Typhimurium 

produces mild gastroenteritis in humans but causes a systemic infection similar to 

human typhoid fever when infecting immunodeficient mice [8]. 

S. Typhi causes more than 27 millions of cases of typhoid fever worldwide, with 

217,000 deaths approximately [9], whereas S. Typhimurium and S. Enteritidis cause 

>90 million infections worldwide with more than 150,000 deaths per year [10]. In sub-
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Saharian Africa, S. Typhimurium and S. Enteriditis cause high rates of bacteremia in 

immunocompromised patients and in children [11],  [12].  

 

The interaction between serovar Typhimurium and mice has been extensively used as a 

model for typhoid fever in humans [13]. A widely used mouse-virulent strain is ATCC 

14028 [14]. 

 

Evolution of Salmonella 

 Salmonella and Escherichia are close relatives, and diverged 120-160 million years ago 

[15]. Almost 25% of the Salmonella genome consists of genetic material that is absent 

in Escherichia coli [5], [16]. The evolution of Salmonella pathogenicity (Figure I.1) 

has involved sequential acquisition of genetic elements, each contributing to different 

aspects of its lifestyle [17], [18]. Amongst those elements are the Salmonella 

pathogenicity islands (SPIs), which are clusters of virulence genes located in the 

chromosome. More than 10 SPIs have been described [19], including some which are 

serotype-specific. These regions are absent in the chromosome of other 

Enterobacteriaceae, and usually have different G+C content than the average of the 

Salmonella chromosome, suggesting that they have been acquired by horizontal gene 

transfer [16], [18].  
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Figure I.1. Phylogeny of the genus Salmonella. Modified from [20].  

 

The best characterized SPIs are Salmonella pathogenicity islands 1 (SPI-1) and 2 (SPI-

2). SPI-1 was acquired first by the common ancestor of the two Salmonella species, and 

is involved in the invasion of intestinal epithelial cells in the animal host [21]. SPI-1 

acquisition likely allowed Salmonella to become an intracellular pathogen associated 

with cold-blooded vertebrates [20]. 

 

 SPI-2 allows Salmonella to survive in macrophages and colonize deep tissues [22], and 

its acquisition marked the split of the two Salmonella species [20]. Hence, only 

members of Salmonella enterica have the ability to reach deep tissues and organs to 

produce systemic infections. The ancestor of subsp. enterica acquired the capacity to 

infect warm-blooded vertebrates, and different lineages subsequently evolved to 

colonize a variety of hosts. Even though the mechanisms of host specificity are not fully 

understood, the presence of a virulence plasmid in some serovars of subsp. enterica has 

suggested the potential involvement of plasmid functions [6]. Another factor that may 

be involved in host specificity is the presence of different sets of fimbrial operons in 

different serovars [6], [23]. 
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Salmonella infection 

Infection with Salmonella enterica is usually caused by ingestion of contaminated food 

or water. Along the digestive track, Salmonella must endure adverse conditions that 

serve as protective mechanisms against bacterial infections. In the stomach, acid pH 

destroys the majority of microorganisms [24]. Activation of the acid tolerance response 

enables Salmonella to endure periods of severe acid stress [25], [26]. In the small 

intestine, Salmonella finds high concentrations of bile, secreted in the duodenum during 

digestion. Bile has two main antibacterial activities: as a detergent that disrupts the cell 

envelope [27] and as a DNA damaging agent [28]. However, Salmonella and other 

enterobacteria are intrinsically resistant to high concentrations of bile [27]. Bile 

resistance is a complex phenomenon and involves multiple mechanisms including 

formation of physical barriers such as the lipopolysaccharide [29] and the 

enterobacterial common antigen [30], active efflux [31], [32], activation of the general 

stress response [33] and modification of the peptidoglycan structure [34]. 

 

 
Figure I2. Diagram of Salmonella infection. The three main routes of Salmonella invasion of the 

intestinal epithelium are represented: adhesion and translocation through M cells, direct invasion of 

intestinal epithelial cells, and capture by dendritic cells. Reproduced from [35]. 
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When Salmonella reaches the distal small intestine, adhesins and fimbriae allow the 

pathogen to adhere to the intestinal epithelium [36]. Salmonella is able to invade the 

intestinal epithelium through three different routes (Figure I2): (i) by inducing a 

phagocytosis-like process in non-phagocytic enterocytes, (ii) through specialized 

epithelial M cells, and (iii) through dendritic cells that intercalate epithelial cells by 

extending protrusions into the gut lumen [37], [38]. The two first routes are mediated by 

the virulence-associated type 3 secretion system encoded on Salmonella pathogenicity 

island 1 (SPI-1) [39], and invasion of M cells is the predominant route of intestinal 

traversal [40]. After invasion, and depending on the host-serovar combination, 

Salmonella can cause two main kinds of infection: gastroenteritis and systemic 

infection. In gastroenteritis, the infection is localized in the intestine, and induces an 

inflammatory reaction in the intestinal mucosa. Accumulation of liquid in the intestinal 

lumen leads to diarrhea [41], [42]. The inflammatory response creates a novel luminal 

niche, which favors growth of Salmonella over the resident microbiota of the intestine. 

Remarkably, the cascade of events that takes place as consequence of inflammation 

produces the accumulation of tetrathionate (S4O62-) in the intestinal lumen [43]. 

Salmonella can use tetrathionate as electron acceptor for respiration to obtain energy for 

growth in the inflamed gut lumen, taking advantage over the resident microbiota, which 

must rely on less efficient fermentation processes. In systemic infection, Salmonella 

crosses the epithelial barrier and can survive inside phagocytes due to the possession of 

a second type 3 secretion system encoded on Salmonella pathogenicity island 2 (SPI-2). 

Dissemination through the lymphatic system permits colonization of multiple target 

organs, particularly the spleen, the liver, the gall bladder and the bone marrow [44]. A 

fraction of individuals recovering from systemic infection become asymptomatic, life-

long carriers of Salmonella, acting as reservoirs for future infections. In humans, 

serovar Typhi can establish chronic carriage in the gall bladder [44].  
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Formation of bacterial lineages 

The study of differentiation in bacterial species that undergo developmental programs 

has played a historic role in biology [45]–[47]. In addition, phenotypic differences 

between colonies [48] and within colonies [49] were described many years ago in 

bacterial species that do not undergo development. Despite their technical limitations, 

these early studies contributed to bring about the idea that phenotypic heterogeneity 

might be a common phenomenon in the bacterial world [50]. This view has been 

confirmed by single cell analysis technologies [51]–[55]. Furthermore, theoretical 

analysis has provided evidence that phenotypic heterogeneity can have adaptive value, 

especially in hostile or changing environments [56]–[58]. In certain cases, the adaptive 

value of subpopulation formation is illustrated by experimental evidence [33], [59], 

[60]. 

In general, the evolutionary significance of the formation of bacterial subpopulations 

can be interpreted as the result of two different strategies: division of labor and bet-

hedging [53], [61], [62]. Division of labor, also known as cooperation, implies that there 

is an interaction between different phenotypes, and in a given environment both 

subpopulations together are fitter than any of them separately. In turn, bet-hedging 

occurs when each subpopulation is fitter than the other in a particular environment, so 

that the population as a whole is fitter in a variety of conditions and prepared to adapt to 

an environmental change.  

 

Formation of bacterial lineages is governed by diverse mechanisms, including 

programmed genetic rearrangement [63] and contraction or expansion of DNA repeats 

at genome regions known as contingency loci [64], [65]. In other cases, however, 

lineage formation is controlled by epigenetic mechanisms [54], [66]. Although the 

known examples of non-genetic heterogeneity show disparate levels of complexity, 

epigenetic formation of bacterial subpopulations typically fits in the following, 

simplified model: certain cell-to-cell differences can serve as physiological signals, and 

signal propagation by a feedback loop generates a heritable phenotype [54], [67]. Cell-

to-cell differences can be a consequence of environmental inputs or result from the 

noise intrinsical to many cellular processes [52], [54], [58]. An important factor that 

contributes to gene expression noise is the finite number effect: noise is more prevalent 
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if the number of molecules involved in a process is limited [68]–[70]. This is relevant in 

gene expression since transcription and translation events are relatively infrequent 

events, and also because transcription factors are often present in small numbers [71]. In 

turn, the feedback loops that propagate the initial state can be relatively simple (e. g., 

the perpetuation of autogenous control beyond cell division) or involve complex 

mechanisms like the formation of inheritable DNA adenine methylation patterns in the 

genome [54], [66], [72]. Some feedback loops are stable enough to cause bistability, the 

bifurcation of a bacterial population into two distinct phenotypic states [67]. If a 

feedback loop is metastable, reversion of the epigenetic state will occur after a certain 

number of cell divisions. Reversible bistability is usually known as phase variation, and 

typically involves reversible switching of gene expression from OFF to ON or from low 

to high expression [73]–[75]. Examples of phase variation have been described mostly 

in bacterial pathogens, and subpopulation formation is frequently viewed as a strategy 

that may facilitate evasion of the immune system during infection of animals [73]–[75]. 

This view is supported by the observation that phase-variable loci often encode 

envelope components or proteins involved in modification of the bacterial envelope 

[73], [75]. 

 

Dam methylation 

Base methylation is a DNA modification present in all kingdoms of life. C5-

methylcytosine and N6-methyl-adenine are found in bacterial, archaeal and eukaryotic 

genomes, whereas N4-methyl-cytosine is found only in bacteria [76], [77]. The methyl 

group of modified bases protrudes from the major groove of the double DNA helix, 

which is a typical place for recognition of DNA motifs by DNA-binding proteins [78]. 

Consequently, the methylation state of critical adenosine or cytosine moieties can 

regulate the interaction between DNA-binding proteins and their cognate DNA 

sequences [78], [79]. Formation of N6 -methyl-adenine (an probably of the other 

methylated bases) lowers the thermodynamic stability of DNA [80] and alters DNA 

curvature [81], which could further influence DNA-protein interactions.  

 

Base modification in bacterial genomes is performed by two kinds of DNA 

methyltransferases: (i) associated with restriction-modification systems that protect the 
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cell from foreign unmethylated DNA [82], [83]; (ii) solitary methyltransferases that do 

not have a restriction enzyme partner [79]. A paradigm of solitary methyltransferase is 

the Dam methylase of Gamma-proteobacteria. Dam is only found in a particular clade 

of bacteria consisting of the orders Enterobacteriales, Vibrionales, Aeromonadales, 

Pasteurellales, and Alteromonadales [84]. It is essential for viability in Vibrio cholerae 

and certain strains of Yersinia [85]. In Escherichia coli and Salmonella enterica, a dam 

mutation causes pleiotropic defects but is not lethal [86], [87]. Dam shares significant 

sequence identity with DNA methyltransferases such as MboI and DpnII, both of which 

have a restriction enzyme counterpart [84], [88]. This relatedness suggests that Dam has 

evolved from an ancestral restriction-modification system. A crucial difference, 

however, is that the Dam methylase is highly processive, able to perform multiple 

methylation reactions before dissociating from the DNA molecule, whereas restriction-

modification DNA methylases are distributive [89]. The Dam methylase transfers a 

methyl group from S-adenosyl-methionine to the N6 amino group of the adenosine 

moiety of 5’GATC3’ sites [86]. Methylation occurs shortly after DNA replication, 

which means that hemimethylated GATC sites are the natural substrate of the Dam 

methylase. However, Dam methylates hemimethylated and unmethylated GATC sites 

with similar efficiency [86]. DNA binding and/or methyl transfer efficiency are 

influenced by the flanking sequences of the GATC sites [90].  

 

N6 -methyl-adenine can be used as a signal for genome defense, DNA replication and 

repair, nucleoid segregation, regulation of gene expression, control of transposition, and 

host-pathogen interactions [84], [88], [91] [86] (Figure I3). Dam plays a crucial role in 

the correction of replication errors by providing a way to identify the template DNA 

strand [92]. The formation of a mismatched base pair results in recognition by the MutS 

protein and the recruitment and assembly of the MutHLS complex. Methyl-directed 

mismatch repair is initiated by MutH, which nicks the nonmethylated (newly replicated) 

DNA strand at the nearest hemimethylated GATC site, ensuring that the parental 

template strand is not altered [93]. Degradation and resynthesis of the mismatched 

daughter strand eventually result in correction of the mismatched sequence. 
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Figure I3. Examples of roles of N6-methyl-adenine in enteric bacteria. When known, the 

methylation-sensitive DNA-binding proteins involved in each process are indicated. Reproduced 

from [79]. 

 

Initiation of chromosome replication in E. coli requires binding of an ATP-bound form 

of the initiator protein DnaA to the replication origin (oriC), followed by separation of 

the two strands of the double helix and loading of DNA helicase. However, binding of 

DnaA at the oriC region is only possible if the GATCs located in the region are 

methylated; a hemimethylated origin is inactive [94]. Interestingly, the density of 

GATC sites in the oriC region is roughly tenfold higher than the average in the E. coli 

chromosome (11 GATC sites within 245 base pairs) [95]. Dam-dependent timing of 

DNA replication and nucleoid organization are controlled by a protein known as SeqA, 

which binds hemimethylated GATC sites in the oriC region, inhibiting further rounds of 

replication [96]. SeqA also binds to newly generated hemimethylated GATC sites along 

the chromosome, organizing the daughter chromosomes into nucleoid domains [97], 

[98]. 
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The involvement of Dam methylation in bacterial virulence was first described in 

Salmonella: the 50% lethal dose (LD50) of a dam mutant is 10,000 fold higher than that 

of the wild type upon oral inoculation [99], [100]. Pleiotropic effects caused by absence 

of Dam methylation might explain this extreme phenotype: dam mutants display lower 

invasion capacity, reduced motility, envelope instability, ectopic expression of fimbriae, 

sensitivity to bile salts, lower expression of virulence genes, and altered LPS O-antigen 

chain length [88], [101], [102]. 

 

Dam methylation-dependent transcriptional control of gene expression can be classified 

into two main types [103]:  

 

(I) Clock-like controls that use the methylation state of the DNA as a 

signal to couple gene expression to a particular stage of the cell cycle. Examples 

of transcriptional activation by GATC hemimethylation include the conjugal 

transfer gene traJ and the IS10 transposase gene [104], [105]. An example of 

repression by hemimethylation is provided by the gene dnaA, which encodes an 

initiator of chromosome replication [106].  

(II) Switch-like controls that turn on and off gene expression upon 

formation of differential methylation patterns at specific GATC sites. Such sites 

are typically found forming clusters at or near the promoters of phase variation 

loci [73]. 

 

Because active demethylation is not known to occur in bacteria, competition 

between DNA-binding proteins and Dam methylase is the only mechanism known 

to generate nonmethylation [66]. Successful exclusion of the Dam methylase from 

GATC sites requires a decrease in processivity, which occurs at GATC sites 

flanked by specific, AT-rich DNA sequences [90]. 

 

Phase variation systems regulated by Dam methylation 

We will briefly discuss three phase variation systems under Dam methylation control: 

pap and agn43 from Escherichia coli and opvAB from Salmonella enterica. 
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pap 
 
The pap operon encodes pyelonephritis-associated pili that mediate adhesion of 

uropathogenic E. coli to the urinary mucosa [107]. Synthesis of Pap pili is subjected to 

phase variation, and Dam methylation controls switching between ON and OFF states 

[72]. The regulatory region of the pap operon contains six binding sites for the leucine-

responsive regulatory protein, Lrp. Sites 5 and 2 contain GATC motifs known as 

GATCdist and GATCprox, respectively. In the OFF state, Lrp binds cooperatively and 

with high affinity to sites 1-3, and prevents RNA polymerase binding [66], [72], [107]. 

Lrp binding at sites 1-3 reduces the affinity of Lrp for sites 4-6, and preserves the 

nonmethylated state of GATCprox while GATCdist remains methylated. The high affinity 

of Lrp for nonmethylated GATCprox and its incapability to bind a methylated GATCdist 

generates a feedback loop that propagates the OFF state [72], [107]. Switching to the 

ON state needs translocation of Lrp to sites 4-6. Translocation involves the auxiliary 

protein PapI. The PapI/Lrp complex has higher affinity for GATC sites 4-6 than for 1-3 

GATCs [72]. Binding of Lrp to sites 4-6 hinders methylation of GATCdist and permits 

methylation of GATCprox, favoring the propagation of the ON state [107]. 

 

agn43  
 
The agn43 gene of E. coli encodes an autotransporter protein whose expression is 

subjected to phase variation under control of Dam methylation and the transcription 

factor OxyR [108]. Three GATC sites present within the binding site of OxyR at the 

agn43 regulatory region.  OxyR binding to nonmethylated agn43 GATCs represses 

transcription and prevents GATC methylation. In turn, methylation of GATC sites 

avoids OxyR binding [109]–[111]. agn43 expression thus depends on the competition 

between OxyR binding and Dam methylation, and switching may occur upon DNA 

replication [111], [112]. 
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Figure I4. Diagrams for Dam methylation-dependent regulation of pap, agn43 and opvAB 

phase variation. For simplicity, binding sites, Dam methylase and RNA polymerase are not 

represented. Adapted from  [113], [114]. 

 

opvAB 
 
The Salmonella enterica opvAB operon shows phase variation, which produces bacterial 

lineages with standard (OpvABOFF) and shorter (OpvABON) O-antigen chains in the 

lipopolysaccharide. Transcription of opvAB is controlled by the LysR-type factor OxyR 

and by Dam methylation. The opvAB regulatory region contains four sites for OxyR 

binding (OBSA-D), and four GATC motifs (GATC1-4) which are susceptible to be 

methylated by the Dam methylase. Regulation by OxyR is oxygen-independent [115]. 

OpvABOFF and OpvABON cell lineages present opposite DNA methylation patterns in 

the opvAB regulatory region: (i) in the OpvABOFF  state, GATC1 and GATC3 are non-

methylated, whereas GATC2 and GATC4 are methylated; (ii) in the OpvABON state, 

GATC2 and GATC4 are non-methylated, whereas GATC1 and GATC3 are methylated 

[114]. 

 

The OBSA and OBSC sites of opvAB are identical to the consensus sequence for OxyR 

binding while OBSB and OBSD are not. This difference may explain the higher stability 

of the OpvABOFF lineage, resulting in a ~600-fold difference between ON→OFF and 

OFF→ON transition rates. The predominant OFF state involves binding of OxyR to the 

OBSA and OBSC sites, which protects GATC1 and GATC3 from methylation. In this 

configuration, GATC2 and GATC4 are unprotected and therefore are methylated by 
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Dam. In the ON state, OxyR binds to the OBSB and OBSD sites. As a consequence, 

GATC2 and GATC4 are protected from methylation and remain non-methylated, while 

GATC1 and GATC3 are methylated. In this configuration, RNA polymerase is recruited 

to the opvAB promoter and transcription of opvAB takes place. Like other LysR-like 

transcription factors, OxyR may contact RNA polymerase within the DNA region 

occupied by the regulator [116]. Additional factors involved in the formation of OpvAB 

cell lineages are the GATC-binding protein SeqA which contributes to the stability of 

the OpvABOFF lineage, and the nucleoid protein HU which stabilizes the OpvABON 

lineage [114]. 

 

 
Figure I5. Model of opvAB phase variation. The diagram shows the Dam methylation states found 

in OpvABOFF and OpvABON cell lineages and the hypothetical patterns of OxyR binding to cognate 

sites. Black and white squares represent methylated and nonmethylated GATC sites, respectively. 

Adapted from [114]. 

 

The opvA and opvB genes encode inner membrane proteins that modulate the O-antigen 

chain length. The dramatic change in LPS structure caused by opvAB expression (see a 

diagram in Figure I6), renders S. enterica resistant to bacteriophages 9NA, Det7, and 

P22 due to the fact that the O-antigen is the bacterial surface receptor used by these 

bacteriophages [117], [118], [119, p. 22], [120] 
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Figure I6. Diagrams of lipopolysaccharide structure in the OpvAOFF and OpvABON 

subpopulations. Lipid A is represented in blue and core oligosaccharide in green. Every red circle 

represents five O-antigen repeat units. Modal lengths conferred by WzzST, WzzfepE and OpvAB 

are indicated. Adapted from [114]. 

Because opvAB phase variation is skewed towards the OFF state, S. enterica 

populations contain a major subpopulation of OpvABOFF (phage-sensitive) cells and a 

minor subpopulation of OpvABON (phage-resistant) cells. In the presence of a 

bacteriophage, the OpvABOFF subpopulation is killed and the OpvABON subpopulation 

is selected (Figure I7). Hence, the existence of a small subpopulation of phage-resistant 

cells preadapts S. enterica to survive phage challenge. In OpvAB– S. enterica, 

acquisition of phage resistance is mutational only, and a frequent mechanism is 

alteration of LPS structure. Because the LPS plays major roles in bacterial physiology 

including resistance to environmental injuries and host-pathogen interaction [121], 

opvAB phase variation may  have selective value by providing S. enterica with a non-

mutational, reversible mechanism of phage resistance. This mechanism offers the 

additional advantage of protecting Salmonella from multiple phages, perhaps from all 

phages that bind the O-antigen. 

Acquisition of phage resistance in OpvABON cells requires a payoff: reduced virulence 

in the mouse model. In a phage-free environment, this payoff may be irrelevant because 

the avirulent subpopulation is minor as a consequence of skewed switching of opvAB 

expression toward the OFF state: only 1/1,000 S. enterica cells can be expected to be 

avirulent in a phage-free environment. The virulence payoff is therefore enforced in the 
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presence of phage only, and its adaptive value may be obvious as it permits survival. On 

the other hand, the fitness cost of OpvAB-mediated phage resistance can be expected to 

be temporary only because phase variation permits resuscitation of the virulent 

OpvABOFF subpopulation as soon as phage challenge ceases. Resuscitation may actually 

be rapid as a consequence of skewed switching towards the OpvABOFF state.  

 

 
 
Figure I7. Phase variation of opvAB as a reversible bacteriophage resistance mechanism. 

Diagram for the selection of the OpvABON subpopulation in the presence of a bacteriophage that 

uses the O-antigen as receptor. OpvABOFF cells are represented in white, OpvABON
 
cells in blue. 

Adapted from [122] 

 

Lack of Dam methylation locks opvAB expression in the ON state [114]. Introduction of 

point mutations in the GATCs sites alters the regulation of the operon and produces 

different sizes of OFF and ON subpopulations [123]. 

Other phase-variable systems controlled by DNA adenine methylation play roles in 

bacteriophage resistance. In Haemophilus influenzae, DNA adenine methylation 

controls phase-variable resistance to bacteriophage HP1c1 but the underlying 

mechanism remains hypothetical [124]. Phase variation can also contribute to phage 

resistance without alteration of the bacterial surface. For instance, certain genes 
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encoding restriction-modification systems show phase variation [125], [126]. In other 

cases, Dam-dependent gene regulation controls the synthesis or modification of 

envelope structures such as fimbriae or the LPS O-antigen [127].  

 

Biosensors 

Biosensors are devices that combine biological materials and transducers for the 

detection of specific signals (e. g., chemical components, heavy metals, metabolites 

with economic interest, contaminants, microorganisms, control parameters, etc.). This 

occurs through the conversion of biochemical signals into quantifiable physicochemical 

signals that are proportional to the initial amount of sample. The first biosensor, 

developed in 1962, consisted of a biological device able to detect the presence of 

glucose [128]. Since then, biosensors of different types have been developed and 

marketed for various applications. Biosensors often provide a more specific, sensitive, 

rapid, real and reproducible results compared to chemical sensors. Indeed, conventional 

chromatographic methodologies such as gas chromatography (GC) or high-performance 

liquid chromatography (HPLC) are tedious and not portable while biosensors can offer 

rapid and on-site/point-of-care monitoring of even trace levels of targets [129]–[131]. 

Additional advantages are high specificity and tight interaction between biological 

molecules and target compounds. Several studies have focused on developing 

biosensors with high accuracy and sensitivity using enzymes or receptor proteins as the 

recognition elements, RNA, DNA, antibodies or whole cells [129], [132]–[134]. 

Although biosensors that use enzymes are widely used, the cost of production and 

purification is high, and cofactors are typically required to generate a measurable signal 

for certain targets [131]. 

The use of whole cells as sensing devices presents numerous advantages over enzymatic 

and protein systems due to the low cost and improved stability. Cofactors are present 

inside the cells, and production is reduced to one step, where the cell grows. Moreover 

microbes present high stability under harsh environments [131], [135]. Whole-cell 

biosensors usually measure changes in cellular metabolism such as pH or gene 

expression [136], [137]. 
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 Microorganisms have been used with a variety of sensing techniques including 

electrochemical and optical detection. The first monitors the electroactive species 

consumed or produced by these microorganisms by conductimetric, amperometric, 

impedimetric or potentiomentric methods. In contrast, optical techniques are based on 

the quantification of fluorescence, luminescence, color, etc. [131]. Microbial 

auxotrophy was used by Pfleger et al. in order to monitor growth-limiting small 

molecules such as mevalonate [136]. 

 

Reporter gene expression under the control of a specific regulatory network is another 

powerful readout with high sensitivity. Commonly used reporter genes are enzymes 

with activities detected through colorimetric, fluorescent, or luminescent readout 

methods [138]–[140]. A relatively large number of biosensors use either 𝛽-

galactosidase (𝛽-gal) or luciferase as reporter [138], [141]–[143].  

 

Fluorescent proteins are also widely utilized in microbial sensors because they do not 

need to be supplied with any substrate due to their autofluorescence. For example, the 

green fluorescent protein (GFP) has been widely used to measure gene expression and 

to study cell-trafficking mechanisms [144]. GFP has been used, for instance, in a 

number of whole-cell biosensors in order to detect environmental contaminants. 

However, a limitation is that the original GFP takes time to mature and is inactive under 

anaerobic conditions. Moreover, the goal of multiplexing different signal detection at 

the same time led to the engineering of fluorescent protein versions with different colors 

and enhanced stability and folding properties [145]. 

 

The design of sensors for the detection of pathogenic bacteria is a rapidly developing 

field, due to the importance of a specific and accurate diagnosis to prevent infectious 

diseases. Some biosensors are based on nucleic acids and have the advantage of being 

able to amplify the signal using PCR, which considerably increases their sensitivity. A 

limitation, however, is that PCR-based methods are not able to discriminate live and 

dead bacteria. Antibodies are also used in this kind of biosensors, and are useful to 

detect spores and toxins [146]. 

 

Development of biosensors to monitor bacterial levels in food products and water 

samples is a promising research topic. Phage-based biosensors have been successfully 
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used for detection of bacteria directly in fresh products such as milk [139], [140], broth 

[147], fresh tomato [148], and water [149]. 

 

Most phages recognize their host very specifically to the bacterial strain level, with 

exceptions like Listeria phage A511 that identifies, binds and kills within an entire 

genus [150]. The inherent ability of the phages to bind to their target pathogen has been 

exploited to design biosensor surfaces using physical and chemical functionalization 

[151].  

 

Due to the importance of detecting pathogenic strains in a more effective way, new 

biosensors are being developed that share many components with those developed years 

ago. Ansaldi et al., 2015, developed a bacteriophage-based biosensor that use a 

fluorescent reporter protein that will be synthesized, and thus detected, only once the 

specific recognition step between a genetically modified temperate bacteriophage and 

its bacterial host has occurred [152]. 

 

 Bacteriophages 

Bacteriophages are classified into eight different major phyla, with different molecular 

lifestyles and distant relatedness, if any [153]. Tailed bacteriophages include 95% of all 

the phages reported so far in the scientific literature, and probably make up the majority 

of phages in nature [154]. It is estimated that there are at least 1031 tailed virions in the 

biosphere, and that phages are 10 to 25-fold more abundant than their bacterial hosts 

[155]–[157], which makes phage the predominant biological entity on our planet [155], 

[158]. Their abundance and ability to kill their bacterial hosts means that they play a 

critical role in virtually all natural processes. Phages are known to alter competition 

between bacterial strains and species [159], [160], to maintain bacterial diversity [161], 

[162], and to mediate horizontal gene transfer between bacteria [163], [164]. Phages and 

bacteria are in a constant arms race that results in continuous cycles of mutually 

influenced co-evolution [165], [166]. As an example, the adsorption machinery is the 

most rapidly evolving part of the tailed phage genome [167]. In turn, bacterial defense 

systems also show high variability (including phase variation) [127], rapid evolution, 
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and frequent horizontal gene transfer [168]. The specificity in the interaction between a 

bacteriophage and a bacterial cell is mostly determined by the specificity of adsorption, 

which is in turn dependent on the nature and structural peculiarities of the receptors that 

are recognized on the surface of the bacterial envelope  [169]. Known receptors of 

Salmonella phages are the LPS O-antigen [170], [171, p. 7], [172], [173], flagellar 

proteins [174], [175], [176, p. 5], the outer membrane protein for vitamin B12 uptake 

BtuB [175], [177], the outer membrane protein OmpC [178], [179], the outer membrane 

protein for drug efflux pump TolC [180], the outer membrane transport protein FhuA 

[181], and the Vi capsular antigen [182]. 

A common feature of bacteriophages using the O-antigen as receptor is that their tail 

spike proteins not only recognize but also hydrolyze the O-antigen, allowing the phage 

to penetrate through the O-antigen layer during infection [183]. Tailed phages have 

been traditionally assigned to the order Caudovirales and share a common structure 

consisting of a polyhedral, often icosahedral, head that contains a double-stranded DNA 

genome and is attached to a flexible tail. They also share a similar DNA packaging 

system relying on an ATP cleavage-powered DNA translocase [184]. Tailed phages can 

undergo a lytic or lysogenic life cycle. Lytic infection results in production of phage 

progeny and destruction of the host. During lysogenic infection, formation of a 

prophage may involve integration of the phage genome into the host chromosome or 

persistence as an extrachromosomal element. Genes that are expressed from the 

prophage can alter certain traits of the bacterial host. Under stressful conditions (e. g., 

DNA damage), prophages can be induced and resume a lytic cycle [185]. The 

bacteriophages used in this work belong the traditional three families in the order 

Caudovirales: P22 is a Podoviridae (which includes 14% of tailed phages), 9NA, a 

Siphoviridae (62%), and Det7, a Myoviridae (24%) [153]. These families are defined by 

their morphology: the Podoviridae have short non-contractile tails, the Siphoviridae 

have long non-contractile tails, and the Myoviridae have long contractile tails (Figure 

I8). 
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Figure I8. Idealized structures of bacteriophages belonging to the three families in the order 

Caudovirales. Podoviridae have short non contractile tails. Siphoviridae have long non-contractile 

tails. Myoviridae have long contractile tails. Modified from [WIKIPEDIA]. 

 

A recent classification based on sequence similarity of 337 fully sequenced tailed 

phages infecting 18 bacterial genera belonging to the Enterobacteriaceae family [186] 

identified 56 different clusters and confirmed that, although tail morphology has been 

shown not to be the best indicator of relatedness [187], [188], P22, 9NA and Det7 

belong to different groups indeed. P22 belongs to the lambda supercluster of temperate 

phages. P22_H5 is a virulent version of P22 called carrying a mutation in the c2 gene 

that prevents lysogeny [189]. 9NA constitutes the prototype phage of an isolated cluster 

which no close relatives. It forms clear plaques with no indication of a lysogenic 

lifestyle [118]. Det7 is also lytic [190, p. 7] and belongs to the Vi01-like cluster, which 

is distantly related to T4 [186], [191]. Clustering of the bacteriophages also showed a 

correlation with genome size and lifestyle. Again, the three phages were placed in three 

different groups: small temperate phages (P22, 44 Kb genome), small lytic phages 

(9NA, 53 Kb) and large phages (Det7, 158 Kb). Resistance to bacteriophages can be 

attained by a variety of mechanisms [192], including inhibition of DNA penetration, 

production of restriction endonucleases and blockage of the receptor by increased 

production of the extracellular matrix. However, the most frequent cause of phage 

resistance is a mutation that affects phage receptors [120], [192], [193]. Resistance to 
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phages comes at a fitness cost due to deleterious effects of resistance mutations [194], 

decreased ability to metabolize carbon [195], reduced competitive ability [196], 

increased susceptibility to other phages [197] and reduction in virulence [198], [199]. 

This may explain the adaptive value of phase variation in bacterial defense mechanisms 

[114], [124], [200]. 

 

Bacteriophage T5 

Bacteriophage T5 is a caudal virus belonging to the Siphoviridae family. This 

bacteriophage specifically infects E. coli bacterial cells and follows a lytic life cycle. 

The T5 structure includes a 90 nanometers icosahedral capsid and a 250 nanometer-long 

flexible, non-contractile tail. The capsid contains the phage's 121,750 base pair double-

stranded DNA genome [201]. T5 infects E. coli upon binding of its receptor-binding 

protein, Pb5, to the outer membrane ferrichrome transporter, FhuA [202]. This leads to 

a rearrangement of the tail that trigers DNA injection [203]. T5 has a peculiar way of 

infection in two steps. During the first step, only 8% of the genome is injected, leading 

to take-over of the host. During the second step, T5 DNA injection resumes and the 

lytic particles are formed [204].  

 

FhuA: Ferrichrome outer membrane transporter/phage receptor 
 

FhuA is an E. coli outer membrane protein which transports the ferric siderophore 

ferrichrome and is the receptor for phage T5, φ80 and T1 and for colicin M [205]. 

Cristal structures of FhuA are similar to other porin proteins, FhuA consists of a β-

barrel (composed 22 instead of 16 antiparallel β strands for porins), but unlike the porin 

proteins, it contains a plug (or cork or hatch) which fills the lumen of the barrel. The 

plug is a globular N-terminal domain that enters the β-barrel from the periplasmic side 

and tightly closes the pore in the β-barrel. The β-barrel extends well above the lipid 

bilayer. The β-strands are connected by short periplasmic turns and extracellular loops 

of up to 31 residues [206], [207]. 
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Bacteriophage T5-encoded lipoprotein 
Bacteriophage T5-encoded lipoprotein (llp gene) is synthesized upon E. coli infection, 

and prevents superinfection of the host cell by the same virus. The molecular basis of its 

ability to inactivate the receptor of phage T5, the FhuA protein, has been investigated in 

vitro [208]. In the early stage of infection of E. coli by bacteriophage T5, the phage-

encoded llp gene is expressed. Synthesis of Llp not only prevents superinfection but 

also protects progeny phages from being inactivated by the receptor molecules present 

in envelope fragments of lysed host cells [209].
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Phage therapy 

The first attempts to eradicate infections with phage therapy involved treatment of 

dysenteric humans [210]. The use of the bacteriophage to treat bacterial infection 

initially yielded impressive results. However, many problems soon appeared, such as 

the lack of reproducibility and the impossibility of achieving quality controls [211]. In 

addition, the discovery of antibiotics further decreased interest in phage therapy 

research in Western countries. In contrast, phage therapy continued in the Soviet Union 

and Eastern Europe. In the 80s, due to the emergence of resistance to antibiotics, some 

research groups focused on phage therapy as an alternative to the use of these 

antibiotics. [212].  

Advantages of phage therapy over use of antibiotics include that method phages 

isolation is fast, simple and inexpensive, and that resistance to phage develops about ten 

times more slowly than antibiotic resistance [213]. Furthermore, the fact that phages 

continue replicating as long as host bacteria are present [214] means that a small 

amount of phages could be used to carry out a treatment. Moreover, most phages have 

high host specificity, which may constitute an advantage in the treatment of chronic 

diseases where the microbiota is affected by the use of broad-spectrum antibiotics. On 

the other hand, phage therapy is harmless for humans since phage do not infect 

eukaryotic cells [213], However, more studies are needed to understand interactions 

between phage and the human immune system [215]. 

 

Recent investigations using animal models have explored phage treatment against a 

range of clinically significant pathogens. When challenged with gut-derived sepsis due 

to Pseudomona aeruginosa, oral administration of phage saved 66.7% of mice from 

mortality compared to 0% in the control group [216]. A single dose of phages used as 

prophylaxis in a Hamster model of Clostridium difficile-induced ileocecitis was 

sufficient prophylaxis against infection, saving 11 of 12 mice whereas control animals 

receiving C. difficile and clindamycin died within 96 h [217]. 

 

The Eliava Institute of Bacteriophage, Tbilisi, Georgia, and the Institute of Immunology 

and Experimental therapy in Wroclaw, Poland, have extensively used phage in 

preclinical and clinical treatment of common bacterial pathogens such as 
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Staphylococcus aureus, Escherichia coli, Streptococcus spp., P. aeruginosa, Proteus 

spp., Shigella dysenteriae, Salmonella spp., and Enterococcus spp. [218]. In a 1938 

clinical trial, 219 patients with bacterial dysentery were treated solely with a phage 

cocktail consisting of a variety of phages targeting Shigella spp., E. coli, Proteus spp., 

P. aeruginosa, Salmonella typhi, Salmonella paratyphi A and B, Staphylococcus spp., 

Streptococcus spp. and Enterococcus spp.; cocktails were administered both orally and 

rectally. Overall 74% of the 219 patients showed improvement or were completely 

relieved of symptoms [219], [220]. More recently, six patients with antibiotic 

unresponsive diabetic foot ulcers were treated in the USA by topical administration with 

S. aureus-specific phage. One application of this phage was enough for recovery in all 

individuals [221]. 

 

Currently, in Europe some phage preparations have approved by local authorities from 

Belgium, Poland and France for compassionate usage. In the U. S. A., several 

commercial phage preparations used for biocontrol of bacterial pathogens in the food 

industry have been approved by the FDA under the classification of “generally 

considered as safe”. Evidence suggests that phage biocontrol can be an effective method 

for improving food safety at numerous stages in meat production and processing. For 

example, Atterbury and colleagues [222] used phages to control C. jejuni contamination 

on the surface of chicken skin. After 24 hours post-administration, the treatment with 

phages resulted in a 1-1.3 log reduction in C. jejuni. In another trial, Hungaro et al. 

[223] used a mixture composed of a phage in combination with chemical agents 

(dichloroisocyanurate, peroxyacetic acid and lactic acid) to treat S. enteritidis on 

chicken skin. A reduction of 1-log CFU / cm2 was shown. Phages have been also used 

to reduce bacterial contamination in fruits, vegetables, and dairy products. For example, 

Levenrentz et al.  [224] attempted phage therapy against Salmonella on fresh fruit. The 

literature on phage therapy has also reported applications in sheep [225], cattle  [226], 

swine [227] and poultry [228]–[230]. 

 

DNA methylation, a potential target for novel antibiotics 

The involvement of Dam methylation in bacterial virulence was initially shown in the 

mouse model of typhoid: the "lethal dose 50" (LD50) of a dam mutant of Salmonella 
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enterica serovar Typhimurium is 10,000-fold higher than that of the wild type upon oral 

ingestion [100]. This extreme attenuation reflects the pleiotropic defects in dam 

mutants: (i) reduced colonization capacity due to inefficient activation of genes in 

pathogenicity islands 1 (SPI-1) and SPI-5 [100], [231], [232]; (ii) envelope instability, 

with release of outer membrane vesicles and leakage of proteins [233]; (iv) ectopic 

expression of fimbriae [231]; and (v) sensitivity to bile salts [233]. In the related serovar 

Enteritidis, altered O-antigen chain length in the lipopolysaccharide may contribute to 

attenuation [101]. 

An intriguing connection between DNA adenine methylation and virulence is found in 

the grampositive pathogen Mycobacterium tuberculosis. Strains of the Euro-American 

lineage of M. tuberculosis harbor a DNA adenine methyltransferase called MamA, 

which is absent from strains of the Beijing lineage [234]. MamA methylation appears to 

control survival in hypoxia, a stress condition typical of human infections, and may 

affect expression of a number of M. tuberculosis genes. A different DNA adenine 

methyltransferase is found in the Beijing lineage, suggesting that strain-specific 

differences in DNA methylation may control certain lineage-specific features [234]. 

Virulence-related defects associated with loss of DNA methylation have been reported 

in other pathogens. Certain strains of Haemophilus influenzae require Dam methylation 

for efficient invasion of both endothelial and epithelial cell lines [235]. Reduced 

invasion of epithelial cells by dam mutants is likewise observed in the periodontal 

disease agent Aggregatibacter actinomycetemcomitans [236] and perhaps in the 

intestinal pathogen Campylobacter [237]. A potential role of Dam methylation in 

virulence has been also described in the oral pathogen Streptococcus mutans [238]. 

Other virulence-related phenotypes of dam mutants are more difficult to interpret, and 

relevant examples are increased pedestal formation [239] and control of Shiga toxin 2 

production in dam mutants of enterohemorrhagic Escherichia coli OH157:O7 [240]. 

In bacterial pathogens where DNA adenine methylation is essential, the involvement of 

Dam methylation in pathogenesis has been tested by Dam methylase overproduction. 

Among Gamma-proteobacteria, overproducers of Dam methylase are attenuated in 

Vibrio cholerae, Aeromonas hydrophyla, Yersinia spp., and Pasteurella multocida 

[241]. Dam overproducers of Yersinia enterocolitica show enhanced invasion capacity, 

probably associated to transcriptional alterations in invasion genes and to changes in the 

composition of lipopolysaccharide (LPS) O-antigen. Furthermore, Y. enterocolitica 

Dam overproducing-strains show enhanced motility and impaired secretion of the 
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pathogenicity factors called "Yersinia outer proteins" [85], [242]. Among Alpha-

proteobacteria, overproduction of CcrM methylase decreases proliferation of Brucella 

abortus inside murine macrophages, suggesting that CcrM methylation may control 

intracellular replication, which is a hallmark of Brucella infections [243]. 

The involvement of Dam methylation in the virulence of Salmonella and other Gamma-

proteobacterial pathogens has raised the possibility of using strains lacking DNA 

adenine methylation as live vaccines. Such vaccines have been assayed indeed against 

S. enterica, Haemophilus influenzae, and Yersinia pseudotuberculosis [244]. 

Hypermutation, however, is a negative trait that may hamper the use of dam mutants as 

live vaccines, especially in humans. 

Another potential application of DNA methylation research is the use of DNA 

methylase inhibitors as antibacterial drugs [245], [246]. Because adenine methylation is 

rare or absent in mammalian cells, DNA adenine methylase inhibitors should be 

harmless for the host. In pathogens in which DNA methylation is not essential, DNA 

adenine methylase inhibitors would attenuate virulence by transforming wild-type 

bacteria into phenocopies of dam mutants. Such drugs might have broad spectrum as 

DNA methylation is essential for virulence in many bacterial pathogens. Because DNA 

methylation is dispensable in many bacterial taxa and absent in others, inhibitors of 

DNA adenine methylases should be harmless for the normal microbiota. Hence, DNA 

adenine methylation inhibitors might approach the holy grial of antibacterial therapy: 

they would be harmless for the host and efficient against the pathogen without 

impairment of the pathogen’s fitness.  

A well known inhibitor of DNA methylation is sinefungin, a naturally occurring 

nucleoside isolated from cultures of Streptomyces griseolus and S. incarnatus. 

Sinefungin is structurally related to S-adenosyl-methionine (SAM) and S-adenosyl-L-

homocysteine (SAH) [247], and exerts a potent, competitive inhibition of eukaryotic 

DNA methyltransferases [248].  
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Appendix 1 

Lipopolysaccharide (LPS) 
 
The cell envelope of Gram-negative bacteria consists of three layers: the cytoplasmic or 

inner membrane, the peptidoglycan cell wall, and the outer membrane. The outer 

membrane is highly asymmetrical: its inner leaflet consists mainly of phospholipids, 

while the outer leaflet is almost entirely composed of a particular kind of glycolipid 

known as lipopolysaccharide (LPS) [249]. 

 

 The LPS is essential for many aspects of the lifestyle of Salmonella, including 

swarming motility [250]; intestinal colonization [251]; invasion and intracellular 

replication [252]–[254]; and resistance to serum [255], [256], bile [257], and cationic 

peptides [254]. LPS is also a common receptor for bacteriophages [120]. The LPS can 

be divided in three structural regions: lipid A (endotoxin), a highly conserved 

hydrophobic molecule which serves as an anchor to the membrane; the core saccharide, 

a genus-conserved short oligosaccharide; and the O-antigen, an immunogenic molecule 

made up by a number of repeats of the same saccharide unit composed of three to five 

sugars [258], [259] (Figure I9). Most of the structural diversity of LPS is found in the 

O-antigen. Altered sugar composition, linkage, and number of O-antigen repeats lead to 

the production of many different kinds of O-antigen molecules both between and within 

bacterial strains.  
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Figure I9. A. Idealized structure of an LPS molecule. For simplicity, only four O-antigen repeat 

units are represented, but individual LPS molecules can have more than 100 O-antigen repeat units. 

B. Visualization in SDS-PAGE gel of a typical LPS structure from Salmonella enterica. The O-

antigen chain modal lengths imposed by the regulators WzzST and WzzfepE are indicated. Adapted 

from [122]. 

 

Synthesis of the O-antigen is complex and involves a large number of inner membrane 

proteins [260]. First, synthesis of a single O-antigen repeat unit linked to the lipid 

carrier undecaprenyl pyrophosphate takes place in the cytoplasmic leaflet of the inner 

membrane. The lipid-linked O-antigen unit is then flipped to the periplasmic leaflet of 

the inner membrane by the O-antigen flippase Wzx. In the periplasm, the O-antigen 

polymerase Wzy (also called Rfc in Salmonella) combines O-antigen repeat units in a 

growing O-antigen chain until preferred modal lengths conferred by O-antigen chain 

length regulators (also known as polysaccharide copolymerases or PCPs and commonly 

designated Wzz) are produced. Once the O-antigen chain is complete, it is ligated to the 

lipid A-core by the O-antigen ligase WaaL and tranported to the outer membrane 

(Figure I10) 
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Figure I10. Diagram of the synthesis of O-antigen. 1. O-antigen repeat unit synthesis on the 

undecaprenyl pyrophosphate-lipid carrier in the cytoplasmic leaflet of the inner membrane. 2. 

Flipping of the lipid-linked O-antigen subunit to the perisplasmic leaflet by the O-antigen 

flippase Wzx. 3. Transfer to the O-antigen polymerase Wzy. 4. Addition of single lipid-linked 

O-antigen subunits to the growing O-antigen chain. 5. Length regulation of the O-antigen chain 

by O-antigen chain regulators Wzz. 6. Ligation of the polymerized O-antigen chain to a lipid A-

core molecule by the O-antigen ligase WaaL. Reproduced from [261]. 

 
Visualization of LPS in SDS-PAGE gels results in a typical “ladder” structure in which 

every step reflects the addition of a single O-antigen repeat unit (Figure I9B). Different 

O-antigen chain modal lengths are easily identified within the same bacterial strain by 

increased intensity of bands of a particular size range. As already stated, O-antigen 

chain modal lengths depend on O-antigen chain length regulators. As many other 

species in the Enterobacteriaceae family [262], Salmonella enterica displays two modal 

lengths (Figure I9B): long O-antigen (16-35 repeat units) is conferred by WzzST (also 

known as Rol, Cld or WzzB) [263], and very long O-antigen (>100 repeat units) by 

WzzfepE (FepE) [262]. In the absence of both Wzz regulators, Salmonella LPS displays a 

stochastic distribution, with bands decreasing in intensity as the O-antigen chain grows 

longer. Albeit with remarkable variations in amino acid sequence, Wzz regulators share 

several structural properties: nearly all harbor transmembrane segments near the N and 

C termini and a hydrophilic α-helical periplasmic domain containing a coiled-coil 

region [264, p. 2] and display a particular set of conserved amino acid residues near the 
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N terminus [265]. Wzz regulators are known to form oligomers in a characteristic bell 

shape [266]. The mechanism for regulation of O-antigen chain length by Wzz regulators 

is not established and has been the subject to considerable debate. Depending on the 

model, Wzz regulators have been proposed to act as molecular timers that modulate the 

ability of Wzy to elongate the O-antigen chain [267], as chaperones that assemble O-

antigen synthesis machinery proteins in particular ratios [268], as scaffolds in which O-

antigen chain lengths are conferred by the number of Wzz subunits in a given oligomer 

[265] or as rulers that set O-antigen chain length by direct interaction to the O-antigen 

chain [269]. Later on, the role of changes in the structure of the growing O-antigen in 

the interaction with the Wzz regulators has been incorporated into a chain-feedback 

model [270]. A hybrid model combining ruler and chain-feedback elements has been 

recently proposed, and is supported by a large body of evidence [260]. According to this 

model, the interaction between Wzy and Wzz favors the formation of a longer O-

antigen chain by direct binding of the growing O-antigen chain to the Wzz protein. 

However, when the O-antigen chain attains a particular length, higher-order structures 

begin to destabilize the interaction with Wzz. When the O-antigen chain reaches the tip 

of the bell-shaped Wzz oligomer, the lipid-linked O-antigen is freed from the O-antigen 

synthesis complex rendering it susceptible to ligation by WaaL to form a mature LPS 

molecule. The LPS molecule is subsequently exported to the outer membrane at a 

limited number of sites, in a ribbon-like shape that is largely immobile [271]–[273], 

probably due to strong lateral interactions between LPS molecules [274], [275]. These 

interactions induce the assembly of a mechanically stable network in which the 

structure of the lipid A-core is rigid and well-defined [276] but the O-antigen is flexible 

and can adopt many conformations [277]. Ribbon-like dispositions have also been 

described for many inner and outer membrane proteins, suggesting that the whole cell 

envelope might be organized in a helical fashion [273], [278].  
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Appendix 2 

Antibiotic heteroresistance  
 
Heteroresistance is a phenomenon where subpopulations of a bacterial isolate exhibit a 

range of susceptibilities to a particular antibiotic. The first report that described 

heteroresistance was published in 1947, and described the phenomenon in Haemophilus 

influenza [279]. The term 'heteroresistance' was not used until 1970 [280]. 

Heteroresistance complicates the global crisis of resistance to antibiotics. Frequently, 

the clinical diagnostic tests are not effective in detecting a heteroresistant 

subpopulation, which goes unnoticed and conbtributing to treatment failure [281]. 

Heteroresistance in many ha been detected in both Gram-negative and Gram-positive 

bacteria [282], [283]. 

 

A relevant example is colistin heteroresistance. Polymyxin E, usually known as colistin, 

is a polycationic antibiotic that acts by replacing Ca2+ and Mg2+ in the LPS, causing loss 

of membrane integrity and cell death [284]. Colistin heteroresistance was first detected 

in 2006 in clinical isolates of Acinetobacter baumanii. Since then the number of 

publications which are reporter colistin heteroresistence in clinical isolates of different 

Gran-negatives is increasing [285]–[288]. Resistance towards polymyxins in gran 

negative bacteria can be caused by: (i) alterations in the LPS that decrease its net 

negative charge [284], [289], [290]; (ii) loss or modification of lipid A [291]; (iii) 

activation of efflux pumps [292]; and (iv) capsule shedding [293]. Heteroresistance can 

be caused by mutation [294], [295] or by gene amplification [296]. For instance, 

variations in the copy number of the pmrD gene cause colistin resistance in Salmonella 

enterica [282]. 
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The overall objective of this Thesis is the exploitation of the opvAB phase variation 

system of Salmonella enterica for the design of biological sensors. The background 

information necessary to address this goal has been provided by previous studies of our 

laboratory. The specific objectives addressed in the Thesis are as follows: 
 

1. Engineering of genetic constructs for bistable expression of heterologous genes under 

opvAB control. 

 

2. Tests of bistable expression under opvAB control in a heterologous host, Escherichia 

coli. 

 

3. Design and experimental testing of a sensor of inhibition of DNA methylation. 

 

4. Design and optimisation of opvAB-based biosensors capable of bacteriophage 

detection. 

 

5. Design of biosensors for bacteriophage receptor discrimination. 
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Bacterial strains 

Strains of Salmonella enterica and Escherichia coli used in this study are listed in Table 

1. S. enterica strains belong to serovar Typhimurium, and derive from the mouse-

virulent strain ATCC 14028. For simplicity, S. enterica serovar Typhimurium is 

routinely abbreviated as S. enterica. Unless indicated otherwise, E. coli strains derive 

from K12 MG1655 (E. coli Genetic Stock Center). 

Strain construction by targeted gene disruption was achieved using plasmids pKD3, 

pKD4 or pKD13 as templates to generate PCR products for homologous recombination 

[297]. Antibiotic resistance cassettes introduced during strain construction were excised 

by recombination with plasmid pCP20 [297]. Primers used in strain construction are 

shown in Table 2. For the construction of translational lac fusions on the S. enterica 

chromosome, FRT sites generated by excision of KmR cassettes were used to integrate 

plasmid pCE40 [298]. Transductional crosses using phage P22 HT 105/1 int201 were 

used for transfer of chromosomal markers between S. enterica strains [152]. To obtain 

phage-free isolates, transductants were purified by streaking on green plates [299]. 

Phage sensitivity was tested by cross-streaking with the clear-plaque mutant P22 H5. 

Bacteriophage P22 H5 is a virulent derivative of bacteriophage P22 that carries a 

mutation in the c2 gene [189], and was kindly provided by John R. Roth, University of 

California, Davis. Directed construction of point mutations was achieved using the 

QuikChange® Site-Directed Mutagenesis Kit (Stratagene) using the suicide plasmid 

pDMS197 [247] and propagated in E. coli CC118 λ pir. Plasmids derived from 

pMDS197 were transformed into E. coli S17-1 λ pir. The resulting strains were used as 

donors in matings with S. enterica. 

 

Restoration of O-antigen 

E.coli K12 MG1655 is unable to synthesize O-antigen due to a disruption of the wbbL 

gene, which encodes rhamnose transferase. The activity of this enzyme is necessary for 

the correct composition of the O-antigen [300], [301]. For restoration of the O-antigen, 

a DNA fragment was amplified using oligos SacI-wbbl1 and XbaI-wbbl2. The resulting 

PCR fragment was cloned onto plasmid pDMS197 [302] to obtain plasmid 

pDMS::wbbL. This plasmid was propagated in E.coli CC118 λ pir. Plasmids derived 
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from pDMS197 were transformed into E.coli S17 λ pir. The resulting strain was used as 

donor in matings with DR40 harboring a KmR cassette from pKD4. TcR transconjugants 

were selected on E plates supplemented with tetracycline. Several TcR transconjugants 

were grown in nutrient broth (beef extract, 5 g/l; peptone, 5 g/l) and plated on nutrient 

broth supplemented with 5% sucrose. Individual tetracycline-sensitive segregants were 

then screened for kanamycin sensitivity and characterized by DNA sequencing using 

external oligonucleotides of the fragment. The resulting strain, DR28, is a derivative of 

DR3. 

 

Table M1. List of strains of S. enterica and E.coli constructed  in this study. 

Strain Genotype 

S. enterica serovar Typhimurium 

ATCC 14028 Wild type 

SV6727 opvAB:gfp 

SV6729 opvAB:gfp GATC-less 

SV8499 PopvAB::lacZY 

SV8578 opvAB::gfp GATC1,2 

SV9700 PopvAB::lacZY::gfp 

SV9701 PopvAB GATC1,2::lacZY::gfp 

SV9702 PopvAB GATC-less ::lacZY::gfp 

SV9703 PopvAB::BI-aac6::gfp 

SV9704 PopvAB::D25-aac6::gfp 

SV9705 PopvAB GATC-less::BI-aac6::gfp 

SV9706 PopvAB::BI-ctxm::gfp 

SV9707 PopvAB GATC-less::BI-ctxm::gfp 

SV9716 PopvAB::lacZY 

SV9776  PopvAB::BI-aac3::gfp 

SV9777  PopvAB::gfp 

SV9792 PopvAB::D25-aac3::gfp 

SV10048 PopvAB GATC1,3::BI-aac6::gfp 

SV10049 PopvAB GATC4::BI-aac6::gfp 

E. coli 
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MG1655 Wild type 

CC118 λ pir phoA20 thi-1 rspE rpoB argE(Am) recA1 (lambda pir) 

S17 λ pir  recA pro hsdR RP4-2-Tc::Mu-Km::Tn7 (lambda pir) 

DR3 ∆lacZY 

DR22 ∆lacZY PopvAB::lacZY::gfp 

DR23 ∆lacZY PopvAB GATC1,2::lacZY::gfp 

DR24 ∆lacZY PopvAB GATC-less::lacZY::gfp 

DR28 ∆lacZY LPS+ 

DR29 ∆lacZY opvAB::gfp LPS+ 

DR30 ∆lacZY GATC-less opvAB::gfp LPS+ 

DR40  ∆IS5::km 

DR41 E. coli MG1655 PopvAB::llp::gfp 

DR42 E. coli MG1655 ∆fhuA 

 

Bacteriophages 

Bacteriophages 9NA [303], [118], Det7 [38] and HK620 [304] were kindly provided by 

Sherwood Casjens, University of Utah, Salt Lake City. Bacteriophage P22_H5 is a 

virulent derivative of bacteriophage P22 that carries a mutation in the c2 gene [189], 

and was kindly provided by John R. Roth, University of California, Davis. 

Bacteriophages Se_F1, Se_F2, Se_F3 and Se_F6 infecting S. enterica were isolated and 

purified from waste water obtained at various locations around Seville. Se_AO1 was 

isolated from a sheep farm. Se_ML1 bacteriophage was isolated and purified from 

samples taken at ponds of Maria Luisa Park in Seville (37°22'28.0"N 5°59'19.1"W). 

Additional bacteriophages were isolated using strain DR28 as host (E.coli MG1655 

∆𝑙𝑎𝑐𝑍𝑌 LPS+). Ec_Unk_EM1, Ec_Unk_EM1.1, Ec_Unk_EM2 were isolated from 

waste water from Seville, Ec_Unk_AO1 was isolated in a water sample from a sheep 

farm, and Ec_Unk_ML, Ec_Unk_ML1 and Ec_Unk_MLB were isolated from water 

samples from Maria Luisa Park, Seville. Ec_Unk_PO1, Ec_Unk_PO2 and 

Ec_Unk_PO3 were isolated from a chicken farm. A full list of phages is presented in 

table M2. 
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Table M2. List of bacteriophages used in this work. 

Bacteriophage Host Origin 
P22 S. enterica Sherwood Casjens lab 

Det7 S. enterica Sherwood Casjens lab 

9NA S. enterica Sherwood Casjens lab 

T5 E.coli MG1655 Pascale Boulanger 

Se_F1 S. enterica Seville, Spain (waste water) 

Se_F2 S. enterica Seville, Spain (waste water) 

Se_F3 S. enterica Seville, Spain (waste water) 

Se_F6 S. enterica Seville, Spain (waste water) 

Se_ML1 S. enterica Seville, Spain (Maria Luisa Park) 

Se_AO1 S. enterica Seville, Spain (Sheep farm) 

Ec_Unk_EM DR28 Seville, Spain (waste water) 

Ec_Unk_EM1 DR28 Seville, Spain (waste water) 

Ec_Unk_EM2 DR28 Seville, Spain (waste water) 

Ec_Unk_AO1 DR28 Seville, Spain (sheep farm) 

Ec_Unk_ML DR28 Seville, Spain (Maria Luisa Park) 

Ec_Unk_ML1 DR28 Seville, Spain (Maria Luisa Park) 

Ec_Unk_MLB DR28 Seville, Spain (Maria Luisa Park) 

Ec_Unk_PO1 MG1655 Cáceres, Spain (chicken farm) 

Ec_Unk_PO2 MG1655 Cáceres, Spain (chicken farm) 

Ec_Unk_PO3 MG1655 Cáceres, Spain (chicken farm) 

 

Culture media 

Bertani's lysogeny broth (LB) was used as standard liquid medium for S. enterica and E. 

coli. Solid LB contained agar at 1.5% final concentration.  

 g/l 

Tryptone 10 

Yeast extract 5 

NaCl 10 

  

EBU: rich medium used to discard the presence of lysogenic isolates after transduction. 

EBU is LB medium supplemented with the following components: 
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 ml/l 

K2HPO4 25% 10 

Glucose 50% 5 

Fluorescein 1% 2.5 

Evans Blue 1% 1.25 

 

SOB: rich medium used to grow competent cells during recovery: 

 

 g/l 

Tryptone 20 

Yeast extract 5 

NaCl 0.5 

KCl 0.19 

pH 7 Adjusted with NaOH 

After autoclaving, 5 ml of MgCl2 2M is added 

 

NCE: No-carbon essential (NCE) medium was supplemented with glucose (0.2%) or 

lactose (0.2%) after autoclaving. 

 

 ml/l 

50× NCE salts 20 

MgSO4 1M 1 

 

Antibiotics 

Antibiotic Stock concentration (mg/ml) Final concentration (µg/ml) 

Ampicillin  100 100 

Chloramphenicol  20 20 

Kanamycin  50 50 

Tetracycline 12 12 

Cefotaxime 40 40 
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Growth conditions 

S. enterica cultures were routinely grown at 37oC, and exceptionally at 30oC due to 

plasmid thermosensitivity. For microaerophilic conditions, 5 ml of bacteria were 

incubated at 37 oC without shaking in 10 ml plastic tubes.  

 

Solutions 
 

PBS 

 mM 

NaCl 1,370 

KCl 27 

Na2HPO4 · 7H2O 43 

KH2PO4 14 

pH 7.3 

 

 

NCE salts 50× 

  g 

KH2PO4 197 

K2HPO4 ·3H2O 323 

NaNH4HPO4·4H2O 175 

 

Bacterial transduction 

Lysates 
 

To prepare a bacteriophage lysate, 4 ml of bacteriophage broth was mixed with 1 ml of 

an overnight culture of the host strain. The mixture was incubated  at 37 oC with shaking 

(200 rpm) for 18 h. Bacterial debris was removed by centrifugation for 20 min at 4,500 

rpm. The supernatant was filtered with a filter 0.22 µm pore size and recovered in a 

fresh tube. 250 µl of chloroform were added, and the mix was vortexed. Lysates were 

stored at 4 oC. 
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Bacteriophage stock (Broth) 

 ml 

NB 100 

E50x 2 

Glucose 20% 1 

Bacteriophage  0.1 [109 phages/ml] 

 

 

NB: nutrient broth 

 g/l 

Yeast extract 3 

Peptone  5 

 

 

E 50× 

 g/l 

H3C6H5O7 · H2O 300 

MgSO4 14 

K2HPO4 · 3H2O 1,965 

NaNH4HPO4 · H2O 525 

 

Chemicals were added to 1 l of warm H2O following the order indicated in the table. 

Water was added to reach a total volume of 3 l. The medium was cooled and sterilized 

with chloroform. 

 

Transduction in liquid medium 
 

To carry out transductions in liquid medium, 100 µl of an overnight culture of the 

recipient strain and 10 µl of the donor strain lysate were mixed in a sterile 1.5 ml tube. 

This mix was incubated at 37°C and 200 rpm for 30-45 minutes (depending on the 

marker to be scored). The mix was then spread on selective plates that were incubated at 

37°C until colonies appeared. 
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Detection of lysogenic transductants 
 

Transductant colonies were isolated in EBU plates (with antibiotic if necessary). On 

these plates, pseudolysogens are dark-colored and P22-free colonies are light colored. 

This color difference is due to cell lysis in the pseudolysogenic colony, which causes 

acidification of the medium and turning of the pH indicator, darkening the agar. A 

transductant was considered P22-free when streaking did not give rise to any dark 

colony. 

 

P22 sensitivity assay 
 

In EBU plates, isolates that form light color colonies could be lysogens that do not 

undergo visible lysis. These isolates are P22-resistant and can be mistaken by real P22-

free isolates. To avoid this situation, an assay to detect P22-sensitive strains is 

advisable. A streak with a P22_H5 Lysate is done on an LB or EBU plate, and air-dried. 

The test strain is then streaked in a perpendicular way to the H5 streak. P22-sensitive 

strains grow until they reach the H5 streak, while P22-resistant strains grow over the 

streak. 
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DNA manipulation and transfer 

Plasmids 
Plasmids Characteristics Reference 

pKD46 Lambda Red recombinase, AmpR [297] 

pKD4 Kanamycin resistance gene flanked by FRT 

sites 

[297] 

pCP20 
FLP recombinase, temperature sensitive 

replicon at 37°C,  AmpR, CmR 
[297] 

pET20b 
T7 promoter, AmpR 

 

pET20b-

wbbl 

T7 promoter, AmpR. wbbl gene under 

constitutive expression  

[305] 

pDMS197 Contains lambda pir-dependent R6K 

replication origin; requires lambda pir-

containing bacteria strain. SacB (sucrose 

sensitivity), TcR 

  

[247] 

pDMS197-

wbbl 

TcR. Containing the wbbl gene for 

chromosome integration 

This work 

pXG1 PLtetO promoter , gfp fusion cloning vector [306] 

pXG1::llp Llp gene under constitutive expression  This work 

pIZ2224 pDMS197::PopvAB GATC1,2 [123] 

pIZ2225 pDMS197::PopvAB GATC1,3 [123] 

pIZ2226 pDMS197::PopvAB GATC1,4 [123] 

pIZ2234 pDMS197::PopvAB GATC-less [123] 
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Extraction of plasmid DNA 
For the extraction of plasmid DNA the Gen Elute™ Plasmid Miniprep Kit was used 

(Sigma-Aldrich Co., St. Louis, Missouri, USA). 

 

Extraction of genomic DNA 
For the extraction of genomic DNA, 5 ml of cells were collected from an exponential 

culture and re-suspended in 0.4 ml lysis buffer. Four µl of RNAse (10 mg/ml) were 

added and the mixture was incubated at 37°C for 30 min. After that, 20 µl of proteinase 

K (20 mg/ml) was added and the sample was incubated for 2 h at 65°C. Finally, 3 or 4 

extractions were performed with phenol:chloroform-isoamyl alcohol in a 2:1 

proportion. DNA was precipitated at -20°C by adding 1/10 volume of sodium acetate 3 

M and 2.5 volumes of ethanol. After precipitation, genomic DNA was washed with 

70% ethanol and re-suspended in 20 µl of TER buffer. 

 

Buffer lysis 

 Concentration 

Tris-HCl 50 mM pH 8 

EDTA  10 mM 

NaCl 100 mM 

SDS 0.2 % 

 

TER buffer 

 Concentration 

Tris-HCl 10 mM pH 7.5 

EDTA  1 mM pH 8 

RNAse 20 µl/ml 

 

 

Extraction of bacteriophage DNA  
For the extraction of bacteriophage DNA, the Phage DNA Isolation Kit produced by 

Norgen Biotek Corp. (Schmon Parkway, Thorold, ON, Canada) was used. 

 



Materials and methods 

 65 

Digestion, modification and ligation DNA fragments 
Restriction endonucleases were purchased from Roche Diagnostics GmbH 

(Indianapolis, Indiana, USA), New England Biolabs (Beverly, Massachusetts, USA) 

and Promega Biotech (Madison, Wisconsin, USA). 

For ligation of DNA fragments, 1U of T4 DNA ligase (1 U/ml, Roche Diagnostics) was 

used in the buffer supplied by the manufacturer. Routinely, the mixture was incubated at 

16°C for 12 h or at room temperature 24 h. 

For building plasmids with 2 or more inserts, the commercial Gibson Assembly® 

Master Mix was used following the manufacture’s instructions. 

 

Agarose DNA gel electrophoresis 
Electrophoresis in an agarose gel was used to test the quality of DNA extraction, to 

separate DNA fragments after plasmid restriction, to estimate the efficiency of 

endonuclease restriction, to confirm PCR amplification, etc. The agarose gel was 

submerged in TAE 1× buffer. Low electro endosmosis agarose (Pronadisa, Conda, 

Spain) was employed. Its concentration varied between 0.8 and 1.5% depending on the 

size of the fragments to be separated. The loading buffer used was a solution of 

bromophenol blue (0.125%) and Ficoll 400 (12.5%). 

 

The 1 Kb ladder (GIBCO BRL, Life Technologies, New York, USA) was used as 

molecular weight marker. Samples were mixed with 1/10 of loading buffer. SYBR™ 

Safe DNA Gel Stain (Invitrogen) was added to the gels to make bands visible. Gels 

were illuminated and pictures were taken with a ChemiDoc™ (Bio Rad). 

TAE 

 mM 

Tris-acetate 40 mM 

EDTA 10 mM pH 7.7 

 

 

Isolation of DNA fragments from agarose gels 
For the isolation of DNA fragments from agarose gels the commercial system Wizard® 

SV Gel and PCR Clean-Up System was used (Promega Co.). 
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Bacterial transformation 

High efficiency E. coli  transformation 
 
Competent cells were prepared using a variation of the Inoue method (Inoue et al. 

1990), which guarantees high transformation efficiency (5×107 to 5×108 transformants 

per µg of plasmid DNA). An overnight culture of E. coli DH5α was diluted 100-1000 

times in 200 ml of SOB and incubated at 22°C and 200 rpm to reach an OD600 around 

0.5. The culture was then chilled quickly on ice and kept on it for 10 min. Cells were 

harvested by centrifugation at 2,500 g and 4°C for 10 min, the pellet was re-suspended 

in 20 ml of cold TB, and 1.5 ml of DMSO was added. After a 10 min incubation on ice, 

aliquots of 0.2 ml or 0.5 ml were prepared, frozen in liquid nitrogen, and stored at -

80°C. 

For transformation, an aliquot of competent cells was slowly thawed on ice and was 

mixed with the plasmid. The mixture was incubated on ice for 30 min subjected to heat 

shock (42°C, 45 s), and cooled on ice for 1 min. One ml of LB was then added. The 

mixture was incubated at 37°C for 1 h; finally, the cells were concentrated in 100 µl and 

spread on selective media. 

 

TB 

 mM 

PIPES 10 

CaCl2 15 

KCl 250 

pH 6.7  Adjust with KOH 

MnCl2 55 

This solution was sterilized by filtration 
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E. coli and Salmonella electroporation 
 

The method was the same for E. coli and S. enterica: an overnight culture was diluted 

100 times in LB medium and was incubated at 37°C or 30°C depending on the strain to 

reach an optical density of 0.6-0.8 approx. The culture was then incubated in ice for 5 

minutes. Fifty ml were transferred to a new tube, and the cells were harvested by 

centrifugation at 4500 rpm for 10 min at 4°C. The supernatant was discarded, and the 

bacterial pellet was softly re-suspended in 5 ml of cold glycerol 10% prepared in dd 

H2O. Afterwards, 45 ml of cold glycerol were added. A second wash step was repeated 

in the same conditions. Finally, the cells were harvested and re-suspended in 250 µl of 

glycerol 10%.  

 

Electroporation was done by mixing approx. 600 µg of DNA with 60 µl of competent 

cells. The mixture was transferred to a cooled cuvette with a 2 mm distance between 

plates. The mixture was subjected to an electric discharge in the electroporator (2.5 KV, 

200 Ω and 25 µF). The electroporator employed was a BTX Electrocell Manipulator 

600 (Harvard Apparatus, Holliston, Massachusetts, USA). After the discharge, 1 ml of 

LB was added to the cells, which were then transferred to a 10 ml plastic tube and 

incubated at 37°C with shaking (200 rpm) for 1 h. Finally, the cells were concentrated 

in 100 µl and spread on selective media. 
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Construction of bacterial strains 

Oligonucleotides 
 
Name Sequence (5'-3') 

Amplification of the KmR gene from pKD4 

Operonlac-

PS1 

ATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGTAG

GCTGGAGATGCTTC 

Operonlac-

PS2 

TAGGCCTGATAAGCGCAGCGTATCAGGCAATTTTTATAATCATATGA

ATAT 

Amplification of the opvAB operon (wild type and variants) for integration in E. coli 

MG1655-

opvA 

ATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATTCATTT

GGTTATAAATAGAG 

MG1655-

opvB 

TAGGCCTGATAAGCGCAGCGTATCAGGCAATTTTTATAATGAGTTTA

TCTCTGCGCAATGT 

Amplification of gfp and CmR genes from pZEP07 

pCE40lacY-

gfp-5  

GCTTTCCCTGCTGCGTCGTCAGGTGAATGAAGTCGCTTAATAAGAAG

GAGATATACATATGAG 

pCE40-km-3 AAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTTTATCACT

TATTACAGGCGTA 

Amplification of the aac6´1b-cr gene 

opvA-BI-

aac6-F 

TCTTATGAAGAAATATACGTTCGCTAAGGAGGTTTTCTAATGAGCAA

CGCAAAAACAAAG 

opvA-D25-

acc6 

 

TTATGTGTGGGTTTTATCTTATGAAGAAATATACGTTCGCTCG

GGAGGGTTTCTAATGAGCAACGCAAAAACAAA 
 

aac6-gfp-R AAAGTTCTTCTCCTTTACTCATATGTATATCTCCTTCTTATTAGGCAT

GACTGCGTGTTC 

Amplification of the blaCTX-M-15 gene 

opvA-ctxm-

F 

TCTTATGAAGAAATATACGTTCGCTAAGGAGGTTTTCTAATGGTTAA

AAAATCACTGCG 

ctxm-gfp-R AAAGTTCTTCTCCTTTACTCATATGTATATCTCCTTCTTATTACAAAC

CGTCGGTGACGA 

Amplification of the aac3 gene 
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PopvA-BI-

aac3-F 

ATCTTATGAAGAAATATACGTTCGCTAAGGAGGTTTTCTAATGCATA

CGCGGAAGGCAATAAC 

opvA-D25-

acc3 

 

TTATGTGTGGGTTTTATCTTATGAAGAAATATACGTTCGCTCG

GGAGGGTTTCTAATGCATACGCGGAAGGCAATAACGGAGGCG 
 

GFP-aac3-R GAAAAGTTCTTCTCCTTTACTCATATGTATATCTCCTTCTTACTAACC

GGAAGGCTCGCAAG 

Deletion of the lac operon in E. coli MG1655 

Op.lac-PS1 ATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGTAG

GCTGGAGCTGCTTC 

Op.lac-PS2 TAGGCCTGATAAGCGCAGCGTATCAGGCAATTTTTATAATCATATGA

ATATCCTCCTTAG 

Verification of the deletion of the lac operon 

Op.lac-E1 GGCGCAAACTGTTAATGCTG 

Op.lac-E2 CGCAATGACCATTGAACAGG 

Deletion of IS-50 

IS50-PS1 CATGAAGCATGATGATTTGCTGACATATATTAAATATGTCGTGTAGG

CTGGAGCTGCTTC 

IS50-PS2 GATCCTGCGCACCAATCAACAACCGTATCAGAATAGATACCATATG

AATATCCTCCTTAG 

Cloning of the wbbl gene onto plasmid pDMS197 

SacI-wbbl-F AAAGAGCTCATGGTATATATAATAATCGTTTCCCACGGAC 

XbaI-wbbl-

R 

AAATCTAGATTACGGGTGAAAAACTGATGAAATTCGATC 

Verification of wbbl restoration 

Wbbl-E1 ATTCTAATAACGATGACATG 

Wbbl-E2 CGCTGAATGCTCGCGGCCTG 

Assembly of llp into pGX1 plasmid 

pXG1 RBS 

GFP F 

TAAGAAGGAGATATACATATGGCTAGCAAAGGAGAAGAAC 

pXG1- Llp-

R 

ATTTTTTCATGGTACCTTTCTCCTCTTTAATG 

Llp-F GAAAGGTACCATGAAAAAATTATTTTTAGCTATGGC 

Llp-R TGCTAGCCATATGTATATCTCCTTCTTATTAGAAAACTCCCTCGCATG 
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Construction of PopvAB::Llp::gfp 

PopvAB-BI-

Llp-F 

 

TTATGTGTGGGTTTTATCTTATGAAGAAATATACGTTCGCTAA

GGAGGTTTTCTAATGAAAAAATTATTTTTAGC 
 

GFP-Llp-R AAAGTTCTTCTCCTTTACTCATATGTATATCTCCTTCTTATTAG

AAAACTCCCTCGCATG 

opvAB gfp fusions 

PopvAB-

GFP-F2 

TCTTATGTGTGGGTTTTATCTTATGAAGAAATATACGTTCTAAGAAG

GAGATATACATAT 

STM2208sto

p-GFP-5 

CGCTAACAGAATATCGTATTGAGAAAAAGACAATGAATGACCGCGC

ATGATAAGAAGGAGATATACATATGAG 

STM2208sto

p-GFP-3 

ACTTTTACTCTTCGACACATTTCAGCGCAGAGTTTATCTCTGCGCAAT

GTTTATCACTTATTCAGGCGTA 

Cloning of an amp-sacB counterselection cassette 

opvA-

kansacB F 

TCTTATGTGTGGGTTTTATCTTATGAAGAAATATACGTTCGCTAAGG

AGGTTTTCTAATGTAGGCTGGAGCTGCTTC 

kansacB-

GFP R 

AAAGTTCTTCTCCTTTACTCATATGTATATCTCCTTCTTACATATGAA

TATCCTCCTTAGTTCC 

 

Polymerase chain reaction (PCR) 
 

For PCR reactions, a BIO-RAD T100™ Thermal Cycler thermocycler was used. PCR 

reactions were carried out with 1 ng of DNA, 100 µM of dNTPs (final concentration 

each), 1 µM of oligonucleotides, 1 mM of MgCl2, and 1 U of Taq polymerase per 

reaction in a final volume of 100 µl. The polymerase used in these reactions was Taq 

Expand™ High Fidelity PCR System supplied by Roche Diagnostics GmbH. 

To confirm clones and mutations, colony PCR was performed using Go Taq® Flexi 

DNA Polymerase (Promega Co.). In these cases, a mixture with 100 µM of dNTPs each 

one, 0.2 µM of oligonucleotides, 1 mM of MgCl2 as final concentration and 1U of Taq 

polymerase per reaction in a final volume of 25 µl was prepared. A colony was re-

suspended in this mixture and was used as DNA template. 
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Before using a PCR product in further experiments, oligonucleotides and dNTPs were 

removed using the commercial Wizard® SV Gel and PCR Clean-Up System (Promega 

Co). 

 

Chromosomal gene disruption using PCR products 
 

To obtain knockout mutants of chromosomal genes, the Datsenko and Wanner method 

was used [297]. This method is based in the λ Red recombination system. One of the 

reasons why E. coli and Salmonella are not transformable with linear DNA is due to the 

presence of intracellular exonucleases that degrade it. The λ Red system harbors 𝛼, 𝛿 

and exo genes that encode the proteins Gam, Bet and Exo, respectively. Gam inhibits 

host exonuclease V, allowing the Bet and Exo proteins to carry out recombination of the 

DNA. The strategy consists in replacing the chromosomal sequence (Figure M1) by an 

antibiotic resistance marker that is generated by PCR using oligonucleotides that harbor 

40 nucleotides of homology with the sequence to be replaced (H1 and H2 in Figure 

M2). λ Red recombination gene expression is carried out under an inducible promoter 

of thermosensitive low copy number plasmid (pKD46). After selection, the gene 

resistant marker can be removed using a different plasmid (pCP20) that harbors the FLP 

recombinase of the 2 µ plasmid from Saccharomyces cerevisiae. The FLP system acts 

over FRT repeats (“FLP recognition target”) that flank the sequence (Figure M1). 

Plasmids that harbor Red and FLP systems are thermosensitive and can be cured by 

growing the cells at 37°C. 
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Figure M1. Diagram of the inactivation system by PCR. H1 and H2 are DNA sequences 

homologous to the target. P1 and P2 are the homology sequences that flank the antibiotic gene 

sequence. Figure adapted from [297]. 

 

Preparation of DNA for substitution 
 

The plasmids used as templates in PCR reactions were pKD3 (CmR), pKD4 (KmR) and 

pKD13 (KmR). The oligonucleotides used had 40 nucleotides that were homologous to 

the genomic DNA and 20 nucleotides that were homologous to pKD3, pKD4 and 

pKD13 (Table M5). PCR reactions were carried out at an annealing temperature of 

55°C for 2 min. For the DNA fragment extension, the enzyme employed was the Taq 

Expand™ High Fidelity PCR System (Roche Diagnostics GmbH). The PCR product 

obtained was subjected to an agarose gel electrophoresis and the amplified fragment 

was purified using the commercial system Wizard® SV Gel and PCR Clean-Up System 

(Promega Co). 
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Cell transformation 
 

Competent cells of the wild type strain, which harbored the pKD46 plasmid, were 

prepared. This plasmid expresses the λ Red system under the control of the araB 

promoter, which is inducible by arabinose. Cultures grown in LB with ampicillin at 

30°C were diluted 1:100 in LB with ampicillin and arabinose (1 mM) and were 

incubated in a shaker at 30°C until they reached an OD600 of approx. 0.5. Competent 

cells were prepared, and electroporation was done as described previously. 

 

Excision of the resistance marker 
 
After the substitution of genomic genes with antibiotic resistance cassettes (Km or Cm), 

mutations were transferred to appropriate genomic backgrounds by transduction with 

P22 and selection on appropriate media. When necessary, the resistance marker of the 

host was excised by transducing plasmid pCP20 with phage P22 HT. The transduction 

mixture was incubated at 30°C for 1 h and spread on LB with ampicillin. To eliminate 

the plasmid, incubation on EBU plates without antibiotic was performed at 37°C. To 

confirm the excision of the marker, the isolates were streaked on plates of LB ampicillin 

and plates of LB with chloramphenicol or kanamycin. Excision of the antibiotic marker 

was confirmed by colony PCR using external oligonucleotides. 

 

Strain construction by transductional transfer of genetic markers 
 

Genetic markers were transferred from one strain to another by transduction. The 

recipient strain was transduced using a P22 lysate from a strain with the desirable 

genetic marker. All the markers used were selected directly by spreading the 

transduction mixture on selective media. If necessary, acquisition of the marker by the 

transductant was confirmed by PCR or phenotypic analysis. 
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Construction of lac fusions 
 

The method described by Ellermeier et al. was used to construct transcriptional and 

translational fusions (Ellermeier et al. 2002). This method allows the construction of lac 

fusions using the FLP/FRT recombination system. As described previously in the 

method developed by Datsenko and Wanner [297]), a selectable marker (e.g., conferring 

antibiotic resistance) can be inserted at any place in the bacterial chromosome. The 

insertion is flanked by two FRP sites, and the marker can be removed using the plasmid 

pCP20, that harbors the FLP system. As a result of the excision there is one FRT site 

only at the insertion place (Figure M1). This FRT site can be used to insert a plasmid 

that harbors a FRT site upstream of the lacZY genes, yielding a transcriptional or 

translational fusion, depending on the plasmid chosen. Ellermeier et al. constructed 

three different plasmids: pCE36 and pCE37 for transcriptional fusions, and pCE40 for 

translational fusions. Plasmid pCE40 lacks the ribosomal binding site of lacZ and has 

STOP codons in all the frames, except one. These plasmids harbor a Km resistant gene 

and the replication origin of R6K (which is active when the protein 𝜋 is present). 

Choice of plasmid depended on the orientation of the FRT in the original mutation 

(Figure M2). 

 
Figure M2. Diagram of construction of a lac fusion on the chromosome. As an example, 

construction of a translational fusion using the plasmid pCE36 is shown [298]. 
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Calculation of phase variation rates 

Phase variation rates were estimated as described by Eisenstein [307]. Briefly, a strain 

harboring a lacZY fusion was plated on LB+X-gal and colonies displaying an ON or 

OFF phenotype after 16 h growth at 37ºC were selected, resuspended in PBS and re-

spread on fresh LB+X-gal plates. Phase variation frequencies were calculated using the 

formula (M/N)/g where M is the number of cells that underwent phase variation, N the 

total number of cells, and g the total number of generations that gave rise to the colony. 

Flow cytometry 

Bacterial cultures were grown in LB at 37°C until exponential phase (O.D600 ∼0.3). 

Cells were then diluted in PBS to a final concentration of ∼107/ml. Data acquisition and 

analysis were performed using a Cytomics FC500-MPL cytometer (Beckman Coulter, 

Brea, CA, USA). Data were collected for 100,000 events per sample and were analyzed 

with CXP and FlowJo 8.7 software. Data are represented by a dot plot (forward scatter 

[cell size] versus fluorescence intensity). 

Growth curves 

Overnight cultures were diluted into a total volume of 200 µl per well. Plates were 

incubated at 37°C with shaking on an automated microplate reader (Synergy HTX 

Multi-Mode Reader, Biotek) and the absorbance at 600 nm was measured every 30 min 

for each well. The duration of each assay was 20 h. Assays were performed in triplicate. 

In PopvAB::lacZY assays, minimal medium NCE with lactose (0.2%) or glucose (0.2%) 

was used. In the case of antibiotic growth curves LB medium and LB medium with 

antibiotics were used.  

Electrophoretic visualization of LPS profiles 

To investigate LPS profiles, bacterial cultures were grown in LB overnight. Bacterial 

cells were harvested and washed with 0.9% NaCl. The O.D.600 of the washed bacterial 

suspension was measured to calculate cell concentration. A bacterial mass containing 

about 3×108 cells was pelleted by centrifugation. Treatments applied to the bacterial 

pellet, electrophoresis of crude bacterial extracts, and silver staining procedures were 

performed as described by Buendia-Claveria et al. [308]. 
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Phage isolation from water samples 

Samples of water were filtered using a filter Millex-GS 0.22 µm filter pore. Each 

sample was divided into two samples, and chloroform was added to one sample. The 

filtered sample of water (1 ml) was added to an overnight culture of a host bacterial 

strain (0.5 ml). The mixture was supplemented with 3.5 ml of LB and was incubated 

overnight at 37oC without shaking. The culture was then centrifuged at 5,000 rpm 

during 5 minutes. The supernatant was filtered using a 0.22 µm filter in order to save 

only phages. 

A 50 μl aliquot from an overnight culture of the target bacterial strain was spread on LB 

plates, and lysates were dropped onto the surface. The plates were left to dry and were 

inspected for lysis zones after an overnight incubation at 37°C. The spot assay was used 

to assess the bactericidal ability of the phage lysates. Isolation of phage was done by the 

double agar layer method using Salmonella or E. coli as bacterial host. Isolated plaques 

were suspended in LB and were streaked in plates which contained a bacterial layer in 

order to isolate a pure preparation of phage. Phages were characterized on the basis of 

plaque morphology and host range. Moreover, some phage genomes were sequenced 

studied by electron microscopy. 

 

Detection of phage from a crude sample of water 

A tube with 3.5 ml of LB, 0.5 ml of an overnight culture of SV6727 strain (opvAB::gfp) 

and 1 ml of a 0.22 µm filtered water sample was incubated for 7 hours in static 

condition. The culture was diluted at a ratio of 1/200 in LB medium and incubated at 

37°C under shaking (200 rpm) for 3 hours. Samples were diluted in PBS. Data 

acquisition and analysis were performed using a Cytomics FC500-MPL cytometer 

(Beckman Coulter, Brea, CA). Data were collected for 100,000 events per sample and 

analyzed with CXP and FlowJo 8.7 software. The existence of phages in water was 

checked simultaneously by plating 1 ml of water on a plate with S. enterica poured in 

soft-agar. 
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Electron microscopy 

Electron microscopy was performed at the Mediterranean Institute of Microbiology 

(IMM) facility. Phage suspensions (5 µl) were dropped onto a copper grid covered with 

Formvar and carbon and left 3 min. at 25°C, after what the excess of liquid was 

removed. Phage particles were stained according to [154] with a 2% uranyl acetate 

solution. Dried grids were then observed using a transmission microscope FEI Tecnai 

200 kV coupled to a Eagle CCS 2kx2k camera. Images were then analyzed using the 

ImageJ software. 

Bacteriophage detection  

For measurements by flow cytometry, bacterial cultures were grown at 37°C in LB (5 

ml) containing phages (100 µl of phage lysate [108-1010 PFU]). Culture was diluted 

1/100 in LB+phages and was incubated until exponential phase (O.D600 ~0.3) before 

flow cytometry analysis. 

For construction of growth curves, overnight bacterial cultures were diluted 1:100 in 

200µl LB. Five μl of a bacteriophage lysate were added (108-1010 PFU). O.D600 and 

fluorescence intensity were subsequently measured at 30 min intervals using a 

Synergy™ HTX Multi-Mode Microplate Reader from Biotek. 

Epsilometer (E) tests of antibiotic resistance 

Etest strips were purchased from bioMérieux. Mixes of overnight cultures of bacteria 

grown in MH broth were diluted 1:25 in phosphate buffered saline (PBS) to reach cell 

densities of 0.5 MacFarland or about 1.5×108 CFU/ml. Bacteria were plated onto MH 

agar plates using sterile cotton swabs dipped in the cell suspensions, and an Etest strip 

was applied on top. Plates were incubated 18 h at 37°C before reading the results and 

taking pictures. 

Population analysis profile (PAP) tests 

PAP tests were performed on MH agar plates supplemented with increasing amounts of 

kanamycin (Sigma Aldrich) as described elsewhere [309]. Five µl of overnight cultures 

in MH broth (containing approx. 3×109 cells/ml) and serial dilutions (down to 10−6) 

were spread on MH plates containing no antibiotics (for total CFU determination) or 
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different concentrations of kanamycin. The plates were incubated overnight and the 

colonies were counted. Colony numbers were plotted in a graph to determine if the PAP 

fulfilled the criteria for heteroresistance (at least 8-fold difference in antibiotic 

concentration between the highest non-inhibitory concentration and the highest 

inhibitory concentration). 

To prepare mixtures of resistant and susceptible cells, three isolated colonies of SV9776 

(PopvAB::aac3::gfp, kanamycin resistant in the ON state) and SV9777 (PopvAB::gfp, 

kanamycin sensitive) were grown overnight in 2 ml MH broth at 37°C under shaking. 

Pure cultures of each overnight or three independent sets of SV9776:SV9777 mixtures 

at proportions ranging from 1:10 to 1:10,000 were used for PAP tests. 

 

Secuencing of bacteriophage DNA 

Nextera-XT kit from Illumina was used to construct the libraries. The input DNA was 

diluted in water at a final concentration of 0.2 ng/µl, verified by Qubit dsDNA-HS 

assays. A MiSeq v2 flow cell was used to generate pair-end reads (2 x 150 bp). De novo 

assembly was achieved with SPADES using the the FASTQ files generated by the 

MiSeq sequencer. Phage genomes were then annotated with RAST 

(http://rast.theseed.org/FIG/rast.cgi). 
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CHAPTER 1: A portable epigenetic switch for 

reversible formation of bacterial subpopulation 
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Bistable expression of lacZY under opvAB transcriptional 
control 
 
The ability of the opvAB epigenetic switch to confer bistable expression to a heterologous 

locus was tested by engineering a strain that harbored the E. coli lacZY operon downstream 

of the opvAB promoter and its upstream regulatory region (Figures  C1.1A and C1.1B). To 

avoid cell-to-cell heterogeneity associated with variations in plasmid copy numbers, the 

construct was engineered in the S. enterica chromosome. Construction involved replacement 

of the opvAB coding region with a promoterless lacZY operon, leaving the opvAB promoter 

and upstream regulatory region intact. The construct harbored the opvA ribosome binding 

site (RBS). Plating of the engineered strain on LB containing X-gal yielded Lac+ (blue) and 

Lac– (white) colonies, thus revealing bistable expression of the heterologous lacZY operon 

(Figure C1.1C). Streaking of either Lac+ or Lac– colonies on X-gal agar yielded a mixture of 

Lac+ and Lac– colonies, thus indicating the occurrence of reversible bistability ("phase 

variation") as previously described for the native opvAB locus [309].  

Calculation of phase variation frequencies indicated a frequency of 1.1 × 10-4 ± 0.3 per cell 

and generation for the OFF®ON transition, and 3.4 ± 0.1 × 10-2 per cell and generation for 

the ON®OFF transition. The 300-fold difference between switching rates was two fold 

lower than in the native opvAB locus (OFF ® ON, 6.1 ± 1.7×10-5; ON ® OFF 3.7 ± 

0.1×10-2; 600-fold difference between switching rates)[115]. Increased size of the LacON 

subpopulation may result from multiple factors including potential differences in mRNA 

stability and codon usage constraints. 

Variants of the opvAB::lacZY construct were engineered to further explore the ability of 

opvAB-driven transcription to confer bistable expression to a heterologous locus. One such 

variant involved the use of a mutant opvAB regulatory region lacking GATC sites 1 and 2 

(GATC1,2), previously shown to increase the size of the OpvABON subopulation[310]. As 

expected, a higher proportion of Lac+ colonies were detected (Figure C1.1C). Another 

variant, used as control, lacked all opvAB GATC sites (GATC-less) and locked lacZY 

transcription in the ON state (Figure C1.1C) as previously described for the native opvAB 

operon [115].  

Variants carrying a green fluorescent protein gene (gfp) downstream of the lacZY operon 

were also engineered, and assessment of subpopulation sizes by flow cytometry confirmed 

that the LacON subpopulation formed by the wild type opvAB switch was smaller than that 
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formed by the GATC1,2 variant (Figure C1.1D). Furthermore, only cells in the 

OpvAB::LacZYON state were detected in the strain that harbored the GATC-less construct, 

and subpopulation formation was abolished as above (Figure C1.1D). 

The ability of the opvAB switch to permit selection of one of the subpopulations was 

examined by testing the ability of strains carrying opvAB::lacZY::gfp and opvAB 

GATC1,2::lacZY::gfp constructs to grow in minimal medium with lactose as sole carbon 

source. As above, a strain carrying the GATC-less opvAB::lacZY::gfp construct was 

included as a control. Assessment of the growth patterns of the strains under study revealed 

that the time required for culture saturation was dependent on the size of the 

OpvAB::LacZYON subpopulation present at the start of the culture (Figure C1.1E). 

Reversibility of the OpvAB::LacZYON state was confirmed by growth on NCE-glucose 

(Figure C1.1F).  
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Figure C1.1. Formation of LacZYOFF and LacZYON subpopulations under opvAB control. A. 

Diagram of the opvAB promoter and regulatory region, with the GATC sites outlined. B. Diagram of the 

wild type opvAB operon and the PopvAB::lacZY construct. C. Colonies formed on LB + X-gal by a S. 

enterica strain carrying the lacZY operon under the control of the wild type opvAB control region 

(SV9700, left), and by S. enterica strains carrying the lacZY operon under the control of mutant opvAB 

control regions (SV9701, PopvAB GATC1,2::lacZY::gfp, center; SV9702, PopvAB GATC-less::lacZY::gfp, 

right). D. Flow cytometry analysis of PopvAB::lacZY expression in strains SV9700, SV9701 and SV9702. 

The sizes of LacZYON subpopulations are indicated. E. Growth of strains SV9700, SV9701 and SV9702 

in NCE-lactose. F. Reversible formation of LacZYOFF and LacZYON subpopulations under opvAB control 

in strain SV9700. 

 

Bistable expression of the chimaeric opvAB::lacZY operon in a 

heterologous host, E. coli 
 
The ability of the opvAB switch to operate in a heterologous host was tested in E. coli. For 

this purpose, the opvAB::lacZY::gfp construct and its GATC1,2 and GATC-less variants were 

introduced into the chromosome of E. coli DR3 (ΔlacZY). Strains carrying the 

opvAB::lacZY::gfp and opvAB GATC1,2::lacZY::gfp constructs (DR22 and DR23, 

respectively) formed Lac+ and Lac– colonies on X-gal agar plates, and the number of Lac+ 
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colonies was higher in the strain carrying the opvAB GATC1,2::lacZY::gfp construct. The 

strain carrying the GATC-less construct (DR24) formed Lac+ colonies only (Figure C1.2A). 

Flow cytometry assessment of gfp expression upon growth in LB confirmed the occurrence 

of subpopulations of LacOFF and LacON cells in the strains carrying the opvAB::lacZY::gfp 

and opvAB GATC1,2::lacZY::gfp constructs but not in the strain carrying the GATC-less 

construct (Figure C1.2B). Altogether, these observations indicated that the opvAB switch is 

functional in E. coli. 

 

Figure C1.2. Formation of LacZYOFF and LacZYON subpopulations under opvAB control in E. coli. 

A. Left: Colonies formed on LB + X-gal by an E. coli strain carrying the lacZY operon under the 

control of the wild type opvAB control region (strain DR22). Center and right: Colonies formed on 

LB + X-gal by E. coli strains carrying the lacZY operon under the control of mutant opvAB control 

regions (DR23 and DR24). B. Flow cytometry analysis of opvAB::lacZY expression in strains DR22, 

DR23 and DR24. The sizes of LacZYON subpopulations are indicated. C. Growth of strains DR22, 

DR23 and DR24 in NCE-lactose.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2: Design and optimization of an epigenetic 

switch for the study of antibiotic heteroresistance 
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Bistable expression of antibiotic resistance genes under opvAB 
control 
 

An additional test of the ability of the opvAB bistable switch to generate bacterial 

subpopulations was performed by cloning antibiotic resistance genes downstream of the 

opvAB promoter in the S. enterica chromosome. The antibiotic resistance genes chosen for 

these experiments were aac3-Ib (henceforth, aac3) and aac(6’)-Ib-cr (henceforth, aac6), 

which encode aminoglycoside acetyl transferases [311], and blaCTX-M-15 (henceforth, ctxM), 

which encodes an extended-spectrum β-lactamase [312]. In these constructs, the native 

ribosome binding sites were replaced with a stronger RBS, named BI [313] to adjust the 

sensitivity of the switch to a level that could permit unambiguous detection of the antibiotic 

resistance phenotype under study, thus facilitating discrimination between OFF and ON 

cells. Experiments with strains carrying PopvAB::aac6::gfp and PopvAB::ctxM::gfp fusions 

(strains SV9703 and SV9706, respectively) yielded bacterial subpopulations resistant to 

kanamycin and to cefotaxime, respectively (Figure C2.3A). Controls using strains that 

constitutively expressed acc6 and ctxM (SV9705 and SV9707, respectively) showed that the 

concentrations of antibiotics used permitted growth (Figure C2.3A). The wild type strain 

ATCC 14028 failed to grow under such conditions, confirming that the concentrations of 

antibiotics used were bactericidal. 

Flow cytometry analysis confirmed that growth in the presence of kanamycin and 

cefotaxime was a consequence of subpopulation selection (Figure C2.3B), excluding the 

idea that growth might result from selection of mutants present in the inoculum. This 

conclusion was further strengthened by the observation that growth in LB restored the initial 

sizes of ON and OFF subpopulations (Figure C2.3B). 
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Figure C2.1 A. Growth of strains SV9703 (PopvAB::aac6::gfp), SV9705 (PopvAB GATC-less::aac6::gfp) 

SV9706 (PopvAB::ctxM::gfp) and SV9707 (PopvAB GATC-less::ctxM::gfp) in LB and in LB + antibiotic 

(kanamycin and cefotaxime, respectively). B. Left: reversibility of formation of KmS and KmR 

subpopulations under opvAB control. Right: reversibility of formation of CtxMS and CtxMR 

subpopulations.  

 

Use of OpvAB synthetic switches for modulation of 

exponential growth 
 

A strain carrying the construction PopvAB::aac6 showed phase variation as described 

above. In this strain, the opvAB promoter drives the expression of aac6, which encodes 

an aminoglycoside acetyl transferase. Thus, the Aac6ON subpopulation is able to grow in 
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presence of kanamycin. Because mutations in GATC sites of the opvAB promoter alter 

OFF and ON subpopulation sizes, we tested whether strains carrying these mutations 

showed different growth patterns in the presence of kanamycin. Relevant observations 

were as follows: 

(i) A strain carrying the construction PopvAB::aac6 reached a density of 0.6 in LB + 

kanamycin after 524 min, while strains carrying GATC1,3 , GATC4  and GATC1,2,3,4  

mutations reached the same absorbance after 428, 356 and 300 min, respectively. An 

interpretation is that the growth rate is higher when the ON subpopulation is larger. 

Because the conversion rate from the ON state to the OFF state is much higher than the 

conversion ratio from OFF to ON, during growth in the presence of kanamycin most of 

the offspring switch to the OFF state and therefore die by the antibiotic effect. The 

slowdown of growth is thus explained by death of cells in OFF state. In other words, 

growth in the presence of kanamycin is slower or faster depending on the ON 

subpopulation size. 

 

Figure C2.2. Growth of strains SV9703 (PopvAB::BI-acc6::gfp), SV10048 (PopvAB GATC1,3::BI-aac6::gfp) 

SV10049 (PopvAB GATC4::BI-aac6::gfp) and SV9705 (PopvAB GATC-less::acc6::gfp) in LB + kanamycin.  

Time each strain takes to reach an optical density of 0.6 in the presence of kanamycin represented in a bar 

chart.  
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Use of different ribosome binding sites (RBS) to optimize gene 

expression 
 
The opvAB operon in OFF state has a basal expression that is difficult to detect in the 

native opvAB operon (in other words, OFF cells are truly OFF). However, basal 

expression can be detected in other constructs: for instance, when the opvA and opvB 

genes are replaced with other genes such as the aminoglycoside resistance gene aac6 

(Figure C2.3), OFF cells show some degree of kanamycin resistance which may blur 

the difference between OFF and ON cells. This problem was overcome by modification 

of the ribosome binding site. In an initial trial, we cloned the aac6 gene downstream of 

the opvAB promoter, the BI RBS and the first (5') 20 nucleotides of opvA. For 

replacement of the aac6 ribosome binding site, we used information described by 

Mutalik et al. on RBS optimization [313]. Because the BI ribosome binding site is 

strong and the Etest allows to discriminate small differences in antibiotic resistance 

levels, basal expression of aac6 gene in the OFF population was high enough to change 

the resistance level of the OFF subpopulation by increasing its MIC over that of the 

wild type lineage. This construct was therefore useless. 

In order to reduce the translation rate of aac6 RNAm, a second construction was 

designed using a weaker RBS named D25 [314]. Because D25 is not a strong RBS, 

translation is decreased and the basal expression of aac6 in the OFF subpopulation is 

not enough to produce the protein concentrations that permit phenotypic change. The 

adjustment of RNAm translation in order to obtain the desired OFF phenotype 

counteracting the effects of the basal expression of the OFF state might help to adjust 

the phenotype depending on the use. In the tests shown in Figure C2.3, the wild type 

strain ACC14028 showed a MIC about 1.5 μg/ml. The strain carrying the construction 

PopvAB::BI-aac6 showed phase variation where the OFF subpopulation presents a MIC 

up to 8 μg/ml. In the case of PopvAB::D25-aac6, the strain showed two resistance levels, 

confirming the existence of phase variation: an OFF subpopulation with MIC about 1.5 

μg/ml, like in the case of the wild type strain, and an ON subpopulation with a MIC of 

about 16 μg/ml. Note that in a strain carrying the PopvAB::BI-aac6 construct the MIC of 

the ON subpopulation exceeds the upper limit of detection of the Etest.  
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Figure C2.3. A. Diagram of the PopvAB::aac6 construct with RBS variants (BI, D25). B. 

Epsilometer tests (Etests) from a wild type strain and SV9704 (D25) and SV9703 (BI). 

 

Use of the OpvAB synthetic switch in generating antibiotic 

heteroresistance 
 

As a proof of concept, we made a preliminary, reductionist examination of the utility of the 

OpvAB switch to address the study of antibiotic heteroresistance. Specifically, we tested 

whether the OpvAB switch could generate, in a susceptible main population, defined 

subpopulations of cells with increased antibiotic resistance. For this purpose, we used a S. 

enterica strain harboring a PopvAB::BI-aac3::gfp construct (SV9776). Expression of aac3 

(Aac3ON) leads to kanamycin resistance (KmR). The frequency of KmR cells formed by a 

pure culture of SV9776 was 1x10-2 (Figure C2.4A), similar to the frequency of ON cells 

B 
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detected when gfp was cloned behind the opvAB promoter (1.1% and 1.1x10-2, respectively: 

Figure C2.1D). To obtain smaller subpopulation sizes without altering other phenotypic 

traits of the strain, SV9776 was mixed with an isogenic strain that expressed PopvAB::gfp 

(SV9777) and did not produce any KmR resistant subpopulation. Mixtures of cells were 

prepared from overnight cultures in Mueller-Hinton (MH) broth at proportions 1:10, 1:100, 

1:1000, 1:10,000 and 0:1. Population analysis profile (PAP) tests were then performed by 

plating on MH agar containing increasing concentrations of kanamycin. After overnight 

incubation, the number of resistant cells and total number of cells were determined to allow 

calculation of the fraction of resistant cells. The numbers of KmR colonies detected in the 

PAP tests were proportional to the amounts of the Aac3ON subpopulations present in each 

mixture, and ranged from 1x10-2 to 1x10-6 (Figure C2.4A). Epsilometer tests (Etests) further 

confirmed that the size of the KmR subpopulation decreased in a manner proportional to 

dilution (Figure C2.4B). 

 
Figure C2.4. The opvAB epigenetic switch as a tool for the study of antibiotic heteroresistance. A. 

Population analysis profile (PAP) tests of kanamycin resistance in strains SV9776 and SV9777 

(carrying opvAB::BI-acc3::gfp and opvAB::gfp constructs, respectively). The proportions indicated 

are those of the mixtures of SV9776:SV9777. Error bars represent standard deviations of three 

independent mixes. B. Epsilometer tests (Etests) performed on the same mixes of SV9776 and 

SV9777. 
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Design and study of synthetic switches with clinical antibiotics 
 

Aminoglycoside (AG) antibiotics are used to treat many Gram-negative and some 

Gram-positive infections and, importantly, multidrug-resistant tuberculosis. Among 

various bacterial species, resistance to AGs arises through a variety of intrinsic and 

acquired mechanisms [315]. Two new synthetic switches were designed in order to test 

them against different aminoglycosides. The two RBS previously described (BI, D25) 

were cloned upstream of the acc3 gene yielding strains SV9776 and SV9792, 

respectively. The aminoglycosides assayed were kanamycin, streptomycin, gentamicin, 

amikacin, netilmicin and tobramycin. MICs for different strains and antibiotics, shown 

in Table C2.1, reveal the cases in which the OFF subpopulation presents a MIC similar 

to the wild type and the ON subpopulation presents a significant increase in resistance 

to the antibiotic.  

 

 

Table C2.1. Etest values on MH (1:10 dilution) for wild type S.enterica, SV9777, SV9776 and 

SV9792.  

 

Further study was focused on those antibiotics for which an antibiotic resistant 

subpopulation was detected: kanamycin, tobramycin and netilmicin. Initially, the 

resistance to these three antibiotics was monitored by Etests which permitted 

determination of the MIC and detection of the presence of an ON subpopulation more 

resistant to the antibiotic. Additional assays were performed by PAP tests (Figure 

C2.5). 
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Figure C2.5: Population analysis profile (PAP) tests and Etests of kanamycin (A), tobramycin (B) 

and netilmicin (C) resistance in strains SV9776, SV9792 and SV9777 (carrying PopvAB::BI-

acc3::gfp, PopvAB::D25-aac3::gfp constructs and PopvAB::gfp, respectively).  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3: Design and optimization of bacterial 

biosensors able to detect bacteriophages in raw 

environmental samples 
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Proof of concept using characterized bacteriophages 
 

Based on results published by Cota and collaborators [114], we foresaw that the opvAB 

phase variation operon could be used as a bacteriophage biosensor. Indeed, the 

OpvABOFF subpopulation was shown to be killed by bacteriophages that belonged to 

different families and used LPS for infection, leading to enrichment of the OpvABON 

subpopulation. This population is insensitive to such infections due to the shortening of 

its LPS by the opvAB gene products. Thus, if an opvAB::gfp fusion was used, 

enrichment of OpvABON cells could be detected by increased fluorescence intensity 

[114]. To start with, we wanted to compare the efficiency of two different methods of 

fluorescence detection, flow cytometry and plate reader monitoring, to detect 3 different 

bacteriophages known to use LPS for infection. As shown in Figure C3.1A, flow 

cytometry turned out to be not only very sensitive but also descriptive of the bacterial 

population with the quantification of its heterogeneity. In contrast, fluorescence 

detection using a plate reader only provided a rough assessment of the population 

structure (Figure C3.1B). On the other hand, fluorescence detection using a plate reader 

does not necessitate a high-cost machine such as a flow cytometer and has the 

advantage to give a measure according to the OD600 of the culture. Our standard 

protocol for phage detection by flow cytometry includes 8 h of incubation to ensure that 

phages kill the vast majority of OpvABOFFcells thus leading to the enrichment in the 

OpvABON population. However, thanks to the sensitivity of this technique, 

measurements can be done earlier than 8 h. As depicted in Figure C3.1C, incubation 

for 1 or 2 h after dilution into fresh medium in the presence of P22_H5 led to 2.6% and 

11.3% of positive cells respectively. Since flow cytometry is highly reproducible, these 

levels are sufficient to discriminate a OpvABON subpopulation from the background 

level of cells that passed the fluorescence threshold in the absence of phage (0.23%) 

(Figure C3.1C). These experiments thus validated the proof-of-concept of a fluorescent 

biosensor for the detection of LPS-using bacteriophages based on a modified version of 

the opvAB operon. 
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Figure C3.1. Detection of the increased of fluorescence intensity when ON-subpopulation is 

selected by bacteriophages. A. GFP fluorescence distribution in a ATCC 14028 derivative strain 

(SV6727) carrying an opvAB::gfp fusion (SV6727) before (t = 0 h) and after growth in LB without 

phage, or in the presence of either P22_H5, 9NA, or Det7 (t = 8 h). Data are represented by a dot 

plot (side scatter versus fluorescence intensity [ON subpopulation size]). All data were collected for 

100,000 events per sample. B. Growth curves of SV6727 strain in contact with P22_H5, Det7 or 

9NA phage. Data are represented by growth curves [GFP fluorescence intensity] versus growth 

[OD600]. C. GFP fluorescence distribution of SV6727 strain before (t = 0 h) and after growth in LB 

containing Det7 (t = 1 h or 2 h). 
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Detection of uncharacterized bacteriophages 
 

To go further with the phage detection tool, we decided to isolate and purify various S. 

enterica-infecting bacteriophages and test whether they could be detected without 

previous characterization of the phage receptor. Indeed, a phage that would need a 

functional and extended LPS should kill the OpvABOFF subpopulation as the known 

phages did. In contrast, S. enterica OpvABOFF cells should resist to the killing by a 

phage that would not need such LPS. Various phages were enriched, isolated and 

partially characterized from different environments in the Seville area as described in 

the Methods section. Without going deeper into the characterization of those phages, the 

plaque morphologies (not shown), and even more the images obtained after negative 

staining by TEM indicated that the 6 isolated phages were different from each other 

(Figure C3.2A). The 6 of them were assayed by flow cytometry for detection using the 

opvAB::gfp fusion. Interestingly, all 6 were perfectly detected 8 hours post-infection 

with more than 60% of the cells in the ON state (Figure C3.2B). This proportion 

reached up to 90% for three individual phages (Se_F1, Se_F6 and Se_AO). In contrast, 

Se_F3 and Se_ML killed the OpvABOFF subpopulation only partially. A conclusion 

from these experiments was that the opvAB::gfp fusion provides an efficient tool to 

detect unknown LPS-using bacteriophages of S. enterica. The variations observed 

between the different flow cytometry profiles could be due to a difference in the usage 

of the LPS as a receptor for those phages as discussed below.  
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Figure C3.2. Detection of new bacteriophages. A. GFP fluorescence distribution in strain SV6727 

(opvAB::gfp) before (t = 0) and after growth in LB containing new purified bacteriophages (Se_F1, 

Se_F2, Se_F3, Se_F6, Se_ML and Se_AO) after 8 h. Data are represented by a dot plot (side scatter 

versus fluorescence intensity [ON subpopulation size]). The percentage of ON cells in each sample 

is indicated. All data were collected for 100,000 events per sample. B. Negative staining of 

bacteriophages visualized by electron microscopy. 
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An especially appealing objective of the present tool is to use opvAB::gfp fusion to 

detect bacteriophages in crude samples and before any enrichment step (in other words, 

before processing). Different crude water samples collected in the Seville area were 

assayed for the presence of phages in the presence of the biosensor strain for 10 h 

before analyzing the resulting populations by flow cytometry. Among the four samples 

tested, three (EM1, EM2 and EM3) displayed a significant increase in GFP activity, 

indicating that indeed these samples contained bacteriophages using LPS for infection 

(Figure C3.3). This conclusion was confirmed by plaque assay (not shown). One 

sample (AO) did not show increase of the OpvABON subpopulation, which suggested 

that the sample did not contain any LPS-using phage active against S. enterica. 

Alternative explanations were that the sample might contain a phage inhibitor or that 

phage present in the sample infected both OpvABON and OpvABOFF S. enterica. 

Taken together these results prove that our opvAB-based fluorescent biosensor can 

efficiently detect the presence of LPS-using bacteriophages in environmental samples 

without any pre-processing other than incubation with the biosensor. 

 

 
Figure C3.3. Detection of bacteriophages from crude water samples. GFP fluorescence 

distribution in SV6727 (opvAB::gfp) before and after growth in LB for 10 hours in the presence of 

crude water previously filtered. Data are represented by a dot plot (side scatter versus fluorescence 

intensity [ON subpopulation size]). The ON subpopulation percentage is shown for each sample. 

Data were collected for 100,000 events per sample. The presence of bacteriophages was previously 

verified by a plaque assay (20-30 PFU /ml) on a S. enterica lawn. 
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Sensitivity of the phage detection tool 
 
To characterize the limits of the phage detection tool, 9NA was used (Figure C3.1). We 

first determined the detection limit in a fluorescence plate reader by using serial 

dilutions of 9NA. As shown in Figure C3.4A, only the most diluted sample, equaling to 

10 PFU/ml, could not be distinguished from the control experiment with no phage. 

Therefore, using a fluorescence plate reader, as little as 100 PFU/ml could be detected. 

Interestingly, the curves obtained in the presence of effective amounts of phage show an 

interesting profile. In the first five hours, the global tendency was an increase of the 

whole population (OpvABON and OpvABOFF), followed by a rapid decrease (Figure 

C3.4A, Inset). Five hours post-infection, the bacterial growth resumed more or less 

rapidly depending on the amount of phage initially present in the culture. As expected, 

the fluorescence intensity correlated with growth only when samples were initially 

infected with 9NA (≥100 PFU/ml) (Figure C3.4A), indicating that only the ON 

subpopulation grew under these conditions. This was confirmed by the fact that the 

highest fluorescence intensity was reached in the presence of the highest amount of 

phage, which killed the OpvABOFF subpopulation more efficiently. As expected, 

without initial phage infection (or with phages ≥ 10 PFU /ml) essentially no increase of 

fluorescent was correlated to bacterial growth, indicating that mainly the OpvABOFF 

population accounts for bacterial growth. Based on this experiment, we tentatively 

concluded that strong, dose-dependent fluorescence intensity was reached 10 hours post 

infection (Figure C3.4A, Inset). In order to test those parameters using flow cytometry, 

the same serial dilutions of phages were applied for 10 h and enrichment of the 

OpvABON subpopulation was monitored. At variance with the plate reader experiment, 

except the 1 PFU/ml, all the phage concentrations tested were able to enrich the ON 

subpopulation (Figure C3.4B). Moreover, above a concentration 102 PFU, a linear 

correlation was observed between the phage concentration and the OpvABON 

subpopulation size, which could be used as a calibration curve to determine phage 

concentration in a given sample. Hence, the phage biosensor appears to be highly 

sensitive and can detect as little as 10 PFU/ml. 
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Figure C3.4. Sensitivity of the OpvAB phage biosensor. A. Growth curves of SV2767 strain 

(opvAB::gfp) in contact with serial dilutions of phage 9NA starting from 106 up to 101 PFU/ml. 

Data are represented by growth curves showing OD600 versus time [hours], and fluorescence 

intensity [ON subpopulation size] versus growth [OD600]. B. GFP fluorescence distribution in 

SV6727 before (t = 0) and after growth (t = 10 h) in LB containing serial dilutions of 9NA 

phage starting from 106 up to 100 PFU/ml. Data are represented by a dot plot (side scatter versus 

fluorescence intensity [ON subpopulation size]). All data were collected for 100,000 events per 

sample.  
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Optimization of the detection tool 
 

Our next objective was to improve the detection limits of our biosensor. As we noticed 

that killing of the OpvABOFF subpopulation (and thus selection of the OpvABON 

subpopulation) was more efficient in the presence of a high number of phages 9NA 

(Figure C3.4A), we aimed at improving the method by adding less cells to increase the 

ratio phage / biosensor. Indeed, the more diluted were the cells, the smaller number of 

phages that could be detected (Figure C3.5A). It is remarkable that for the smallest 

dilution of the overnight culture, the concentration of phages detected using a 

microplate reader was around 4.105 PFU/ml, whereas as little as 4 PFU/ml were 

detected using a higher dilution of the biosensor (equivalent to 8.8×104 cells/ml, 

corresponding to about 17,600 ON cells), thus increasing 5-log the detection limit when 

the number of cells decreased 3-log only.  

Another improvement originated from earlier work showing that opvAB expression 

increased when specific GATC sites present in the promoter region were mutated [114], 

[115]. Indeed, when the opvAB::gfp GATC1,2 construct was used as a biosensor for 

phage 9NA, the fluorescence increased faster than with the construct bearing the wild-

type promoter and reached a plateau in about 10 h (Figure  C3.5B, Inset). Interestingly, 

the largest difference was observed around 7 h post-infection. 

 

We then combined both improvements (low cell density and mutations in GATC sites) 

to reach an even lower detection limit. The experiment described in Figure C3.5C was 

performed in two steps. First, we used as little as eight 9NA phages diluted into 500 ml 

of LB containing a dilution (1/10) from an overnight culture of the biosensor strain and  

let the phage enrichment proceed for 15 h. Then the mixture was diluted again into fresh 

medium to let the OpvABON subpopulation enrich for 5 h before the flow cytometry 

assay. It is remarkable that this extremely small initial number of phages was able to 

enrich the ON subpopulation up to 86.5% under the conditions described (Figure 

C3.5C), thus lowering the detection level to about 1.6 phages per 100 ml. As a 

reminder, before optimization the detection limit with flow cytometry was 1000 

PFU/100 ml. 
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Figure C3.5. Improving the opvAB biosensor sensitivity. 

A. Bacterial dilutions (10-1 up to 2×10-4) where grown in the presence of serial dilutions of 

bacteriophages 9NA stock as indicated. Bacterial growth was monitored according to time in a 

microplate reader and represented schematically. The green wells are fluorescence positive, and red 

wells are fluorescence negative. 

B. Growth curves obtained for a wild type strain carrying the classical gfp fusion (SV6727) in the 

absence of phage (green), or in the presence of 9NA phage (blue), and for a derivative strain 

carrying point mutations in the first and second GATC sites located in the opvAB promoter 

(SV8578) in the presence of 9NA phage (red). Fluorescence intensity data obtained at several time 

points of the growth curve (inclusion). 

C. GFP fluorescence distribution in SV8578 (opvAB::gfp GATC1,2) before (t = 0 h) and after growth 

in LB containing 9NA phage (t = 20 h). Data are represented by a dot plot (side scatter versus 

fluorescence intensity [ON subpopulation size]). All data were collected for 100,000 events per 

sample.  
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Design of a biosensor able to detect coliphages  
 

Up to this point, the design and improvement of the phage biodetection method was 

performed using S. enterica as a chassis. To widen our capacity to detect phages in 

environmental samples, we decided to adapt the biosensor to coliphages. To do so, we 

first had to restore a full length LPS as E. coli K12 MG1655 is well-known to carry an 

IS5-interrupted version of the wbbL gene encoding a rhamnosyltranferase [305]. This is 

clearly evidenced by the length and profile of the LPS following extraction, separation 

by SDS-PAGE and silver staining is affected in MG1655 (Figure C3.6A, lane 1). The 

interrupted wbbL gene was complemented either by adding a plasmid-based copy of 

wbbL or by integrating ectopically a single copy of the wild type gene. In both cases, 

the LPS was restored and showed a more complex profile (Figure  C3.6A, lanes 4 and 

5). Engineering of strains carrying a opvAB::gfp fusion on the chromosome allowed us 

to examine the consequences of opvAB expression in E.coli. A wild type opvAB control 

region caused a subtle alteration of the LPS profile, an observation consistent with the 

small size of the ON subpopulation (Figure C3.6A, lane 6). Modification of the length 

distribution of glycan chains in the O-antigen was however unambiguous when the 

LPS+ E.coli strain harbored a GATC-less opvAB::gfp fusion (Figure C3.6A, lanes 6 

and 7).  

Using the opvAB::gfp-carrying LPS+ E. coli strain, we isolated and purified 7 

coliphages from water samples from the Seville area. As shown in Figure C3.6B, seven 

of the coliphages were able to select the OpvABON subpopulation with an enrichment 

efficacy ranging from 11.2 to 58.6%, far higher than the control without phage (1.27 

%). Again, this difference could substantiate the use of the LPS as a primary receptor or 

as a full receptor for the isolated coliphages except for Ec_unk_PO1 whose profile does 

not distinguish from the negative control. 

Whatever the case, this experiment shows that the method works alike in E. coli as in S. 

enterica and that the opvAB::gfp fusion is a versatile tool that could be used with 

different enterobacterial chassis. 
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Figure C3.6. Restoration of E. coli MG1655 O-Antigen and detection of unknown coliphages. 

A. Electrophoretic visualization of LPS profiles from different MG1655 derivatives, as follows:  

1. Wild type E. coli MG1655 strain containing an IS5-inactivated version of the wbbl gene; 2. E. coli 

MG1655 with a deletion of the lactose operon (DR3); 3. E. coli DR3 strain carrying the empty pETb 

vector; 4. E. coli DR3 strain carrying the pETb vector containing a copy of the wild type wbbL gene; 
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5. E. coli E. coli DR3 strain carrying the wbbL gene integrated into the genome replacing the altered 

IS5-wbbl gene (LPS+ strain); 6. E. coli MG1655 LPS+ carrying the opvAB construction (DR29 

strain); 7. E. coli MG1655 LPS+ opvAB GATC-less (DR30).  

B. GFP fluorescence distribution in E. coli DR29 derivative before (t = 0 h) and after growth in LB, 

or LB containing purified uncharacterized bacteriophages (Ec_Unk_EM1, Ec_Unk_EM2, 

Ec_Unk_EM3, Ec_Unk_AO1, Ec_Unk_ML, Ec_Unk_ML1 and Ec_Unk_MLB (t = 8 h). Data are 

represented by a dot plot (side scatter versus fluorescence intensity [ON subpopulation size]). ON 

subpopulation percentage frequency is showed for each sample. All data were collected for 100,000 

events per sample.  

 

Expanding the opvAB::gfp biosensor to the detection of 

phages using proteins as receptors: Bacteriophage T5 

detection as a proof of concept  
 

As we have seen that coliphage detection could show high variation (Figure C3.6B), 

probably depending on the receptor molecule used for recognition at the surface of the 

bacteria, we decided to design an E. coli biosensor that would specifically detect a 

phage known to bind a protein. Phage T5 is an appropriate model: although it uses LPS 

for initial adsorption, binding to the ferrichrome transporter FhuA on the outer 

membrane constitutes the trigger for DNA injection [316], [317]. We first thought to 

make a simple PopvAB::fhuA::gfp fusion, but that would have provided us with a 

biosensor working the opposite way from the opvAB::gfp biosensor. Indeed, in this case 

the presence of T5 would select for the OFF (non-fluorescent) subpopulation, and it 

would mean we should be able to detect a slight decrease in fluorescence, which can be 

expected to be less reliable than monitoring an increase of fluorescence intensity. We 

thus looked for a gene which under the control of the opvAB promoter would confer 

resistance to T5 in the ON state. Interestingly, T5 encodes a lipoprotein, encoded by the 

llp gene, which is an inhibitor of T5 infection [318]. Llp is synthesized upon T5 

infection and prevents superinfection of the host by other T5 virions by interacting with 

the FhuA receptor, resulting in its inactivation [319]. Moreover, the llp phage gene is 

expressed in the early stage of T5 infection, which not only prevents superinfection but 

also protects progeny phages from being inactivated by the receptor present in envelope 

fragments of lysed host cells [209]. We thus reasoned that placing the llp gene under the 

control of the opvAB promoter might confer resistance to T5 only on the ON state. As 
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expected from the literature, a DfhuA strain proved resistant to T5, but not to T4, which 

uses OmpC as receptor [320] (Figure C3.7A). In turn, ectopic expression of llp from a 

plasmid also confers resistance to the E. coli MG1655 WT strain as in the DfhuA 

mutant. We thus integrated a PopvAB::llp::gfp fusion at the lac locus in E. coli MG1655 

and assayed this new biosensor with T5 for 10 hours on a plate reader, periodically 

monitoring the OD600 and the florescence intensity (Figure C3.7B). As predicted, 

enrichment of the ON subpopulation was detected after a few (4) hours as GFP 

fluorescence intensity increased on a growth-dependent manner, indicating that this 

fusion performed well as a T5 biosensor. We then assayed the biosensor using flow 

cytometry to estimate the efficiency of ON subpopulation enrichment, which ranged 

from 82% to almost 90% in 10 h for 4 different phages (Figure C3.7C). Interestingly, 

addition of colicin M led to a similar enrichment of the ON subpopulation, thus 

confirming that production of the FhuA inhibitor Llp was also able to prevent colicin M 

binding. We also performed an additional control, using one of the LPS-binding phages 

assayed in Figure C3.6. As predicted based on its effect on the Ec_opvAB::gfp 

biosensor, this specific phage (Ec_unk_EM1) was unable to select for the 

PopvAB::llp::gfp ON subpopulation (Figure C3.7C). Conversely, the Ec_unk_PO1, 

selected to turn on PopvAB::llp::gfp fusion, and thus likely recognizing FhuA, was not 

detected using the Ec_opvAB::gfp biosensor (Figure C3.6C). Together, these 

experiments show that the method can accommodate not only different bacterial chassis 

(Salmonella and E. coli) but also different types of receptors, thus providing a primary 

indication on the type of receptor used by a given phage.  
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Figure C3.7. Bacteriophage T5 detection. 

A. Left. Bacterial growth curves in the presence of phage T5 (2.5 x 107). In blue, E. coli MG1655 
wild type. In red, a strain with a deletion of the fhuA gene (DR42). In green, E. coli carrying an 
empty pXG1 plasmid, used as a control. In purple, E. coli carrying plasmid pXG1 containing the llp 
gene from T5 phage. Right. Plaque assay using the same strains and bacteriophages T5 and T4. 
B. Growth curves of an E. coli derivative strain DR41 carrying a PopvAB::llp::gfp fusion in the 
presence or absence of T5 for 10 hours. Inlet, the same data are represented as a function of time. C. 
GFP fluorescence distribution in DR41 (PopvAB::llp::gfp) fusion before (t = 0. h) and after growth in 
LB containing T5, unknown E. coli phages (Ec_Unk_PO1, Ec_Unk_PO2, Ec_Unk_PO3 isolated on 
E. coli MG1655, and Ec_Unk_EM1 isolated on DR28), or colicin M (3 µg/ml) (t = 8 h). Data are 
represented by a dot plot (side scatter versus fluorescence intensity [ON subpopulation size]). All 
data were collected for 100,000 events per sample.  
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4: Detection of Dam methylation inhibition 
using an OpvAB-bases biosensor 





Chapter 4 

 115 

The ability of an opvAB-derived biosensor to detect inhibitors of DNA methylation was 

tested using strain SV9700 (PopvAB::lacZY::gfp). The DNA methylation inhibitor chosen 

for the trial was sinefungin, a natural nucleoside related to S-adenosyl-methionine. 

Sinefungin blocks base methylation in DNA and RNA upon competition with SAM 

[321], [322]. Analysis of bacterial cell viability in the presence of sinefungin revealed 

toxicity above a final concentration of 2.2 mg/ml. Based on this observation, the final 

concentration chosen for the inhibition trial was 1 mg/ml. The fluorescence intensity 

was quantified by flow cytometry. Growth of strain SV9700 in presence of sinefungin 

was accompanied by an increase of fluorescence intensity. An interesting observation 

was that the fluorescence pattern was very similar to that of a dam mutant strain 

carrying the same construction (Figure C4.1). 

Fluorescence intensity and growth were also monitored using a Synergy HTX 

microplate reader. The O.D600 of the culture was monitored to confirm that the 

concentration of sinefungin used in the experiment (1 mg/ml) did not inhibit growth. 

The curves showed differences in the presence and in the absence of sinefungin, thus 

confirming that sinefungin inhibits Dam methylation in S. enterica. Hence, the opvAB-

based fluorescence biosensor appears to be appropriate to detect DNA methylation 

inhibition.  
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Figure C4.1. Detection of Sinefungin. A. Fluorescence intensity of the PopvAB::lacZY::gfp fusion of 

strain SV9700 without sinefungin (blue) and with 1 mg/ml sinefungin (orange). In the right panel, the 

fluorescence intensity was plotted vs culture density. Fluorescence in the presence of sinefungin is similar 

to that of a dam mutant (grey). Fluorescence did not increase at late growth stages, probably due to 

exhaustion. B. GFP fluorescence distribution in SV9700 (PopvAB::lacZY::gfp) in presence or in absence of 

Sinefungin (1 mg/ml) after 5 h. Data are represented by a dot plot (side scatter versus fluorescence 

intensity [ON subpopulation size]). All data were collected for 100,000 events per sample.  
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The work described in this Thesis is based on previous studies of the phase-variable opvAB 

operon of Salmonella enterica, and has used the information provided in those studies to 

design and develop the construction of several types of microbial biosensors able to detect 

environmental signals: antibiotics, phages and DNA methylation inhibitors. Such sensors 

may be considered a novel type of sensor that operates at the population level, unlike 

traditional gene circuits and whole cell sensors.  

In its native host, the opvAB operon undergoes bistable transcription, which generates 

OpvABON and OpvABOFF subpopulations [115]. Bistability is reversible ("phase-variable") 

and the switching rate is skewed to OFF in the wild type [114], [115]. In this study, we show 

that a 689 bp DNA fragment containing the opvAB promoter and the opvAB upstream 

activating sequence (UAS) confers bistability to genes cloned downstream. For instance, an 

engineered PopvAB::lacZY operon produces LacOFF and LacON subpopulations (Figure 

C1.1C), and addition of a gfp reporter gene permits discrimination of LacOFF and LacON cells 

by flow cytometry (Figure C1.1D). Utilization of L-lactose sustains growth of LacON cells 

(Figure C1.1E), thus producing increased fluorescence. However, because the opvAB 

switch is reversible, if a culture grown on L-lactose is transferred to lactose-free medium the 

system slowly returns to its initial state, with strong predominance of LacOFF cells (Figure 

C1.1F). The fact that the opvAB switch is functional in a heterologous host which is also a 

model organism, E. coli (Figure C1.2), might increase its potential interest for synthetic 

biology. The fact that the switching frequencies are slightly different in Salmonella and E. 

coli admits several tentative explanations and can be considered irrelevant for practical 

purposes. as phase variation is unambiguous in both hosts. 

The versatility of the opvAB switch is illustrated by an additional example of subpopulation 

formation presented in Figure C2.1: opvAB-driven bistable expression of kanamycin and 

cefotaxime resistance genes permitted selection of antibiotic-resistant subpopulations in a 

reversible fashion. 

Introduction of mutations in the upstream regulatory region of the native opvAB operon 

alters the switching rate, yielding OpvABON and OpvABOFF subpopulation sizes different 

from those of the wild type [114], [123]. Hence, variants of the opvAB switch can be 

engineered to modulate subpopulation sizes at will. For instance, a variant (GATC1,2) that 

lacks two of the four GATC sites present in the wild type increases the initial size of the ON 

subpopulation (Figures C2.1 and C2.2). Additional UAS variants that yield subpopulations 
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of different sizes have been described [123], and their use may allow choice of other 

switching frequencies. Modification of the ribosome-binding site of gene(s) under PopvAB 

control can also contribute to adjust the sensitivity of the switch, thus facilitating detection 

of the phenotype under study. For instance, use of the D25 ribosome binding site (SV9704, 

SV9792) permitted unambiguous detection of aac3-mediated kanamycin resistance, thereby 

facilitating discrimination of KmR cells (Figure C2.4).                                          

As a proof of concept, we have used the opvAB switch to produce antibiotic-resistant and 

antibiotic-susceptible bacterial subpopulations of predetermined sizes. The aim of these 

experiments was to mimic bacterial heteroresistance to antibiotics under laboratory 

conditions, a phenotype where subpopulations of cells with higher antibiotic resistance than 

the main population are present [323]. Heteroresistance is difficult to detect and study in 

clinical samples [323], and a better understanding of the frequencies of subpopulation 

formation and of their antibiotic resistance levels may improve our understanding of 

heteroresistance as a cause of clinical treatment failure [309]. Experiments shown in Figure 

C2.4 provide evidence that subpopulation formation under opvAB control allows accurate 

modulation of the number of resistant cells present in a population. In principle, the method 

should be applicable to any antibiotic resistance gene. This approach provides a proof of 

concept to study the effect that different frequencies and levels of resistance of resistant 

subpopulations may have on the outcome of antimicrobial treatment in vivo (e. g., in a 

murine model). A relevant advantage of the opvAB switch to be used in vivo is that it can be 

expected to be largely unaffected by infection bottlenecks that could eliminate very small 

subpopulations of resistant bacteria present in the inoculum [324]. Because of this potential 

advantage, the opvAB switch is currently being used at the D. I. Andersson's lab in Uppsala 

University to study antibiotic heteroresistance. 

An additional application of the opvAB switch is the design of sensors able to detect 

bacteriophages in environmental samples. The challenge of accurately count bacteriophage 

has been around for some time as more and more researchers were interested in counting, 

discriminating and characterizing bacteriophages in various environments for ecological or 

biotechnological purposes. Besides the gold standard plaque assay method a variety of 

techniques, each one with pros and cons, have been developed and compared These 

techniques are based on different methodologies such as quantitative PCR (ddPCR or 

regular qPCR), FISH, electronic microscopy, and flow cytometry that can be classified into 

three types: culture-dependent, sequence-based, and particle-based [325]. Another way to 
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classify these techniques is to consider the characteristics of the enumeration and the 

additional infection parameters that can be obtained [326]. For example, the classical plaque 

assay can discriminate infectious versus non-infectious particles, provides information on 

the adsorption rate, is feasible without any particular equipment and does not need genome 

sequencing. A limitation, however, is that the assay is difficult to perform in a high-

throughput manner. On the other hand, a ddPCR-based method is sequence-based and 

therefore necessitates the determination of the phage genome sequence. The method requires 

a specialized equipment, which allows high-throughput analysis. The information provided 

by ddPCR is also different: there is no possibility to discriminate infectious versus non-

infectious particles but the method can discern between different phages in a single assay 

[327]. In the spectra of current methods, flow cytometry-based approaches are among the 

most sensitive and most published methods. Such procedures rely on the labelling of the 

phage genome by a fluorescent dye [328]–[330], although some label-free protocols have 

been developed recently [331]. In this work, we combine culture-based methods with flow 

cytometry, which allows to quantify with high sensitivity infectious particles only (Figure 

C3.5). Cloning of a gfp gene dowstream of the opvAB operon provides a simple an efficient 

sensor to monitor the increase of the OpvABON subpopulation by flow cytometry. This 

increase provides indirect evidence that the OpvABOFF subpopulation undergoes lysis, which 

in turn indicates the presence of a phage that uses the O-antigen as receptor. An advantage 

of this type of sensor is that lysis of OpvABOFF cells and concomitant increase of OpvABON 

cells produce amplification of the signal over time. This feature makes the sensor highly 

sensitive: 109 phages/ml can be detected in 1 h, and an amount of phage as low as 2 PFU in 

100 ml can be detected in 20 h. 
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Figure D1. Diagram for the selection of the OpvABON subpopulation in presence of a bacteriophage 

that uses the O-antigen as receptor. OpvABOFF cells are represented in yellow, and OpvABON cells are 

represented in green. Fluorescence intensity in culture increase in the presence of bacteriophages due to 

an increased of the number of OpvABON cells. 

 

While the original biosensor constructed in S. enterica (Figures C3.1 and C3.2) proved 

able to detect purified or unpurified phages present in raw water samples (Figure C3.3), 

we expanded our collection of biosensors to detect coliphages. Therefore, after 

reconstruction of the MG1655 strain with a complete LPS, the integration at the lac 

locus of an opvAB::gfp fusion under a constitutively active promoter (OpvABON) 

confers a LPS enriched with a short length fraction to E. coli compared to the LPS+ 

strain (Figure C3.6). This observation indicates that in the absence of any identified 

homologs, the OpvA and OpvB proteins are able to generate short-length LPS in E. 

coli. As a result, the E. coli strain generated that way was able to detect LPS binding 

phages in a way similar to the S. enterica strain (Figures. C3.2, C3.6). 

Of note, the enrichment of the OpvABON subpopulation by killing of the OFF 

subpopulation was not as effective with the coliphages we isolated as for the phages 

active against S. enterica. Nevertheless, as the detection by flow cytometry is very 

sensitive and reproducible, the enrichment levels achieved were sufficient for a proper 

detection although maybe not as sensitive. This result may indicate the coliphages we 

isolated required an additional component of the outer membrane as a receptor, 

rendering LPS binding less crucial for a successful infection. This hypothesis is 

strengthened by the fact that in the case of the FhuA binding phages detected using the 

PopvAB::llp::gfp biosensor the enrichment of the ON subpopulation was much more 

efficient (Figure C3.7). Indeed, it is known that T5 relies essentially on FhuA for a 
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productive lytic cycle, whereas the polymannose decoration of the O-antigen is used as 

a primary receptor important for an efficient primary binding but dispensable for the 

overall cycle (Figure C3.7) [332], [333].  

Prior to use of Llp lipoprotein, we used the membrane protein phage receptor FhuA. In 

this case, however, OpvABON cells express the phage receptor in their outer membrane 

with consequent lysis by the phage. Phage detection thus involves a decrease in GFP 

fluorescence, which is a signal less reliable and less unequivocal than fluorescence 

increase. Hence, our second choice was a gene whose expression confers resistance 

instead of sensitivity (e. g., the llp gene in the case of phages that use the Fhua protein 

as a receptor, Figure C3.7). However, the possibility of designing sensors in which the 

meaningful, "positive" signal is fluorescence decrease remains open. 

 

 
 
Figure D2: Selection of OpvABOFF and OpvABON subpopulations in the presence of a bacteriophage 

that uses a heterologous receptor expressed under opvAB control. A. Cells producing FhuA are lysed 

by phage, thus selecting the OpvABON subpopulation and producing a concomitant fluorescence decrease. 
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OpvABOFF cells are represented in yellow, and OpvABON cells are represented in green. B. Cells 

producing Llp are resistant to bacteriophage, and lysis of OpvABOFF cells results in fluorescence increase 

due to growth of OpvABON cells (green).  

 

An important add-on value of our method is its capacity to discriminate between 

bacteriophages infecting the same host but using different types of receptors (Figures 

C3.6, C3.7). This property is highly relevant in the frame of phage therapy when the 

isolation of phages using different receptors is a must to overcome resistance due to 

mutations into the receptor [334]. This work, allowing a rapid discrimination between 

phages using LPS or FhuA as receptors, could thus be systematically used prior the 

assembly of phage cocktails. Moreover, this method could be implemented to other 

receptors used by bacteriophages as long as a specific inhibitor such as Llp is available 

as described for FhuA-binding phage (Figure C3.7). For T-even coliphages, for 

example, the trick would be to use the outer-membrane protein TraT, encoded by the F 

plasmid, that masks or modifies the conformation of outer-membrane protein A 

(OmpA), which is the the receptor for many T-even-like phages [335]–[337]. In case an 

inhibitor-encoding gene does not exist for a dedicated receptor, an alternative would be 

to use the receptor gene itself fused to the gfp and controlled by the opvAB promoter. 

However, in such a case the biosensor will be much less sensitive for phage numeration 

as a decrease in fluorescence is expected. Nevertheless, such an alternative should be 

sensitive enough to determine the host receptor of the phage under study. 

Phage receptor determination is a must to achieve a complete characterization of 

bacteriophages [335]. The canonical method using plaque assay is of course still 

relevant, however it cannot be performed in a high throughput manner. A possible way 

to implement a fast and easy host-receptor determination would be to construct a 

biosensor strain carrying multiple fusions with various fluorescent protein encoding 

genes allowing to detect different phages in a mixture according to their receptor 

specificity.  

Another application of the OpvAB switch described in this Thesis involves the 

detection of DNA methylation inhibitors. Lack of Dam methylation causes strong 

attenuation in Salmonella enterica and in other gamma- and alpha-bacterial pathogens 

[241], [244]. In turn, CcrM methylation has been shown to play roles in the interaction 

of alpha-proteobacterial pathogens with their hosts. These observations has raised the 

possibility of using Dam or CcrM methylase inhibitors as antibacterial drugs [245], 
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[246]. In alpha-proteobacteria, such drugs would be bactericidal. In Salmonella and 

other pathogens in which Dam methylation is not essential, Dam inhibitors could be 

expected to attenuate virulence by transforming wild-type bacteria into phenocopies of 

dam mutants. Because Dam methylation is a dispensable function in enteric bacteria, 

inhibitors specifically targeted at Dam methylase should be harmless for the normal 

intestinal flora. A drug of this kind should be also harmless for the host, because 

adenine methylation is rare in mammalian cells [338]. The potential problem that a Dam 

inhibitor might increase the spontaneous mutation rate in the intestinal flora seems 

minor compared with its potential benefits as an alternative to current antibiotics. 

As a proof of concept, we show that a opvAB:gfp fusion permits dose-dependent 

detection of sinefungin, a well known inhibitor of DNA methylation. Previous searches 

for novel compounds of this kind have been improductive, and one likely reason is that 

the screens employed were not sensitive enough. This Thesis may contribute to 

overcome this problem as a highly sensitive screen can now be devised using the 

OpvAB switch. 

Phase variation-based biosensors can have advantages over classical whole-cell sensors 

based on transcriptional regulators and/or inducible promoters [339], [340]. One 

advantage is that the sensors can be expected to be highly selective as selection of one 

of the subpopulations will occur under specific circumstances only. Use of fluorescence 

to monitor growth cells can be expected to be sensitive and highly reproducible. 

Furthermore, programmed switching from OFF to ON and vice versa may contribute to 

robustness, avoiding the problem of instability frequently found in transcription-based 

gene circuits [341]. 

Besides biosensor design, formation of phenotypic subpopulations under epigenetic 

control may have additional applications in synthetic biology: for instance, division in 

labour between subpopulations performing distinct segments of a catabolic pathway 

might optimize biodegradation processes [342]. 
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1. A 689 bp fragment containing the Salmonella enterica opvAB promoter and upstream 

regulatory region is able to drive transcription of heterologous genes cloned 

downstream of the promoter. 

 

2. Transcription of heterologous genes under opvAB control shows reversible bistability 

(phase variation), giving rise to bacterial subpopulations that differ in the expression of 

the cloned gene or operon. 

 

3. Reversible bistability under opvAB control is reproducible in Escherichia coli. 

 

4. Modification of the ribosome binding site of a gene or operon under opvAB control 

can adjust opvAB expression to a level appropriate to discriminate OFF and ON 

subpopulations. 

 

5. The opvAB epigenetic switch has been used to engineer biological sensors that detect 

subpopulations of bacteria with specific phenotypes (e. g., utilization of lactose and 

resistance to antibiotics). 

 

6. Biosensors based on the opvAB switch permit the detection of bacteriophages and of 

DNA methylation inhibitors. 
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