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Abstract - Stability and convergency results are reported for a modified continuous-time CNN 
model. The signal range of the state variables is equal to the unitary interval, independently of 
the application. Stabiliiy and convergency properties are similar to those of the original model 
and, for given templates and offset cwflcients, the results are generally identical. In addition, 
robustness and area-efficiency of VLSI implementations are significantly advantageous. 

1. Introduction 
From an implementation point of view, the signal-range of the state variables of CNNs is 

an important factor. In the Chua-Yang model [1],[2], this value (normalized to the signal range 
of the output variables) is usually in the range of 4 to 20, depending on the application. The dif- 
ference between the two signal ranges results in increased error levels in CNN circuits. Further- 
more, the dependency of the signal range of the state variables on the template coefficients 
represents an additional problem for the implementation of programmable CNN systems. 

A modified CNN model which exhibits identical signal ranges for the state and output 
variables, independently of the template coefficients, was proposed by the authors in [3]. This 
contributions demonstrates some stability and convergency properties of this model. Among 
them, the stability results reported by Chua and Yang in their first CNN proposal [1],[2] are 
extended here to the modified model, from now on called the Full Signal Range (FSR) model. 

For the purpose of mathematical demonstrations, we consider a parameterized family of 
CNN models, referred to as the Improved Signal Range (ISR) family, which includes the Chua- 
Yang and FSR models as particular cases. 

2. The ISR model family 

in which each symbol is used with its usual meaning (see Annex at the end of the paper), 
The dynamic behavior of an ISR cell c is described by the following differential equation, 
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Note that the output and the state variables of each cell am 
related by the usual nonlinear relationship, while the loss 
term is modified introducing a nonlinear hction g(xc) 
parameterized by m E [ 1, .O ) . This function is depicted in 
Fig. 1. Note that if m P 1, then g(xc) = xc, thus resulting in 
the original CNN model. On the other hand, the FSR model 
is obtained when m + -. Although. compared to the orig- 
inal model, the implementation of an ISR cell according to 
Eq. 1, and the definitions in Eq. 2 nquircs a c h i t r y  of 
increased complexity, the situation becanes is inverted 
when the FSR model is c ~ n s i d ~ d .  In addition, the advan- 
tages of the ISR model become o p h d  w b n  m + m .  

3. Stabiuty and convergemcy of the ISR lrakl family 
This section contains a sequence of smments and proofs. We make here two definitions, 
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F- 1.  piece-wise l d a r  loss rem 
used in the ISR models. 

For simplicity, some statements below will be demonstrated assuming that ME 2 1, which 
is the most common case (for instance wheqcver a: 2 1). This assumption is not necessary. Gen- 
eral demonstrations are available from the authors upon request [4]. 

Sruremenr 1: "The absolute value of the state variable of every cell c in an ISR CNN is 
bounded for any set of finite feedback, control and offset coefficients (including nonuniform 
CNNs), and for any set of finite initial conditions, input to the cells and boundary conditions." 

Proof: Using the definition of g(xc) into Eq. 1 we obtain adifferential equation from which 
the following expressions can be obtained by traditional methods, 

t 

which correspond, respectively, to the upper-saturated region (x '> 1) , the linear region 
(IxcI > 1) , and the lower-saturated region (xc c -1) . For these equations to be valid, the time 
variable must be shifted so as to make r = 0 at the instant in which the state variable entered a 
particular region, and the initial condition ~ ' ( 0 )  must be defined accordingly. Since the state 
variable will always be in one of (hese regions, we only need to demonstrate that the above 
three equations are bounded. Using Schwartz's inequality several times on Eq. 4, taking into 
account that the output variables are Iyc(r)l I 1, and that m 2 1, the following result is obtained 

(7) IxC(r)/ I - 
which is bounded. The same result can be obtained from Q. 6. Finally, within the linear region 
(Eq. 5 )  we have by definition that (xc(r)l s 1. Thus, state variables are globally bounded. 

Sruremenr 2: "For any cell c, the maximum possible absolute value of an equilibrium point 
is an absolute bound for the state variable at any time instant, assuming that it is true at r = o ." 

m 
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Pmofi In order to determine the paximum possible absolute value of an equilibrium 
point, we must look at the dynamic route of ISR cells, obtained from Eq. 1, 

- m ( x C - l )  - l + o y + r C  ; V x c > l  

(8) 

- m ( x C +  I )  + 1 + o y + i c  ;VX'C-I 

where ic contains all the contributions on the right-hand side of Eq. 1 which do not directly 
depend on the state variable 2, 

Note that the summation extends to the reduced neighborhood N' ( c )  = N (c) - { c} of the 
cell. The value of the equilibrium points in each of the three regions in Eq. 8 can be obtained 
making the derivative equal to cero and using the definition of y (x) given in Eq. 2, 

where we include the condition required for the equilibrium points to be "real", otherwise 
being "virtual". Using lyc(r)l s 1 in Eq. 9 we obtain the maximum possible absolute value of ic 

(11) li'l I d c  &(c) 14 + lkcl 

which used in Eq. 10 gives the maximum possible absolute value of a cell equilibrium point 

In order to calculate a global bound for the state variable, we must take into account that 
it can go in and out of the linear and saturated regions several times, defining intervals [rLi.r'Li), 
i=l, ..., Nand [rs.r'si).j=l,..., M within wbkh the state variable is in the linear region or in some 
saturated region, respectively. The union of these intervals contains the complete transient evo- 
lution of the cell. We consider different initial conditions f,{O) = xc(r'rfi), i=l, ..., N, and 
fs,{O) = f ( t= rs i )  ,j=l,..., M, and the componding time-shifts. This allows the use of one of 
Eq. 4 through Eq. 6 for each interval. Nate that in general lfL{O)I = lfs,{O)l = 1 with the pos- 
sible exception of the real (unshifted h e )  initial condition 90(0). which afftcts either to 
f ~ l ( 0 )  or to f s l ( 0 ) .  If lfo(0)l-c 1, then I x c ~ l ( O ) l =  Wo(O)l< 1, and if lfo(O)l> 1 then 
L 8 ~ l ( O ) l =  L8o(O)l> 1. In any case, Lrch{O)l S 1, V i= l ,  2 ,..., N, and LXcsJI0)I 2 1, Vj=l,  2 ,.... M. 

From Eq. 7, which is valid for either saturated region, we can obtain a bound for the state 
variable in each interval [fsjs's$. We 4fim function &$) as the right hand side of Eq. 7, 
defined within the interval, where it can be seen to be bounded by one of the following limits, 

if then 
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Taking into account the possible values of LfsdO)l, the following result is obtained 
M 

The same procedure can be used for the linear region, or we can simply take into account 

(17) 
The right hand side of this equation coincides with that of Eq. 12 under the assumption 

made in the statement. 
Starement 3: “There is a hyper-rectangular region around the origin of the state space that 

is a global attracting region, this is, if the state vector of the network is outside, it evolves 
towards the region, and if it is inside, it n e e r  scapes.” 

that Ix‘(r)l I ;  1, Vr E [rLr, r’Li ) and for any i = 1. ..., N, which allows the extension of Eq. 16 to 

Ixc(r)l 5 max { m-l+MC - , Ix;(o)~ I vr 2 0 
m 

Pro08 This hyper-rectangular region is defined by a set of intervals, one for each cell, 

From Eq. 13, if the state variable xC of some cell belongs to f at some time instant (which 
can be redefined as r = 0). then it will belong to f at any later instant. On the other hand, from 
Eq. 7 we have that, 

which shows that if the state variable of some cell is outside f at some time instant, the state 
variable will be either in rC or arbitrarily close to its borders after a sufficient amount of time. 

Statement 4: ‘The global attracting region approaches the [-1,11” hypercube as m + 
(FSR limit), regardless the particular template coefficients.” 

Pro08 Simply note that 
m -  1 +Mf lim - = 1 

Statement 5: “ISR CNNs with central-feedback coefficients larger than unity (a:> I )  
have no stable equilibrium points within thc open hypercube (-1.1)“, this is, if it converges, its 
output is binary.” 

Proof: The slope of the dynamic route in the linear region is given by s = a: - 1 ,  which is 
positive in the cases considered. Hence, any equilibrium point in the linear region is unstable. 

Statement 6: “ISR C N N s  with reciprocal fedback templates are convergent.” 
Pmofi The demonstration is identic4 to that employed by Chua and Yang in [I]. A CNN 

* lim f = [-1,11 (20) 
m - s -  m m + -  

is said to be reciprocal if 
a$ = a: ,Vce  G D , V d e  G D  (21) 

We will use the same function that was proposed for the original CNN model: 

Sincethe output variables are restricted to the [-1,1] interval, this function is bounded for 
any set of finite CNN coefficients and inputs values. We will now demonstrate that this function 
is a continuously decreasing function of time. For this purpose, note that 

Then, taking the time derivative of Eq. 22, and after changing variables (c by d and vice-versa) 
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in one of the resulting sums, and using Q. 21, we obtain 

which, taking into account the following thrte facts 

can be transformed into 

1x1 s 1 
Since only the cells whose state variables an in the linear region are included in the sum, 

we can usc Eq. 1 with g(xc) = xc in the above equation, yielding 

Ixcl s I 
which demonstrates that E(r) is a monobnically decreasing function of time. Now, using 
Eq. 25 and Eq. 26, we can change Eq. 27 is follows, 

lxc ls  1 lxcl s 1 
Since E(t) is a bounded and monotonic decreasing function of time, its limit €or t + 00 

exists, from where the limit of its derivative must be cero, 

where we have used Eq. 28 and the fact that if a sum of positive summands is cero, every sum- 
mand is cero. The final result in Eq. 29 demonstrates that all output variables converge. 

We will show now that the state vatiables converge as well. Note that, after the output 
variables have converged, the state variables of the cells are confined in some region. We define 

The limit of f ( f )  for 1 + m exists because the limits of all output variables exist. 

Eq. 5, rewritten using the above definitions, which yields, 
If the state variable of a particular cell is in the linear region, we can obtain its limit using 

t 

t J rc(r) e'& 

(31) lim xc(r) = lim xC(0)e-'+ lim e-'Jrc(T)eThr = lim 0 = lim - = RC 
t + -  t + -  I + -  t + -  et t + -  er  

where we have used the rule of L'Hopital. If the state variable is in the upper or lower saturated 
regions, we can use the same procedure starting from Eq. 4 or Eq. 6, respectively, which 
yields, 

rc& 

0 

m - l + R C  1 - m + R C  
lim xC(t) = - or iim xc(r) = ~ also respectively 

I + -  m I + -  m 
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4. The FSR madel 
The statements in the previous section are valid (except statement 4) in the range 

m E [ 1, - ) which includes the Chua-Yang (m = 0 )  and the FSR ( m  + -) models. In addition, 
in the FSR model, statement 4 is valid, and haoce, the state vector never leaves the [-1,11“ hyper- 
cube, assuming that it is initially in it. Si- the state vector is confined in LMI”, where 
g(xc) = xC and yc = xc,  the FSR model can be practically described by the following equation, 

c .‘.bid+ b>’+& ,Vlx”ll a$Vc#d 2‘ = { d 6  N ( c )  d a  N ( c )  },wi& (33) , v l x l  = 1 - 1 , c = d  
0 

where the equilibrium points at lxcl = 1 arc stable or unstable depending on the sign of the 
derivative at the inner borders of interval 1-1.11, given by the upper expression in Eq. 33. 

In this manner, the implementation of the nonlinear operator y(x) in Eq. 2 is not required, 
neither that of the central segment ofthe dissipative term g(x). which is grouped with the self 
feedback coefficient U:. On the other htutd, the state variabk must be forced to remain in the 
unitary interval [-1.11 using a hard l i t e r  (external segments of g(x)) .  

The result is a CNN model with signal range equal to the unitary interval, independently 
of the application, which requires less circuitry for its implementation, and with stability and 
convergency properties similar to those of the original model. Numerical simulation shows that, 
for a given templates and offset codiuients, the results obtained using the Chua-Yang model 
and those obtained using ISR model are gencdy  identical. It can also be shown that uniform 
(proportional) variations of the templates and offset coefficients affect only to the time constant 
of the network This represent an i n c d  robustness against global process parameter varia- 
tions in VLSI implementations. 

Annex: notation 
c, d cell indexes 

state variable of cell c 
output variable of cell c 
normalized time. If t’ is the physical time, t = t’/ i ,  where i is the time constant of the 
cells, assumed invariant through the network 
feedback coefficient. Weight of h e  conbibution from the output yd of cell d towards cell c. 

control coefficient. Weight of the contribution from the input ud of cell d towards cell c. 

offset term. Constant contribution to cell c 
N(C) neighborhood of cell c 
CD grid domain. Set of all  inner cells in the network 
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