Querying a Polynomial Object-Relational
Constraint Database in Model-Based Diagnosis

M.T. Gémez-Lépez, R.M. Gasca, C. Del Valle, and F.T. de la Rosa

Departamento de Lenguajes y Sistemas Informaticos,
Escuela Técnica Superior de Ingenieria Informética, Universidad de Sevilla, Spain
{mayte, gasca, carmelo, ffrosat}@lsi.us.es

Abstract. Many papers related to Constraint Databases (CDBs) theo-
ries exist, including proposals that present frameworks for the treatment
of constraints as a new data type. Our proposal presents a new way
of storing and manipulating constraints as a usual data, and of making
queries about the constraint variables derived from an Object-Relational
Constraint Database (ORCDB). In this work, the constraints stored in
an ORCDB are only polynomial equality constraints. The proposal is
based on Grobner bases, constraint consistency and constraint optimisa-
tion techniques. Most works in CDB use spatial-temporal data as a case
study, however this work presents an emergent engineering domain, that
of fault diagnosis.

1 Introduction

This work is based on the necessity of dicovering new ways of storing constraint
information such as spatio-temporal, scientific, medical or engineering data. Cur-
rent databases have limitations in storing constraint data, due to the finite size
of the physical support. Very large databases have delays in retrieving and mod-
ifying information. This type of data makes it necessary to find another method
to represent constraint data as discrete information.

The main objective of this paper is to present a way of storing and query-
ing constraints and their variables. The constraints are stored as objects in
an Object-Relational Constraint Database (ORCDB) using Oracle™ 9.i. This
function is indispensable for model-based diagnosis, due to the the lack of so-
lutions creating equivalent systems which depend on the known variables. This
paper proposes a solution to the problem of obtaining the constraints of a system,
by means of asking about their variables.

In order to obtain new constraints inferred from an ORCDB, four different
techniques are used: symbolic techniques, based on Grobner Bases; constraint
optimisation techniques; constraint consistency; and a combination of symbolic
and constraint consistency techniques.

Constraint Databases (CDBs) have been specially used in the treatment of
spatial-temporal data, however this work demonstrates that other engineering
areas also can benefit from using CDBs. For this reason an emergent engineering
domain is used, that of fault diagnosis.

This work is organised as follows: Section [2] analyses other previous works.
Section [3] presents model-based diagnosis as a case of study. Section [analyses
the most important techniques to develop the architecture. Section Bl shows the
architecture and its most important modules. Sections[@l and [[present the syntax
and functionality for the creation of an ORCDB, insertion of new records into
tables and for querying an ORCDB. Finally, some conclusions and future work
are presented.

2 Background

Constraint Databases began their development in 1990 with the paper of Kuper,
Kanellakis and Revesz [I], and grew out of the research on Datalog [2] and
Constraint Logic Programming (CLP).

Many database applications have to deal with infinite concepts such as time
and space. However, databases have a finite capacity. The basic idea is that
constraints can be used to represent, in a compact way, data that could be very
large, or even infinite.

There are other methods for implementing and building prototypes for CDBs,
whose main objective is handling spatial-temporal data. The most important
approaches are analysed:

— MLPQ/PReSTO: This proposal [3] presents a combination of MLPQ
(Management of Linear Programming Queries) and PReSTO (Parametric
Rectangle Spatio Temporal Object). MLPQ is a system for the manage-
ment and linear programming query in CDBs. It allows Datalog queries
and the addition of operators over linear functions. PREsTO facilitates the
performance of relational algebra querying systems that change over time.
Although both present similar SQL syntax, they actually use a plane file to
store the information and a Datalog query transformation process.

— DEDALE [4] is one of the first implementations of CDBs based on linear
constraint models. DEDALE provides a language to query CDBs, which
allows information to be obtained and uses a graphical interface to show
the results. In order to represent the constraints, DEDALE uses the object-
oriented paradigm, a more appropriate way to represent complex data. In
this approach all the information is stored as objects. The type of data used
in DEDALE is the spatial data model and a special module is given for
spatial queries.

— CCUBE: (Constraint Object-Oriented Database System) [5] is a constraint
object-oriented database system. The CCUBE system is designed to be used
for the implementation and optimisation of high-level constraint object-
oriented query languages. The CCUBE data manipulation language (Con-
straint Comprehension Calculus) is an integration of constraint calculus for
extensible constraint domains within monoid comprehension. CCUBE gives
an optimisation-level language for object-oriented queries. The data model
for the constraint calculus is based on constraint spatio-temporal (CST)

objects. CCUBE guarantees polynomial time data complexity whose imple-
mentation uses the linear programming package CPLEX.

3 Diagnosis: A Motivating Example

Fault detection and identification of faulty components are very important com-
pany strategies, due to the economic demand and environment conservation re-
quired to remain in competitive markets. Diagnosis allows us to determine why a
correctly designed system does not work as is expected and is based here on the
monitorization of a system using DX [6] approach [7]. These papers were pro-
posed to identify the discrepancies between the observed and correct behaviour
of systems.

In engineering applications the storage of these data and query processing
are often overlooked. Other works such as [8] have improved the efficiency in
some phases of the model-based diagnosis with CDBs.

Fig. 1. Diagnosis Example

In this work, a new approach is proposed for querying ORCDBs in order to
obtain equivalent systems which can be diagnosed such as the system shown in
Figure [The example presents a group of components, multipliers (Mé) and
adders(Ad), which work together. The use of SQL over constraints makes it
possible to obtain several models. These models are compared to the real values
in order to perform the diagnosis of the system. The location of sensors defines
which variables are observable. Depending on the query, it is possible to know
whether a part or the full system works correctly. It is also possible to obtain a
group of equivalent constraints by replacing the non-observable variables.

4 Computational Techniques

In order to develop our architecture, four different tools are used. The first tool
is the symbolic technique of Grobner Bases, the second is the use of constraint
consistency technique, the third is the constraint optimisation technique, and
the last tool is a combination of symbolic and constraint consistency techniques.

4.1 Grobner Bases

Grobuner bases theory [9] is the origin of many symbolic algorithms used to
manipulate multiple variable polynomials. It is a generalisation of Gauss’s elim-
ination of multivariable lineal equations and of the Euclides algorithm for one-
variable polynomial equations. Grobner bases have better computational prop-
erties than the original system.

Grobner bases transform a set of polynomial constraints into a standard form.
By having the set of equality polynomial constraints in the form P = 0, Grobner
bases produce an equivalent system G = 0 which has the same solutions as the
original.

For our work, there is a function called GrébnerBasis, which calculates
Grobner bases by means of a finite set of polynomial equations and a set of
output variables, and those variables to be eliminated.

The signature of GrobnerBasis function is:

GrébnerBasis ({Polynomials},{Output Variables},{Unwanted Variables})

4.2 Constraint Consistency and Constraint Optimisation
Techniques

The previous problems of engineering can be modelled as Constraint Satisfaction
Problems (CSP) [10]. A CSP consists of a finite set of variables, a domain of
values for each variable and a set of constraints that restrict the combinations
of values of the variables. The aim in a CSP is to determine a value for each
variable so that all constraints in the problem are satisfied. Usually, a combina-
tion of search with consistency techniques is used to solve these problems. The
consistency techniques remove inconsistent values from the domains of the vari-
ables during the search. Several local consistency and optimisation techniques
have been proposed as ways of improving the efficiency of search algorithms.

The consistency techniques are used as a process to obtain the values of
the unknown variables from the known variables, by avoiding the use of sym-
bolic techniques that usually have a higher computational complexity. For the
Constraint Consistency techniques (Subsection [T.2)), the search is not necessary
because the domain of the known variables in the queries has just one value.
But constraint optimisation techniques (Subsection[73]) can have several correct
values, so it is necessary to define an objective and the search is necessary. Our
proposal takes advantages of all these techniques and dynamically builds CSPs
depending on the query. In this work the domain of the integer is the only type
used.

5 The Architecture

The main objective of our work is to add an interface to make the use of con-
straints transparent, by handling Constraint Type as a usual type of data. To
store constraints, the semantics of SQL has been modified, by changing as less as
possible the syntax of the queries. Figure[2] shows the architecture of the system.

The interaction between the user and the system is through the interface
CROQL (Constraint Relational Object Query Language). The Lexical and Syn-
tactic Analysis module verifies that the query is correct. The SQL Transfor-
mation module obtains the necessary information to perform the query. The
TypeOfQuery module decides which technique is necessary, in order to return
the solution to the user. Depending on the query, one of the four modules (op-
timisation, consistency, symbolic or consistency/symbolic technique) is used. It
is also possible to query the ORCBD without any modification.

‘ CROQL Interface ‘

Lexical/Syntactic
analysis

Interface
Transformation

C i C i Symbolic Constraints
Symbolic Consistency Te‘::hni ue Optimization
Technique Technique a T i

- i . Constraints

Consistency & c%?]’:;;::]n‘: Symbolic Optimization

Symbolic Y Tool
Tool Tool Tool

Fig. 2. Architecture of the system

The user of ORCDBs can ask, in a very easy way, about usual types, con-
straints or variables related to the constraints. The constraints are stored as
objects indexed by the variables which contain them, in order to improve the
execution time for obtaining the constraints related to some variables. In an OR-
CDB it is possible to store the same information because all the information is
stored in a relational database. However when the user asks about information
related to constraints it is necessary to develop some transformations. In order
to clarify when it is necessary to use each part of the architecture, the example
shown in Figure [T] is used.

6 Creating an ORCDB and Inserting Information

In this section, it is shown how it is possible to create and fill an ORCDB. Some
implementation decisions have been accepted to improve the computational time
in the queries, and to make the information versatile. One of the most important
advantages of our proposal is to make the utilisation of constraints transparent
to the user, therefore a very similar syntax of SQL is kept in CROQL.

6.1 Creating an ORCDB

In order to create an ORCDB the following sentence is used:
CREATE CONSTRAINTDATABASE <database_name>

In our model, when an ORCDB is created, the tables shown in Figure [3
are created too, in order to improve the computational time for obtaining the
constraints related to some variables. These tables allow the identification of
each constraint (table Constraint), each variable (table Variable) and to establish
the relations between the constraints and the variables (Constraint/Variable),
thereby avoiding the study of all constraints.

Constraint Constraint/Variable 1.4 Variable
1.n =
(k)ldConstraint: int in (k)IdConstraint : int (k)ldVariable : int
Constraint: Object " (k)ldVariable : int n Name : String

Fig. 3. Tables to index constraints and variables

6.2 Creating a Table in an ORCDB

As our proposal tries to modify SQL syntax as little as possible, the syntax is
not modified at all to create a table. The unique change is that it is possible to
create constraint fields, where < field_type; > is Constraint Type. In our case,
the possible type of constraints is polynomial equality constraints.
For the example shown in Figure[I] the sentence is:
CREATE TABLE Component (IdComponent Integer, Name String,
Behaviour Constraint)

6.3 Inserting New Information into the Tables

If a field of a table has been created as Constraint Type, it is possible to add con-
straint information. Our proposal adds the option to of handling the constraint
as a usual type, such as Integer, String, Date ...

Therefore, if the user tries to add information of an incorrect type to a field,
an error will be produced as in a relational database. The checking of the type
works as for usual types.

When constraint data is added, indexes are created in the table Constraint
in order to locate constraints more quickly and efficiently.

The users cannot see the indexes, and these are just used to speed up the
queries. These indexes are necessary when constraints are added, and they are
created and stored in an implicit way.

In order to store the example shown in Figure [l in an ORCDB, one query
could be:

INSERT INTO Component (IdComponent, Name, Behaviour)
VALUES (101, AL, "a4+b=¢e")
The ORCDB after inserting some components is shown in Figure [l

Component Constraint Variable Constraint
Id | Name | Behaviour Id | ConstraintObject Id Name Variable
1 Al 1 1 a+b=e 1 a IdCo IdVar
2 A2 2 2 c+d=f 2 b 1 1
3 | v 3 3 e¥f=g 3 e 1 2
4 M2 4 4 h*i=j 4 d 1 3
5 A3 5 5 h+g=k 5 c 2 5
6 M3 6 6 d+g=u 6 f 2 4

Fig. 4. Example of tables with stored constraints

7 Querying an ORCDB

This Section describes which part of the system is used depending on the query.
With our methodology, it is possible to query constraint variables, it
means querying <field_name> or <field_name>.VariableName, where

<field_name> is a Constraint Type.

Depending on the query, different parts of the architecture are used:

— If the query involves usual types or constraints stored directly in the ORCDB,
but the query does not involve variables, the query is not transformed.

— If the query involves variables from constraints stored in the ORCDB and
none one of the variables are instantiated, a symbolic tool is used, as ex-
plained in Subsection [T.1]

— If the query involves variables of constraints stored in the ORCDB, where
the objective is defined in the query, a optimisation tool is used. This is
explained in Subsection [[3l

— If the query involves constraint variables stored in an ORCDB and some
variables are instantiated, there are two possibilities: using consistency tech-
niques, if all the variables are instantiated (Subsection [[2); or using a com-
bination of symbolic and consistency techniques, if only some variables are
instantiated (Subsection [74]).

7.1 Symbolic Techniques

This part of the architecture is used when none of the variables are instantiated
in the query. For this reason, those variables which do not appear in the query
but are related to constraints which contain the variables of the query, must be

replaced by variables of the query.
An example of a query solved using the symbolic technique is:
SELECT Component.Behaviour.a, Component.Behaviour.b,

Component .Behaviour.c, Component.Behaviour.d,

Component .Behaviour.u FROM Component
The idea of this process is to determine each group of related constraints,
which is defined as:

G is a group of related constraints if
G= U, {ei} | V ei VarNoQuery(c;) CVarNoQuery(G—c;)

where ¢; is a constraint and VarNoQuery(C) are the variables of the
constraints C that do not appear in the query

For the example of Figure [I the information shown below represents the
constraints related to the query, and the variables that do not appear in the query
in this form {Component, { VarNoQuery(Component) }}. The actual information
is the indexes of constraints and variables, however to show the idea clearly, the
names of components and variables are used. The information for our example
is: {A1{e}}{A2{0}}, {M3.{g}} (AT {5k} IMT (e fig}}, {A3 (g K}], (M4, (K q.r})

In this case, Al participates in a group of related constraints if e is in another
constraint, such as M1. M1 participates in a group of related constraints if fand
g are in another constraint, such as A2 and M3 respectively. This means that
{A1, A2, M3, M1} form a group of related constraints. The rest of the constraints
do not participate in a group of related constraints

In order to use the Grobner bases, Mathematica” ¢.5 is used. For the
example, the call to this function is :

GroebnerBasis[{atb-e, c+d-f, exf-g, gxd-u}, {a, b, ¢, d, u}, {e, £, g}

And the result is: {a*cxd + bkcxd + axd® + b*d> - u = 0}

7.2 The Constraint Consistency Tool

When all the variables in the query are instantiated, it is possible to use the
module of constraint consistency technique. In this case, all the groups of re-
lated constraints are instantiated. A constraint is instantiated if it has only one
unknown variable which means that all VarNoQuerys can be instantiated.
An example of this type of query is:
SELECT Component.Behaviour.u FROM Component
WHERE Component.Behaviour.a=1 AND Component.Behaviour.b=3
AND Component.Behaviour.c=2 AND Component.Behaviour.d=1
Once it is known that this query generates instantiated constraints, a Con-
straint Satisfaction Problem (CSP) is created in order to infer the value of w.
This CSP is created dynamically using the constraints obtained from the OR-
CDB, the VarNoQuerys and the instantiated variables. Figure Bla shows the
CSP for the example.
The result is u= 12. All VarNoQuery variables are instantiated, but only u is
presented as the solution. The OPL Studio? [11] is used in order to instantiate
the variables.

7.3 The Constraint Optimisation Tool

When a query has several solutions and the user wants to select from among
the possible options, the module of optimisation is used. An example of a query
that uses this module is:

SELECT MIN(Component.Behaviour.u) FROM Component

WHERE Component.Behaviour.a>=3 AND Component.Behaviour.b>=1

AND Component.Behaviour.b< 5 AND Component.Behaviour.c>2

AND Component.Behaviour.d<=3 AND Component.Behaviour.d>=0

Int n = Integer. MAX_VALUE;
IlcSolver solver = new IlcSolver();

VarQuerys IlcIntVar(] variables = new IlcIntVar[numbeVariables];
variables[0] = solver.intVar(4, n,"a"");
Instantiated variables[1] = solver.intVar(1, 5,"b"); Define the variables
variables[2] = solver.intVar(2, n,"'¢"); . .
varintu;L_ VarQuerys Not variables[3] = solver.intVar(0, 3,"d"); and their domains
variables[4] = solver.intVar(0, n,"e");
. Instantiated variables[5] = solver.intVar(0, n,"f'"");
var int e; variables[6] = solver.intVar(0, n,"'g"");
var int f; VarNoQuerys variables[7] = solver.intVar(0, n,"u');
var int g; TlcConstraint ct = solver.neq(variables[1], 5); Limit the domain of

solver.add(ct);
ct = solver.neq(variables[2],2);

solver.add(ct);
Constraints stored fol\{er.add(solver.eq(solver.sum(variables [0],var§ables [1]),variahle§ [4D));
. solver.add(solver.eq(solver.sum(variables [2],variables [3]),variables [5]));
in the ORCDB solver.add(solver.eq(solver.prod(variables [4],variables [5]),variables [6]));
V solver.add(solver.eq(solver.prod(variables [6],variables [3]),variables [7]));

some variables asb < 5

Add the
constraints

solver.add(solver.minimize(variables(7])); Establish the objetive

a) Constraint Consistency b) Constraint Optimisation

Fig. 5. Examples of CSP

Once it is known that this query generates instantiated constraints, a Con-
straint Satisfaction Problem (CSP) is created in order to infer the value of w.
This CSP is dynamically created by using the constraints obtained from the
ORCDB, VarNoQuery and the instantiated variables. Figure Blb shows the CSP
associated. JSolver™™™ [12] is used in order to optimise the constraints.

7.4 The Constraint Consistency and Symbolic Tool

This module of the architecture is used when only some variables are instan-
tiated in the query. In this case, a mixed tool is necessary, in order to propa-
gate and to replace the variables in a symbolic way. This function also is from
Mathematica”™ v.5. An example of this type of query can be:
SELECT Component.Behaviour.u FROM Component
WHERE Component.Behaviour.a=1 AND Component.Behaviour.d=2
In order to obtain the value of u, the system uses the syntax:
Solve[{Constraints Related to the query},{Out Variables},{VarNoQuery}|
For the example, the call would be:
Solve[{a +b==-¢e,c+d== fiex f==g,gxd==u}, {u}, {e, £}]
And the result would be: {u =2 (2 +2b +c + b c)}

8 Conclusions and Future Work

This work extends the semantics of SQL, in order to store constraint informa-
tion as a new data type. The constraints data are indexed in order to improve the
computational time. The interaction between the user and the system is transpar-
ent to the constraint handler. The system allows the use of polynomial equality
constraints, by using four techniques to perform the queries: symbolic, constraint
consistency, constraint optimisation and symbolic/consistency techniques.

As future work, we propose extending the domains of variables and con-
straints. We also suggest an extension to incorporate different types of con-
straints, not only polynomial equalities. As for as SQL sentences are concerned,
it is necessary to offer all the possibilities of standard SQL, such as UPDATE,
REMOVE and other types of queries.

Acknowledgements

This work has been partially funded by the Ministerio de Ciencia y Tecnologia
of Spain (DPI2003-07146-C02-01) and European Regional Development Fund.
(ERDF/FEDER).

References

1. G. M. Kuper P. C. Kanellakis and P. Z. Revesz. Constraint query languages.
Symposium on Principles of Database Systems, pages 299-313, 1990.

2. P. Revesz. Datalog and constraints. Constraint Databases,G. Kuper et al. eds.,
Springer-Verlag, pages 155-170, 2000.

3. P. Z. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu, and Y. Wang. The mlpq/gis
constraint database system. In Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA,
page 601. ACM, 2000.

4. Stéphane Grumbach, Philippe Rigaux, and Luc Segoufin. The dedale system for
complex spatial queries. In SIGMOD Conference, pages 213224, 1998.

5. A. Brodsky, V. E. Segal, J. Chen, and P. A. Exarkhopoulo. The ccube constraint
object-oriented database system. In SIGMOD ’99: Proceedings of the 1999 ACM
SIGMOD international conference on Management of data, pages 577-579. ACM
Press, 1999.

6. R. Davis. Diagnostic reasoning based on structure and behavior. In Artificial
Intelligence 24, pages 347-410, 1984.

7. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence 32,
1:57-96, 1987.

8. M. T. Gémez-Lépez, R. Ceballos, R. M. Gasca, and C. Del Valle. Applying con-
straint databases in the determination of potential minimal conflicts to polynomial
model-based diagnosis. In CDB, pages 75-89, 2004.

9. B. Buchberger. Grobner bases: An algorithmic method in polynomial ideal theory.
Multidimensional Systems Theory, N. K. Bose, ed., pages 184-232, 1985.

10. Albert Croker and Vasant Dhar. A knowledge representation for constraint satis-
faction problems. IEEE Trans. Knowl. Data Eng., 5(5):740-752, 1993.

11. Reference Manual. Ilog opl studio 3.6. April, 2001.

12. Reference Manual. Jsolver 2.1. April, 2003.

	Introduction
	Background
	Diagnosis: A Motivating Example
	Computational Techniques
	Gr¨obner Bases
	Constraint Consistency and Constraint Optimisation Techniques

	TheArchitecture
	Creating an ORCDB and Inserting Information
	Creating an ORCDB
	Creating a Table in an ORCDB
	Inserting New Information into the Tables

	QueryinganORCDB
	Symbolic Techniques
	The Constraint Consistency Tool
	The Constraint Optimisation Tool
	The Constraint Consistency and Symbolic Tool

	Conclusions and Future Work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

