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Abstract. Declarative process models are increasingly used since they fit better
with the nature of flexible process-aware information systems and the require-
ments of the stakeholders involved. When managing business processes, in addi-
tion, support for representing time and reasoning about it becomes crucial. Given
a declarative process model, users may choose among different ways to execute
it, i.e., there exist numerous possible enactment plans, each one presenting spe-
cific values for the given objective functions (e.g., overall completion time). This
paper suggests a method for generating optimized enactment plans (e.g., plans
minimizing overall completion time) from declarative process models with ex-
plicit temporal constraints. The latter covers a number of well-known workflow
time patterns. The generated plans can be used for different purposes like provid-
ing personal schedules to users, facilitating early detection of critical situations,
or predicting execution times for process activities. The proposed approach is
applied to a range of test models of varying complexity. Although the optimiza-
tion of process execution is a highly constrained problem, results indicate that
our approach produces a satisfactory number of suitable solutions, i.e., solutions
optimal in many cases.

Keywords: declarative models, temporal constraints, constraint programming,
planning, scheduling, clinical guidelines.

1 Introduction

Nowadays, there exists a growing interest in aligning information systems (IS) in a 
process-oriented way and in managing the supported processes effectively. Typically, 
processes are specified in an imperative way. However, declarative process models have 
been increasingly used allowing their users to specify what has to be done instead of 
how [24]. Given a declarative process model, users may choose among numerous ways 
to execute this model, i.e., there exist many different enactment plans for a given decla-
rative model, each one presenting specific values for relevant objective functions (e.g., 
overall completion time or costs).



Fig. 1. Overview of our approach

Moreover, formal specification and operational support of temporal constraints con-
stitute fundamental challenges for any process-aware information system. In [16], we
presented a set of workflow time patterns for the systematic evaluation and comparison
of workflow metamodels and tools supporting temporal aspects. These time patterns are
based on empirical evidence we gained from several case studies.

For supporting users working on declarative workflows with explicit temporal cons-
traints, this paper suggests a method for generating optimized enactment plans. That is,
generating plans fixing the start and end times of the activities and resources used from
declarative models, while considering resources and temporal constraints. In particular,
generated plans aim at optimizing given objectives (e.g., minimizing overall completion
time). We built upon the work presented in [3] where we proposed an extension of the
declarative language ConDec [24], named ConDec-R. This includes capabilities for rea-
soning about resources and parallel execution of non-preemptive activities with known
duration. Moreover, we proposed an approach for generating optimized enactment plans
based on ConDec-R specifications. This paper significantly extends this work by addi-
tionally supporting selected time patterns [16], i.e., temporal ConDec-R (TCondec-R)
specifications are considered. Hence, higher expressiveness can be achieved and more
realistic problems managed.

Figure 1 provides an overview of our approach. Taking process information as a start-
ing point, the TConDec-R specification is defined. From this specification, optimized
enactment plans can be automatically generated. For this, activities to be executed are
selected and ordered (planning problem [14]), considering the control-flow as well as
the temporal constraints imposed by the constraint-based specification. Furthermore, as
stated, the generation of enactment plans related to a declarative model requires that
both the temporal and the resource perspectives are considered (scheduling problem
[7]). For planning and scheduling (P&S) the activities in a way optimizing the objective
function, a constraint-based approach is used.

The generated plans can improve process support and be used for different purposes:
(i) providing users with a personal schedule, allowing them to improve their perfor-
mance regarding activity executions [11], (ii) facilitating early detection of critical sit-
uations through early notifications and escalations, and (iii) predicting execution times
for future activities, which allows users to make informed decisions [31]. In summary,
the main contributions of this paper are: (1) an extension of the approach presented in
[3] (i.e., generating optimized enactment plans from ConDec-R specifications) by pro-
viding improved expressiveness through complex temporal constraints [16], and (2) the
application of the proposed approach to a range of test models of varying complexity.



Section 2 introduces an application example that emphasizes the need for our ap-
proach. Section 3 gives backgrounds on related research areas. Section 4 details the
TConDec-R language and Section 5 shows how optimized plans can be generated. Sec-
tion 6 deals with the evaluation, while Section 7 presents a critical discussion. Section
8 summarizes related work and Section 9 concludes the paper.

2 Application Example

To motivate the need for our approach we consider computer support for clinical guide-
lines. Clinical processes require the cooperation of different organizational units and
medical disciplines [18]. In this context, clinical guidelines have been suggested for
different medical disciplines to assist physicians in deciding about appropriate medical
treatment for their patients under specific clinical circumstances [12]. Overall goal is
to improve the quality of patient care and to reduce costs. Capturing respective clin-
ical knowledge and incorporating it in clinical guidelines can potentially increase the
effectiveness of patient treatment processes [18,22]. In such an environment optimal
process support becomes crucial. Traditional languages for modelling clinical computer-
interpretable guidelines (CIGs) are of imperative nature [23,30], which usually re-
sults in complex process models for which all possible treatment scenarios need to
be pre-specified. Moreover, imperative languages usually present limited capabilities to
provide flexibility for modelling and executing clinical guidelines [22,21,26]. This con-
stitutes a barrier for applying process management to healthcare since the state of pa-
tients usually cannot be predicted, and hence the exactly required treatment (or
sequence of diagnostic and therapeutic procedures) is not known a-priori. To increase
flexibility and to reduce complexity of clinical process models, declarative CIG mo-
dels [22,21] have been increasingly used to better fit with the nature of process-aware
clinical IS and the requirements of the involved stakeholders [20].

In addition, temporal constraints play a fundamental role in the context of clinical
guidelines [29,9,2,8]. For example, for most therapeutic procedures, the execution of
related activities has to obey temporal constraints concerning activity orders, activity
durations, and the temporal time lags between activities. In turn, in other scenarios
(e.g., drug administration), activities have to be repeated periodically. Moreover, there
are implicit temporal constraints that can be derived from the control-flow of a process
model (e.g., synchronization), or from the scheduling constraints of a CIG.

CIGs are usually modelled by hypothesizing their application in an environment
providing all required resources; guidelines are developed at an abstract level with-
out focusing on a specific execution context [18,20]. This way, executing a CIG model
requires that temporal constraints and the resource perspective are considered, i.e., rea-
soning about resource needs and availability is required. Moreover, given a declarative
CIG model, clinical staff may choose among numerous ways to execute such model.
The selection of an appropriate enactment plan, however, can be quite challenging since
performance goals of the process should be considered and resource capacities be taken
into account.

As stated, the proposed approach considers declarative models with explicit temporal
constraints and resource reasoning, and hence, it is suitable for managing CIGs. How-
ever, our approach is not restricted to clinical environments, but can also be applied to



other domains where processes are rather flexible and where temporal constraints play
an important role (e.g., automotive industry and flight planning [16]).

3 Background

To automatically generate optimized enactment plans from constraint-based specifica-
tions (cf. Section 3.1), the areas of constraint programming, planning, and scheduling
(cf. Section 3.2) are combined in this work.

3.1 Constraint-Based Process Models

In our proposal we use the declarative language ConDec [25,24] as basis for the control-
flow specification. We consider ConDec to be a suitable language, since it allows spec-
ifying process activities together with the constraints to be satisfied for correct process
enactment and for achieving the specified goal. Moreover, ConDec allows specifying a
wide set of process models in a simple and flexible way. ConDec-R extends ConDec
with estimates and resources [3].

Definition 1. A constraint-based process model S = (Acts,CBP,R) consists of a set of
activities Acts, a set of constraints CBP, and a set R of available resources. For each
activity a ∈ Acts, resource constraints can be specified by associating the role of the
required resource with that activity.

The activities of a constraint-based process model can be executed arbitrarily often if
not restricted by any constraint. ConDec templates [24] constitute parameterized graph-
ical representations of high-level constraints between activities which can be divided
into the following categories:

1. Existence Constraints: unary relationships concerning the number of times an
activity is executed. As example, Exactly(N,A) specifies that A must be executed
exactly N times.

2. Relation Constraints: positive binary relationships used to establish what should
be executed. As example, Precedence(A,B) specifies that B may only be executed
if A is executed beforehand.

3. Negation Constraints: negative binary relationships used to forbid the execution
of activities in specific situations. As example, NotCoexistence(A,B) specifies that
if B is executed A cannot be executed, and vice versa.

Usually, several ways to execute constraint-based process models exist, i.e., there are
different ways to execute a constraint-based process model while fulfilling all cons-
traints. The different valid execution alternatives, however, can vary greatly in respect
to their quality, i.e., in how well different performance objectives can be achieved. Thus,
we propose to automatically generate optimized execution plans for a constraint-based
model. We accomplish this by applying constraint programming for P&S the process
activities (cf. Section 5).



3.2 Scheduling, Planning and Constraint Programming

The area of scheduling [7] includes problems for which it becomes necessary to deter-
mine an enactment plan for a set of activities related by temporal constraints. Moreover,
the execution of activities requires resources, hence these activities may compete for
limited resources. In general, the goal in scheduling is to find a feasible plan satisfying
both temporal and resource constraints. Usually, several objective functions are consi-
dered for optimization, e.g., minimization of completion time. In a wider perspective,
in AI planning [14], the activities to be executed are not established a priori, hence it
becomes necessary to select them from a set of alternatives and to establish an ordering.

Constraint programming (CP) [27] has been successfully used for P&S purpose [28].
To solve a problem through CP, it needs to be modelled as a constraint satisfaction
problem (CSP).

Definition 2. A CSP P = (V,D,CCSP) is composed out of a set of variables V , a set
of domains of values D for all variables, and a set of constraints CCSP between varia-
bles, such that each constraint represents a relation between a subset of variables and
specifies the allowed combinations of values for these variables.

A solution to a CSP consists of assigning values to CSP variables, such that the as-
signments satisfy all the constraints. Further, in CP, global constraints, i.e., constraints
capturing a relation between a non-fixed number of variables, can be defined to improve
the modelling of the problems.

Similar to CSPs, constraint optimization problems (COPs, cf. Def. 3) require solu-
tions that optimize certain objective functions.

Definition 3. A COP Po = (V,D,CCSP,o) is a CSP including an objective function o to
be optimized.

Several mechanisms are available for solving CSPs and COPs, e.g., complete search
algorithms, i.e., performing a complete exploration of a search space which is based
on all possible combinations of assignments of values to the CSP variables. Regardless
of the used search method, the global constraints can be implemented through filtering
rules (i.e., rules responsible for removing values which do not belong to any solution)
to efficiently handle the constraints in the search for solutions.

4 TConDec-R: Temporal Constraint-Based Process Language

To schedule process activities when generating optimized enactment plans, ConDec-R
is used (cf. Section 3.1). As motivated, we extend ConDec-R to TConDec-R (cf. Def.
4) by including templates related to selected time patterns[16]:1 pattern TP1 (Time Lags
between Two Activities) enables the definition of different kinds of time lags between
two activities; pattern TP2 (Durations) allows specifying the duration of process ele-
ments; pattern TP4 (Fixed Date Element) provides support for specifying a deadline;

1 Since events are not specified in the considered constraint-based language, in this approach,
unlike in [16], only time patterns over activities are considered.



pattern TP5 (Schedule Restricted Element) allows restricting the execution of a particu-
lar element by a schedule; pattern TP6 (Time Based Restrictions) allows restricting the
number of times a particular process element can be executed within a predefined time
frame; pattern TP7 (Validity Period) allows restricting the lifetime of a process element
to a given validity period; pattern TP8 (Time Dependent Variability) allows varying
control-flow depending on the execution time or time lags between activities/events;
pattern TP9 (Cyclic Elements) allows specifying cyclic elements which are performed
iteratively considering time lags between cycles; and pattern TP10 (Periodicity) allows
specifying periodically recurring process elements according to an explicit periodicity
rule (for a description of the complete set of time patterns, see [16]). Moreover, for ev-
ery TConDec-R temporal template all the relations which are stated in Allen’s interval
algebra [1] (i.e., start-start, start-end, end-start, and end-end) can be specified.

Definition 4. A TConDec-R process model TCR = (Acts,CT ,R) is a constraint-based
process model S = (Acts,CBP,R), CBP ⊆CT , in which CT includes temporal constraints.

As example, Fig. 2(a) shows a simple TConDec-R model representing the therapy of
a patient: (1) Acts is composed out of two activities: A, which has an estimated du-
ration of 2h and requires a resource with role R0, and B, which has an estimated
duration of 4h and requires a resource with role R1; (2) CT is composed out of
the following constraints: a) Exactly(3,A), meaning that A must be executed exactly
three times, b) Exactly(2,B), expressing that B must be executed exactly twice, c)
DailyScheduleStart(A, [8am,10am]), meaning that each execution of A must be started
between 8 am and 10 am (specific case for TP5), d) CyclicStart −Start(B, [12h,48h]),
meaning that between the start of two executions of B there must be at least 12h and at
most 48h (specific case for TP9), and e) PrecedenceEnd−Start(A,B, [2h,4h]), mean-
ing that there must be a time lag of at least 2h and at most 4h between the end of any
execution of A and the start time of the first execution of B (specific case for TP1); and
(3) R is composed out of {[R0,1], [R1,1]}, which means that there is 1 resource with
role R0, and 1 resource with role R1. In this example, all activities may be only executed
between 8am and 4pm (specific case for TP5).

5 From TConDec-R to Optimized Enactment Plans

Activities and constraints are specified in a TConDec-R model. Thereby, several ways
to execute this model might exist. Each of these execution alternatives leads to specific
values of the objective function, i.e., the overall completion time, to be optimized. To
generate optimized execution plans for a specific TConDec-R model, a constraint-based
approach for P&S the process activities is proposed. This constraint-based approach
includes the modelling of the declarative workflow as COP (cf. Def. 3, Section 5.1),
the use of global constraints implemented through filtering rules (cf. Section 5.2), and
search algorithms for solving the COP (cf. Section 5.3).

5.1 COP Model for TConDec-R Specifications

As first step, the TCondec-R model needs to be represented as CSP. Regarding the CSP
model, recurring process activities (repeated activities, cf. Def. 5), which may be exe-
cuted arbitrarily often if not restricted by any constraint, are modelled as sequence of



CSP Variables
//For each repeated

activity
nt(A), nt(B)

//For each scheduling
activity

//1st sched. activity for A
st(A1),et(A1),res(A1),sel(A1)
//2nd sched. activity for A
st(A2),et(A2),res(A2),sel(A2)
//3rd sched. activity for A
st(A3),et(A3),res(A3),sel(A3)
//1st sched. activity for B
st(B1),et(B1),res(B1),sel(B1)
//2nd sched. activity for B
st(B2),et(B2),res(B2),sel(B2)

//Function to Optimize
OCT

CSP Constraints
//A specific execution of

a repeated activity
precedes the next

execution of the same
activity

et(A1) <= st(A2)
et(A2) <= st(A3)
et(B1) <= st(B2)

//nt is directly related to
the sel variables of

the associated sched.
activities

sel(A1) == nt(A) >= 1
sel(A2) == nt(A) >= 2
sel(A3) == nt(A) >= 3
sel(B1) == nt(B) >= 1
sel(B2) == nt(B) >= 2

//GLOBAL
CONSTRAINST

Exactly(3,A)
Exactly(2,B)

SchedStart(A,[8am,10am])
CyclicStartStart(B,[12,48])

PrecedenceEndStart
(A, B,[2h,4h])

SchedEnd(A,[8am,16pm])
SchedStart(B,[8am,16pm])
SchedEnd(B,[8am,16pm])

b. Constraint-based Approach

a. TConDec-R
Specification

Resource
Availabilities

R0: 1
R1: 1

B
2

7 56

1211
10

8 4

2
1

9 3

Cyclic
Start-Start
[12h,48h]

(TP9)

A
3

2h
R0

7 56

1211
10

8 4

2
1

9 3

Daily
Schedule

Start
[8am,10am]

(TP5)

Precedence
End-Start

[2h,4h](TP1)

Control-flow Specification

4h
R17 56

1211
10

8 4

2
1

9 3 R00

R10

d. Enactment Plan

8 101214 8 101214
D1 D2

A1 A2 A3

B1

16 16

B2

//Number of scheduling
activities

nt(A)=3, nt(B) = 2
//1st sched. activity for A
st(A1)=8(D1);et(A1)=10(D1)

res(A1)=R00;sel(A1)=1
//2nd sched. activity for A
st(A2)=10(D1);et(A2)=12(D1)

res(A2)=R00;sel(A2)=1
//3rd sched. activity for A
st(A3)=8(D2);et(A3)=10 (D2)

res(A3)=R00;sel(A3)=1
//1st sched. activity for B

st(B1)=12(D1);et(B1)=16(D1)
res(B1)=R10;sel(B1)=1

//2nd sched. activity for B
st(B2)=8(D2);et(B2)=12(D2)

res(B2)=R10;sel(B2)=1//
Function to Optimize

OCT= 12(D2)

c. CSP Solution

Fig. 2. From TConDec-R specification to process enactment plan

optional scheduling activities (cf. Def. 6). This is required since each execution of a pro-
cess activity is considered as a single activity to be allocated to a specific resource and be
temporarily placed in the enactment plan, i.e., stating values for its start and end times.

Definition 5. A repeated activity ra = (dur,role,nt) is a process activity which may be
executed several times, i.e., several instances of the same activity may exist in the con-
text of a particular process instance. A repeated activity is described by the estimated
duration of the process activity (i.e., dur), the role of the required resource for activity
execution (i.e., role), and a CSP variable specifying the number of times the process
activity is executed (i.e., nt).

For each repeated activity, nt scheduling activities exist, which are added to the CSP
problem specification, apart from including a variable nt.

Definition 6. A scheduling activity ai = (st,et,res,sel) represents the i-th execution
of a repeated activity a, i.e., a specific process activity instance, where st and et are
CSP variables indicating the start/end times of activity execution (each execution of a
process activity needs to be temporarily placed in the enactment plan), res is a CSP
variable representing the resource used for execution, and sel is a CSP variable indi-
cating whether the activity is selected for execution.

Moreover, an additional CSP variable representing the overall completion time (OCT),
is included in the CSP model, extending the CSP to a COP (cf. Def. 7).

Definition 7. A COP-TConDec-R problem related to a TConDec-R process model
TCR = (Acts,CT ,R) (cf. Def. 4) is a COP Po = (V,D,CCSP,o) (cf. Def. 3) where:

– The set of variables V is composed out of all CSP variables included in the CSP
model plus the CSP variable related to overall completion time (OCT), i.e., V =
{nt(a),a ∈ Acts}∪{st(ai),et(ai),res(ai),sel(ai), i ∈ [1..nt(a)],a ∈ Acts}∪OCT.



Fig. 3. Filtering Rule for the CyclicStartStart Template

– The set of constraints CCSP is composed out of the global constraints (implemented
by the filtering rules) related to the TConDec-R constraints included in CT together
with the constraints from the proposed CSP model2, i.e.:

• A specific execution of a repeated activity precedes the next execution of the
same activity, i.e., ∀i : 1≤ i< nt(a) : et(ai)≤ st(ai+1) for each repeated activity
a ∈ Acts.

• The nt variable is directly related to the sel variables of the associated schedu-
ling activities, i.e., ∀i : 1 ≤ i ≤ nt(a) : sel(ai) = 1∧∀i > nt(a) : sel(ai) = 0 for
each repeated activity a ∈ Acts.

• OCT = maxa∈Acts(et(ant(a))).

– The set of domains D is composed out of the domains for each variable from V.
– The objective function to be optimized is overall completion time, i.e., o = OCT.

In this way, the COP model which was proposed for ConDec-R specifications [3] has
been extended by including: (1) a new global constraint for each of Allen’s interval
algebra relation of each specific case of every supported temporal constraint, i.e., time
patterns TP2, TP4, TP5, TP6, TP7, TP8, TP9, and TP10, and (2) a new global cons-
traint for each of Allen’s interval algebra relation of every relation and negation ConDec
constraint for allowing the specification of time lags (i.e., time pattern TP1). Moreover,
when all process activities may be executed in a specific time frame [li, ls], the cons-
traints DailyScheduleStart(a, [li, ls]) and DailyScheduleEnd(a, [li, ls]) are included for
every activity a ∈ Acts which is not involved in any other schedule constraint (cf. Fig.
2(b)). This is needed since the st and et variables can take any value, e.g., a value cor-
responding to 4 am, if not restricted by any constraint.

Figure 2 also shows the translation from a TConDec-R specification into a CSP so
that the CSP variables and constraints are stated as explained in Def. 7 (cf. Fig. 2(b)).

5.2 Filtering Rules

For each TConDec-R template our constraint-based proposal includes a related global
constraint implemented through a filtering rule. Since we extend ConDec-R3 [3] by time
patterns, new filtering rules related to these time patterns have been developed, i.e., one

2 Resources are implicitly constrained since the solver which is used provides a high-level cons-
traint modelling specific to scheduling which includes the management of shared resources.

3 A detailed description of the ConDec-R filtering rules can be found at
http://regula.lsi.us.es/MOPlanner/FilteringRules.pdf

http://regula.lsi.us.es/MOPlanner/FilteringRules.pdf


Fig. 4. Filtering Rule for the DailyScheduleEnd Template

filtering rule for each new global constraint (cf. Section 5.1). As examples, Fig. 3 and 4
show the filtering rules related to the CyclicStartStart(a, [li, ls]) and DailySchedule−
End(a, [li, ls])4 global constraints, where UB(var) and LB(var) represent the upper and
lower bounds of the domain of var, respectively. Most of the newly developed filter-
ing rules present a propagation reasoning similar to the one included in the ConDec-R
filtering rules, i.e., they basically differ in the consideration of the time lags (see Fig.
3 for an example). However, for the filtering rules related to the schedule templates, it
becomes necessary to reason about the day in which the upper and lower bounds of the
start and/or end time variables are placed. Specifically, for the filtering rule of Fig. 4, for
every activity execution ai the next reasoning is carried out:5 a) if the lower bound of
et(ai) corresponds to a time of a day d which is lower than the time li, then that lower
bound is updated to the time li of the day d; b) if the lower bound of et(ai) corresponds
to a time of a day d which is greater than the time ls, then that lower bound is updated
to the time li of the day after d; c) if the upper bound of et(ai) corresponds to a time of
a day d which is greater than the time ls, then that upper bound is updated to the time
ls of the day d; and d) if the upper bound of et(ai) corresponds to a time of a day d
which is lower than the time li, then that upper bound is updated to the time ls of the
day before d.

In this way, the constraints stated in the TConDec-R specification (cf. Def. 4) can be
easily included in the CSP model through the related global constraints. Moreover, the
related filtering rules increase the efficiency in the search for solutions, since during the
search process these filtering rules remove inconsistent values from the domains of the
variables. In the CSP model, initial estimates are made for upper and lower bounds of
variable domains, and these values are refined during the search process.

5.3 Search Algorithms

Once the problem is modelled, several constraint-based mechanisms can be used to
obtain the solutions of the COP (cf. Def. 3), i.e., optimized enactment plans (cf. Def. 8).

4 Note that since the DailyScheduleEnd(a, [li, ls]) constraint individually affects each activity
execution, the filtering mechanism for every scheduling activity is carried out in a separated
way to increase the efficiency. In this way, the DailyScheduleEnd(a, [li, ls]) constraint is im-
plemented through the set {DailyScheduleEnd(ai, [li, ls]), i ∈ [1..nt(a)]} of filtering rules.

5 To deal with different time granularities, all the temporal specifications of the TConDec-R
model are automatically converted to minutes when generating the CSP.



For the empirical evaluation of this paper, we use the heuristic complete search method
setTimes [17] since it has demonstrated its ability to obtain good solutions to complex
scheduling problems.

Definition 8. An enactment plan consists of: (1) the number of times each activity is
executed, (2) the start and end times for each activity execution, and (3) the resource
which is used for each activity execution.

Figure 2(d) shows an enactment plan which represents the CSP solution of Fig. 2(c)
related to the TConDec-R specification of Fig. 2(a).

Since the generation of optimal plans has NP-complexity [13], it is not possible to
ensure the optimality of the generated plans for all cases. The developed constraint-
based approach, however, allows solving the considered problems in an efficient way,
reaching solutions which are optimal in many cases (cf. Section 6).

6 Empirical Evaluation

To evaluate the effectiveness of our approach, a controlled experiment has been con-
ducted. Section 6.1 describes the design underlying the experiment, and Section 6.2
shows the experimental results and the data analysis.

6.1 Experimental Design

Purpose: The purpose of the empirical evaluation is to analyze the behavior of our
proposal in the generation of optimal enactment plans from TConDec-R (i.e., temporal
ConDec-R) specifications.

Objects: Considering the application scenario from Section 2, the empirical evaluation
is based on the generic TConDec-R model (cf. Fig. 5), which represents a specific
treatment to be applied to #P patients. This scenario has been selected, since it includes
typical relations present in actual CIGs. It further contains a representative set of time
patterns. In this context, we presume that all activities may be executed between 8am
to 8pm.

The generic TConDec-R model of Fig. 5 is specified by replacing the variables
{#P,#R0,#R1,Da∈Acts} with specific values, being Da the estimated duration for a. Re-
garding the number of patients values #P ∈ {5,10,15}, and for the number of resources
with roles R0 and R1 values {5,10} are considered. In addition, different games of du-
rations for each process activity are assumed (G), since this aspect has great influence
on the complexity of the search for optimums. Note that the considered problems are
an extension of typical scheduling problems. 30 instances are randomly generated for
each TConDec-R model by varying activity durations between 5 and 30 minutes.6

Independent Variables: For the empirical evaluation, (1) the number of patients (i.e.,
#P), (2) the number of available resources with role R0 or R1, respectively (i.e., #R0,

6 The set of games which are used for the empirical evaluation are available at
http://www.lsi.us.es/˜quivir/irene/Games.rar

http://www.lsi.us.es/~quivir/irene/Games.rar
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Fig. 5. A generic TConDec-R model

#R1), and (3) the game which establishes the activity durations (i.e., G) are taken as
independent variables.

Response Variables: The suitability of our approach is tested regarding the following
variables: (1) percentage of optimal solutions found (i.e., %Opt)7, (2) average time
(in seconds) for getting optimal solutions, considering the cases in which the optimal
solution is found (i.e., TOpt(s)), and (3) average value of the objective function obtained
(i.e, overall completion time OCT (min)).

Experimental Design: For the model depicted in Fig. 5, 360 instances (i.e., 3×2×2×
30) are generated considering different values of #P (3 values), #R0 (2 values), #R1 (2
values), and G (30 problem instances). The response variables are then calculated by
considering the average values for the 30 problem instances.

7 The optimality of the solutions can be only ensured if the search algorithm stops before reach-
ing the time limit. Otherwise the optimality of the reached solution is unknown.



Experimental Execution: The machine we use is an Intel Core2, 2.13 GHz, 1.97 GB
memory, running on Windows XP. For the experiments, the complete search method
setTimes [17] is run until a 5-minutes CPU time limit is reached. To implement the
constraint-based problems (cf. Section 5), COMET [10] is used, which is able to gene-
rate high-quality solutions for highly constrained problems in an efficient way. This sys-
tem provides a scheduling module offering high-level constraint modelling and search
abstraction, both specific to scheduling.

6.2 Experimental Results and Data Analysis

For each problem (i.e., {#P,#R0,#R1})Table 1 shows: (1) the total number of scheduling
activities (cf. Def. 6) to be planned and scheduled (#SchedAct) , and (2) the values of the
response variables (i.e., %Opt, TOpt , and OCT ) for the 30 problem instances randomly
generated.8 As expected, the percentage of optimal solutions found decreases and the av-
erage time for getting optimal solutions increases as the number of patients (and hence the
number of scheduling activities) increases. Specifically, for 5 patients (155 scheduling
activities) the optimum is found in almost all cases (the average value for %Opt is equal to
99.16%), for 10 patients (310 scheduling activities) the average value for %Opt is equal
to 36.66%, and for 15 patients (465 scheduling activities) the average value for %Opt
is equal to 6.66%. Moreover, in almost all cases, the value for %Opt increases and the
value for TOpt(s) decreases as the number of available resources increases. As expected,
the average value for OCT increases as the number of patients (and hence the number
of scheduling activities) increases and the number of available resources decreases. Ad-
ditionally, it can be seen that the number of available resources with role R1 seems to
be more influential than the number of available resources with role R0 in all response
variables.

In general, experimental results show that despite NP-complexity of the problems
considered, the values for the percentage of optimal solutions found and for the average
time for getting optimums are quite good for medium-sized problems (between 155
and 465 scheduling activities). Note that getting the optimum for scheduling problems
of 155-465 activities can entail a great complexity. In fact, there are many scheduling
benchmarks of smaller size for which their optimal values are not even known.

7 Discussion and Limitations

The current approach allows modelling processes in an easy way, since the conside-
red declarative specifications are based on high-level constraints. Furthermore, time
patterns can be easily specified since the proposed constraint-based language includes
temporal constraints. This is a big advantage. Although temporal constraints play an
important role in the context of long-running processes, time support is very limited
in existing process management systems [16]. With our extension, an increased ex-
pressiveness to the specification language is provided (compared to [3]), and hence
more realistic problems can be managed, e.g., CIG support in the clinical domain

8 The set of optimized enactment plans which were generated during the empirical evaluation are
available at http://www.lsi.us.es/˜quivir/irene/OptimizedEnactmentPlans.rar

http://www.lsi.us.es/~quivir/irene/OptimizedEnactmentPlans.rar


Table 1. Experimental results (5-minutes time limit)

#P #R0 #R1 #SchedAct %Opt TOpt(s) OCT (min)

5 5 5 155 96.66 0.21 3666
5 5 10 155 100 3.03 3618
5 10 5 155 100 0.94 3618
5 10 10 155 100 0.98 3618
10 5 5 310 3.33 0.86 4602.58
10 5 10 310 46.66 31.45 3833.66
10 10 5 310 10 0.83 4511.85
10 10 10 310 86.66 3.36 3715.33
15 5 5 465 0 - 6437.20
15 5 10 465 16.66 9.27 4590.43
15 10 5 465 3.33 1.45 6388.27
15 10 10 465 6.66 1.50 4317.93

(cf. Section 2). Moreover, one advantage of our proposal is that optimized enactment
plans are generated by considering all process activities; hence, it allows for a global
optimization of the objective functions. Finally, the automatic generation of optimized
plans can deal with complex problems in a simple way, as demonstrated in Section 6.
Hence, a wide study of several aspects can be carried out by simulation.

Nonetheless, the proposed approach also presents a few limitations. First, the ana-
lysts must deal with a new language for the constraint-based specification, thus a period
of training is required to let them become familiar with TConDec-R specifications. Sec-
ondly, the optimized process models are generated by considering estimated values for
the number of process instances, activity durations, and resource availability, and hence
the current proposal is only appropriate for processes in which these values can be esti-
mated. However, P&S techniques can be applied to replan the activities in the enactment
phase by considering the actual values of the parameters, as stated in [4].

8 Related Work

This paper extends the approach presented in [3] by providing improved expressiveness
through temporal constraints [16]. We are not aware of any other approach for genera-
ting enactment plans from declarative specifications, however, there exist some further
proposals which could be extended in such direction [21,20]. Similar to our work, [21]
presents a declarative language based on ConDec (i.e., CIGDec) for the modelling and
enactment of CIGs. From CIGDec specifications an automaton representing all feasible
traces can be generated. The overall completion time of all the traces could be calculated
[31], and hence optimized enactment plans be generated. However, as a disadvantage
of this approach, generating the automaton is NP complete, and, unlike the proposed
approach, no heuristics is used. Additionally, CLIMB [20] could be used to generate
quality traces from declarative specifications, and calculate its completion time. Then,
the best traces could be selected. Unlike our approach, [20] neither considers optimality
nor resource availability. Finally, the time patterns presented in [16] are not considered
in [21,20].



Many constraint-based approaches for modelling and solving P&S problems have
been proposed [27]. Moreover, several proposals exist for filtering algorithms related
to specialized scheduling constraints [5]. Therefore, the considered problem could be
managed by adapting existing constraint-based approaches. However, these problems
include many non-typical scheduling constraints from ConDec, which entail complex
reasoning about several combined innovative aspects, such as the alternating executions
of repeated activities together with the varying number of times which these activities
are executed. Therefore, we implemented our own specific filtering rules to increase the
efficiency in the search for solutions.

Furthermore, constraint-based approaches for process design verification have been
proposed in process-aware IS [19]. Unlike our approach, they do not consider the gene-
ration of optimized process enactment plans.

Related to the clinical domain, the CIG languages presented in [21,20,6,15] do not
consider time patterns. However, there are approaches focussing on the treatment of
temporal aspects in CIGs (e.g., [29,9,2,8]). Opposed to our work, the works presented
in [29,9,2,8] do not consider optimality issues when managing temporal constraints.

9 Conclusions and Future Work

This paper presents a method for generating optimized enactment plans (e.g., minimiz-
ing overall completion time) from declarative temporal process models. The generated
plans can be used for different purposes, e.g., providing users with a personal schedule,
facilitating early detection of critical situations, or predicting execution times for pro-
cess activities. The proposed approach is applied to a range of test models of varying
complexity. Results indicate that, despite the NP-complexity of the considered pro-
blems, our approach produces solutions being optimal in many cases. As for future
work, we will explore various constraint-based solving techniques and analyze their
suitability for the generation of optimized enactment plans.
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