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ABSTRACT 

This paper focus on the design of adaptive mixed-signal 
fuzzy chips. These chips have parallel architecture and 
feature electrically-controlable surface maps. The design 
methodology i s  based on the use of composite transistors -- 
modular and well suited for design automation. This 
methodology i s  supported by dedicated, 
hardware-compatible learning algorithms that combine 
weight-perturbation and outstar. 

INTRODUCTION 

During recent years fuzzy inference has been 
successfully applied mostly to control problems in vehicies, 
robots, motors, power systems, home appliances, etc., and to 
decision-making systems and image processing, among 
others 111. In many of these systems, fuzzy inference can be 
realized by software on conventional microprocessors, to 
attain up to lRflip inference speed with 8 to 16 bits of 
resolution. However, those systems requiring high-speed, 
reduced power consumption, or smaller dimensions have 
prompted the development of dedicated hardware 121, in 
particular the use of mixed-signal VLSI chips 131. 

There are two major classes of analog fuzzy chips: fixed 
function and adaptive. The former are better suited for 
applications where the input-output function is already 
completely defined at the chip design phase, and does not 
change with operation. However this is not the situation in 
most practical cases, where the exact function is unknown a 
priori or must adapt to specific environmental characteristics 
141. Consequently, the necessity arises to combine the 
inference capabilities of fuzzy systems with the learning 
capabilities of neural networks, as already discussed by 
different authors [SI. Based on these developments. this 
paper presents a neuro/fuzzy analog chip architecture, circuit 
blocks for its realization in VLSI CMOS technology, and 
hardware-oriented algorithms to adapt its parameters 
through learning. Major emphasis is placed on the 
niodularitjl of the circuits used for adaptability, so that the 
proposed design methodology is applicable to both fixed and 
adaptive function chips. 

CHIP ARCHITECTURE 
The proposed neurolfuzzy chips are imp!ementations of 

Taakagi-Sugeno's singleton inference rules [ 81. This obtains 
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the output as a weighted linear combination of fuzzy basis 
functions, 

y = f ( x )  = c Y i " W i * ( X )  ( 1 )  
i =  1.N 

where x = {x,, x2..., x ~ } ~  is the input vector, each w:(x) cor- 
responds to a rule, and yi* is the singleton associated to it. The- 
basis functions are calculated from the input as, 

mzn i s i ,  i x l ) ,  s i2  tx2), ..., si,,, ( x , ~  J 

C min { s i l  (x l ) ,  s i2  ( x , ) ,  ..., siM ( x , , , ~  I 
WI*  (x) = ( 2 )  

i = l N  

where mini 0 )  is the multidimensional minimum and sii(xj) are 
membership functions which codify the degrees of matching 
between each input and its fuzzy iabels. 

Fig. I shows an architecture for the realization of ( 1 )  and 
CMOS schematics for the different operators involved, in a 
case where membership functions are bell-like, 

The rectangles in Fig. 1 represent composite transistors 
whose transconductance is controlled through a voltage, as 
required to incorporate programmability. The inputs to the 
circuits used for membership functions are voltages, while 
their outputs are currents. All the remaining circuits operate 
in current domain. 

For a given structure determined by the number of  
membership functions and ruies, the ti 
Fig. I is parameterized by the vector of singlctons y* = { y !  *, 
y z  ... ~ yl/}T and the vectors of centers E, = { E , , ,  Ez2 ... , 

and slopes S, = {Si!, S,, 
_ . _  , SiM}T of the membership functions (see the inset in  Fig.! 
for the shape). For fixed chip applications, these parameters 
are calculated off-chip and the circuits sized accordingly. For 
applications that require adaptability, the circuits used 
inlayers 1 (Fig. I(b)) and 4 (Fig. l(c)) must be programmable 
and the chips made to learn the required transfer function in 
situ. 

widths Al = {A,,, A;, _ _ .  , 
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c, 
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Fig. 1 (a) Chip Architecture; (b) Membership Function Circuit (and 

interface with maximum circuit); (c) Multi-input Maximum 
Circuit; (d) Normalization Circuit; ( e )  Singleton Weighting. 

ARDWARE COMPATIBLE LEARNING 

The clustering performed by the fuzzy inference 
procedure is similar to the role played by basis functions in 
the radial basis functions neural networks (RBF”) [8]. 
although radial basis functions are not commonly 

normalized. This leads us to explore learning strategies 
borrowed from lU3F”s: a clustering algorithm to 
determine membership functions and an error-correction 
algorithm for the weights in output layers. This has already 
been considered at the algorithmic level in [7], using 
backpropagation algorithm for the antecedents (layer 1) and 
least mean squares (LMS) for the consequents (layer 4). 
However, since backpropagation is hard to implement in  
hardware we consider weight perturbation [9] where 
derivatives are substituted by finite differences and feedback 
paths are avoided through the calculation of the influence of 
each parameter on the global error. If o is the learning 
parameter and ( ( 0 )  the global error at output, a change in the 
value of w is given by 

= -q [i (a) - i (a + p e r t )  1 
p e r t  (3) 

= G ( p e r t )  [ i ( w )  - i ( w + p e r t ) l  
where pert is a small perturbation, q is the learning rate, and 
both are constant. Note that weight update hardware involves 
evaluation of the error with perturbed and unperturbed weight 
and then multiplication by a constant. 

We use this strategy for the membership functions. With 
regards to the singletons, it is convenient to exploit the 
similarities of singleton fuzzy inference with the 
counterpropagation network. This becomes evident when 
one uses crisp rather than fuzzy sets. In this case the one 
dimensional projections of the membership functions are as 
depicted in -- similar to a trained counterpropagation 
network with Kohonen input nodes and Grossberg output 
node. Based on this, our learning algorithm uses the outstar 
rule, 

y i  i i C I %  = ? . . * i (>~ ,+p[ r -y (x ) l  (4) 
where T is the target output, m is the learning rate, and yi* is 
thz singleton wlpse ru?, a n t e c e F t  is maximum, that is 
w, (XI = m a x { w ,  (x), w2 (XI, -.wN WI. 

CIRCUIT STRATEGIES FOR ADAPTABILITY 
A MOST characteristic of primary importance for 

analog design is its operation as a VCCS -- modeled by a 
transconductance gain g,. Programmability can be achieved 
by exercising electrical control on g,. It is already featured 
by a simple transistor, as Fig. 2(a) illustrates for n-channel, 
where we assume operation in saturation region within 
strong inversion. Transconductance g, can be controlled by 
the biasing current IQ. However, this is inconvenient for  
fuzzy membership function blocks, where any change of the 
bias current modifies the electrical value of logical “1”. 

A technique to overcome this problem substitutes Fig. 
2(a) with one of the compound transistors depicted in Fig. 
2(b),(c),(d). Fig. 2(b) has the same g, expression as the 
simple transistor, although p is digitally-controlled. This is 
achieved by switching elementary devices ON and OFF to 
the signal path, under the control of a digital word B = {bo, 
b , ,  ..., bp} .  The sizes of these elementary devices are most 
typically binary-weighted, thus giving a quadratic 

2326 



.cP I 

Fig. 2 Transconductors: (a) Simple; (b) Digitally Controlled; (c) 
Series; (d) Parallel. 

relationship between g,,, and the decimal number coded in 
the digital word B. The curve at right of the figure illustrates 
this situation for a 3bit word. Fig. 2(c) is a series 
configuration where the bottom transistor cannot operate in 
saturation region due to the biasing voltage B. Thus, 
assuming that the top transistor operates in saturation region 
we have the enclosed g,-B shape which shows a minimum 
for B = 0, and grows monotonically for positive values of B. 
The exact shape depends on the values of PI and pz; as p1 
andlor pz increases the change rate of g, with B increases as 
well. 

Consider now the parallel configuration of Fig. 2(d) 
with transistors operating in saturation region. The shape of 
the transconductance expression is an ellipse in the plane g, 
- B. Actual devices cover only a portion of this ellipse, which 
includes the point of maximum transconductance at B = 0. 
and exhibit saturation regions for large negative and positive 
values of B. The solid line in the figure illustrates this, where 
the exact shape depends again on PI and P2. The saturation 
value for B < 0 is larger than that for B > 0 if p2 > p,, and 
smaller otherwise. 

Membership Function Programmability: Fig. 1 (b) 
features membership function characteristic whose width 
and center are separately controlled through E ,  and ITz, 

2 A  = E 2 - E 1  2E = E 2 1  + E  ( 5 )  
within the common-mode range of the differential pairs, and 
with a constraint on the minimum width, imposed by the 
operation of the differential pairs. 

The other tunable parameter, the slope at the crossover 
points, is given by, 

Note that S can be modified on-chip by changing IQ. 
However, this forces the inclusion of an additional clamping 
stage to maintain the level of logical 1 equal for all fuzzy 
labels, in spite of the actual value of the bias current for each 
corresponding differential pair. Consequently, the 
membership function shapes will be less smooth and even 
more important, the correlation between slope and width 
increases. For simpler design and easier on-chip tuning, all 
membership functions should have the same bias current; 
their slope is then controlled by using compound transistors 
in the differential pairs. 

Singleton Programmability: Similar to the 
membership function circuits, using compound transistors 
obtains a current mirror whose input-to-output 
characteristics are controlled through parameter B. Obtained 
parametric families for three compound transistor 
configurations are shown below in the section of Results. 
The observed nonlinearities are not problematic if the error 
signals that guide the learning procedure are measured on the 
chip. 

Discussion of Programmability Strategies: The three 
compound transistors of Fig. 2 have the common feature of 
controlling g, without changing the bias current. The pros of 
digitally-controlled configuration are easier interface to 
conventional equipments, lower sensitivity to technological 
parameters, and simpler design; the cons are larger area and 
power consumption. The other configurations have less 
control. Apart from these considerations, comparative 
evaluation of the different strategies for programmability is 
based on the following criteria: 

variation range of the adaptive parameter, 

variation range of the control parameter, 

0 influence of the controlled circuit on common-mode 
input range, and 

0 smoothness of the relationship between control 
parameter and slope. 

Each compound transistor exhibits pros and cons when 
contemplated in light of the above cited criteria. Thus, the 
series configuration features large control range and good 
input range since the global cut-in voltage equals a simple 
threshold voltage, V ,  On the contrary, it displays a low range 
of adaptive parameter -- a negative consequence of the low 
incremental change of the transconductance with B. On the 
other hand, the parallel configuration features better gain 
range, but worse input range since the cut-in voltage of the 
global transconductor depends on control parameter B. Its 
control range is also smaller and its nun-linearity larger than 
for the series configuration. Finally, since the switches in the 
digital configuration must work in saturation, its input range 
is smaller than the series and the parallel. As a counterpart, 
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its linearity is also smaller and it is the most flexible 
implementation in terms of control and adaptive ranges. 

RESULTS 

In this section some results are given to illustrate 
viability of proposed learning algorithm as well as circuit 
strategies for adaptability. 

Fig. 3 illustrates the performance of the proposed 
learning algorithm. The multidimensional function y = 2 + 
sin(~x)sin(ny) is taught to a nine-rule controller by showing 
36 input-output data pairs in the interval [0, 11. The system is 
initialized with membership functions uniformly distributed 
along the universe of discourse and all singletons equal to 2. 
Fig. 3 shows the root mean squared error (RMSE) for the 
proposed learning rule with pert = 0.05, q = 0.005 (see (3)), 
and y=O.Ol (see (4)). 

On the other hand, parametric curves in the left side of 
Fig shows different si j  shapes provided by Fig. l (b)  with 
different compound transistor configurations and different 
values of B. Finally, right side of the same figure illustrates 
singleton tunability. 
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