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Abstract. Model-Based Diagnosis allows to determine why a correctly
designed system does not work as it was expected. In this paper, we pro-
pose a methodology for software diagnosis which is based on the com-
bination of Design by Contract, Model-Based Diagnosis and Constraint
Programming. The contracts are specified by assertions embedded in the
source code. These assertions and an abstraction of the source code are
transformed into constraints, in order to obtain the model of the system.
Afterwards, a goal function is created for detecting which assertions or
source code statements are incorrect. The application of this methodol-
ogy is automatic and is based on Constraint Programming techniques.
The originality of this work stems from the transformation of contracts
and source code into constraints, in order to determine which assertions
and source code statements are not consistent with the specification.

1 Introduction

In recent decades, the Model-Based Diagnosis community has dedicated big ef-
forts to the development of a methodology for the diagnosis of industrial systems
based on integrated sensors which are supposed to work correctly. The diagnosis
aim is to detect and to isolate the reason of an unexpected behaviour; in other
words, to identify the parts which fail in a system. In order to explain a wrong
behaviour, the diagnosis process uses a set of observations and a model of the
system. In this work, a methodology for diagnosing software is proposed, that
is, for isolating errors in programs.

During the recent decades, the number of techniques for automatically testing
and debugging software has increased substantially. The testing techniques allow
to detect if there are errors in a software development, but it is difficult to isolate
the errors if only testing techniques are used. The debugging techniques allow
to isolate the errors of a program in an interactive way. Our objective is the
application of the Model-Based Diagnosis techniques to a program, in order to
isolate the errors of a program.

In order to obtain the errors of a program, we have considered the deep inte-
gration between the different areas derived from Software Engineering (Design
by Contract and Testing techniques) and Artificial Intelligence (Model-Based
Diagnosis and Constraint Programming). Our software diagnosis methodology



has two different steps: first, it is necessary to capture the specification of the
correct behaviour of a program (using DbC, testing or expert information); and
second, it is necessary to isolate the error (using Model-Based Diagnosis and
Constraint Programming techniques).

The main idea is to transform the contracts and source code into an abstract
model based on constraints, in a Max-CSP (Maximal Constraint Satisfaction
Problem). This model enables the detection of errors in contracts and/or in a
source code. A Max-CSP is a framework for modelling and solving real problems
as a set of constraints among variables, and a goal function for satisfying the
maximum number of constraints.

Design by Contract (DbC) was proposed in [1]. DbC improves the software
quality. A previous paper [2] proposed two measures in order to validate the ben-
efits of using DbC: robustness and diagnosability. The robustness is the degree
which the software is able to recover from internal faults that would otherwise
have provoked a failure. Diagnosability expresses the effort required in the local-
ization of a fault as well as the preciseness allowed by a test strategy on a given
system. The results show that robustness and diagnosability improve rapidly
with only a few contracts, and for improving the diagnosability, the quantity of
the contracts is less important than their quality.

There are different techniques to automate the testing and debugging of a
program, such as, slicing techniques [3], model-based debugging[4], model check-
ing [5] or delta debugging [6]. Our proposal is different from these techniques,
because we use DbC to obtain a more precise location of the errors in a pro-
gram. The DbC specification is also used in other techniques for the verification
of the component-based programs. The objective of our methodology is not only
the verification of the software; our goal is to obtain the isolation of errors in a
program, what is a diagnosis methodology. This paper is an improvement and
an extension of our own previous work [7].

The remainder of the paper is organized as follows. Section 2 shows the di-
agnosis framework. Section 3, 4 and 5 explain the framework modules. Finally,
conclusions are drawn and future work is outlined.

2 Diagnosis Framework

Figure 1 represents the complete diagnosis process. The process is based on three
modules. The Abstract Model Generation (AMG) module receives the source
code and contracts of a program and obtains the abstract model. The abstract
model is a set of constraints.

The Error Detection (ED) module detects the errors of an executed pro-
gram. The following definitions specify the kind of errors that this module can
detect.

Definition 1. An infeasible assertion is a non-viable assertion due to conflicts
with previous assertions, fields or variables values. The set of assertions of a
contract is verified when a program is executed. An infeasible assertion is a
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Fig. 1. Diagnosis framework

wrongly designed assertion that cannot be satisfied, and it stops the program
execution when it is not necessary.

Definition 2. A bug is a statement or a set of statements that does not allow us
to obtain the correct result. This paper does not consider the errors detected in
compilation time (such as syntax errors), nor dynamic errors (such as exceptions,
memory access violations, infinite loops, etc). The bugs under consideration are
minor variations of the correct program, such as errors in assignment statements,
or errors in the conditions of looping statements or conditional statements.

The ED module receives the set of basic blocks obtained in the AMG module. In
our approach, when a program is executed, the information of the executed basic
blocks is stored by the ED module. This information will be used for detecting
the errors and for diagnosing the system.

The Diagnosis Generation (DG) module obtains the diagnosis for a failed
assert or erroneous outputs. The diagnosis of a program will be a set of infeasible
assertion and/or bugs. The following subsections describe the modules of the
diagnosis framework.

3 Abstract Model Generation (AMG)

In Model-Based diagnosis approaches, a model of the system and a set of ob-
servations enable detecting and isolating the reasons of an erroneous behaviour



of a system. The system model simulates the components and their connections
by using constraints where the variables represent the inputs and outputs of
components.

In an Object-Oriented (OO) program the methods of different objects are
linked to obtain an specified behaviour. Each method of an object can be con-
sidered as a component which generates a result depending on the input values,
the field values, and the statements of the method (which can be considered as
subcomponents). The pre-treatment of the source code and program contracts
enables to obtain a model of a program. The following subsections show the
process for generating this model.

3.1 Determining Basic Blocks

Every OO program is a set of classes. A class is made of methods, fields, asser-
tions, etc. In order to automate the diagnosis of a program, it is necessary to
divide the system into subsystems. Each class is transformed into a set of basic
blocks (BB) by using a parsing program. These basic blocks can be: blocks of
invariants, blocks of static class fields, blocks of object attributes, and blocks of
object or class methods.

– Block of invariants (IB): It includes the set of invariants of a class.
– Block of static fields of a class (SB): It includes the set of static field decla-

rations and static code blocks of a class.
– Block of object fields (OB): It includes the set of object field declarations of

a class.
– Block of class method or object method (MB): For each constructor or

method of a class, a block is obtained. This block is the set of all the state-
ments and assertions (such as preconditions, postconditions or loop invari-
ants) which are included in the method. If the method is static, the block is
named a class method block; otherwise it is named an object method block.

Each program class can be transformed into a set of basic blocks (BBs) equiv-
alent to the Classi. Each method-block is a set of sub-blocks such as conditional
blocks (conditional statements) or loop blocks (loops). In our methodology the
assignments are defined as the indivisible blocks.

3.2 Program Transformation

The abstract model is a set of constraints which represents the behaviour of
the contracts (assertions) and the source code (statements) of a program. Our
approach uses the function A2C (assertion to constraints) for transforming an
assertion into constraints. The transformation of the source code into constraints
appeared in a previous work [7]. The process is based on the transformation of
statements of each basic block. Our approach uses the function P2C (program
to constraints) for transforming a source code into constraints. The main ideas
of the transformation are:



– Indivisible blocks:
Assignments : {Ident := Exp}
The assignment statement is transformed into the following equality con-
straint: {Ident = Exp}. If the assignment statement is not a part of the
minimal diagnosis, then the equality between the assigned variable and the
assigned expression must be satisfied.
Method calls and return statements: For each method call, the constraints
defined in the precondition and postcondition of the method are added. The
method calls allow to link basic blocks and to obtain the order of the blocks
in the program execution.

– Conditional blocks: {if (cond) {IfBlock} else {ElseBlock}}
There are two possible paths in a conditional statement depending on the
inputs of the condition. The constraints of a conditional statement include
the condition and the inner statements of the selected path (only one of the
two possible paths is executed).

– Loop blocks: {while (cond) {BlockLoop}}
In a loop, the number of iterations depends on the inputs. Each iteration is
transformed into a conditional statement. The structure of a loop is simu-
lated as a set of nested conditional statements. In [7] a method is proposed
to reduce the model to less than n iterations, but if the invariant of the loop
exists, the diagnosis process is more precise.

4 Error Detection (ED)

This module detects the errors of an execution of a program. This module can
detect failed assertions or erroneous outputs. A failed assertion is an assertion
which stops the program due to the conflicts with previous assertions, fields or
variables values. The erroneous outputs are detected when outputs are different
of the correct results. These correct results must be specified by contracts, test
cases or expert information. The Error Detection ( ED) module receives the set
of basic blocks obtained by the AMG module. At this point, it is important to
introduce one concept from the imperative programming.

Definition 3. A Path is the sequence of statements that are executed. The
executed path of a program depends on the inputs. Conditional statements, loop
statements and method calls enable the incorporation of more or less statements
to a program execution.

In a Object-Oriented Imperative Language, a path of a program is a sequence
of basic blocks obtained by linking constructors and method calls. In our ap-
proach, the diagnosis of the program is based on a model generated by linking
the constraints obtained from the basic blocks of the executed path.

The erroneous outputs are detected by using DbC specification, test cases and
expert information. If the DbC is too weak, an expert can decide which should
be the correct inputs and outputs. Testing techniques enable the selection of the



most significant observations in order to detect errors in programs. In [8], the
objectives and complications of good Testing are set out.

Definition 4. A Test case (TC) is a set of inputs (class fields, parameters or
variables), execution preconditions, and expected outcomes, which are developed
for a particular objective, such as to exercise a particular program path or to
verify the compliance with a specific requirement.

When a program is executed by using a test case, the information about the
executed basic blocks is stored, such as the executed path, values of the variables,
and the results of the assertion evaluations. This information is necessary for the
following Diagnosis Generation module.

5 Diagnosis Generation (DG)

The DG module receives the errors detected by the ED module. These errors
can be failed assertions or erroneous outputs. If the error is a failed assertion,
the cause of the errors can be infeasible assertions and/or bugs. If the error is
an erroneous output, the cause of the problem must be due to bugs. The follow-
ing subsection shows the transformation of an abstract model into a diagnosis
problem in order to detect infeasible assertions and/or bugs.

5.1 Diagnosis Problem

A diagnosis is a hypothesis about which changes are necessary in a program to
obtain a correct behavior. The definition of diagnosis, in Model Based Diagnosis
(MDB), is built up from the notion of the abnormal predicate [9]: AB(c) is a
boolean variable which holds when a component c of the system is abnormal.
For example, an adder component is abnormal if the output of the adder is not
the sum of its inputs. A diagnosis specifies whether each component of a system
is abnormal or not. In order to clarify the diagnosis process, some definitions
must be established.

Definition 5. System model (SM) is a tuple {PD(PC), TC} where: PC are
the program components, that is, the finite set of statements and asserts of a
program; PD is the program (statements and asserts) description, that is, the
set of constraints obtained of the PC; and TC is a test case.

Definition 6. Diagnosis : Let D ⊆ PC, D is a diagnosis if PD’ ∪ TC is satisfiable,
where PD’ = PD(PC − D).

Definition 7. Minimal Diagnosis is a diagnosis D that for no proper subset D’
of D, D’ is a diagnosis. The minimal diagnosis implies to modify the smallest
number of program statements or assertions.

The goal is to identify the minimal diagnosis consistent with a test case. The
constraints of the PD of a program will be obtained as it was explained in



Table 1. Program model of the modified Toy problem

TC PC PD

Inputs : {a = 3, b = 2, c = 2, S1 : int x = a * c (AB(S1) ∨ (x == a * c))∧
d = 3, e= 3} S2 : int y = b * d (AB(S2) ∨ (y == b * d))∧

Outputs : {f = 12, g = 12} S3 : int z = c + e (AB(S3) ∨ (z == c + e))∧
Test Code: S1 .. S5 S4 : int f = x + y (AB(S4) ∨ (f == x + y))∧

S5 : int g = y + z (AB(S5) ∨ (g == y + z))∧
Post : f = a * c + b * d (f == a * c + b * d)∧

∧ g = b * d + c * e (g == b * d + c * e)

section 3. When a program is executed, the order of the assertions and statements
is very important. It is necessary to maintain this order in the abstract model
(based on constraints). Hence, the program under analysis is transformed into a
static single assignment (SSA) form. In SSA form, only one assignment is made
to each variable in the whole program. For example, the code x=a*c; ...x=x+3;...
{Post:x =...} is changed to x1=a*c; ...x2=x1+3;... {Post:x2 =...}. More details
about SSA form are shown in [10].

Table 1 shows the PD of the toy program derived from the standard toy
problem used in the diagnosis community [9]. The program does not reach the
correct output because the third statement is an adder instead of a multiplier.
In order to obtain the minimal diagnosis a Maximal Constraint Satisfaction
Problem (Max-CSP) is generated. A Max-CSP is a CSP with a goal function
to maximize. The objective is to find an assignment of the AB variables that
satisfies the maximum number of the PD constraints: Goal Function = Max(N
AB(i) : AB(i) = false). The diagnosis process by using a Max-CSP was shown in
a previous work [11]. For example, by using a Max-CSP, the minimal diagnoses
for the toy program would be: {{S3}, {S5}, {S1, S2}, {S2, S4}}.

5.2 Diagnosing Contracts

The assertions can be checked by using test cases or not.

– Diagnosis of assertions without using test cases: Two kinds of checks
are proposed at this point:
• Checking the invariants of a class: The invariants must always be satis-

fied. Hence, a Max-CSP is generated by using the invariants of each class
in order to check if all the invariants of a class can be satisfied together.

• Checking the assertions of the methods: The precondition and postcon-
dition of a method must be feasible with the invariants of a class. In
order to detect conflicts between the precondition or the postcondition
with the invariants, a Max-CSP is generated by using the constraints
associated with the assertions.

The solutions of these Max-CSP problems enable the verification of the fea-
sibility of assertions.



/** 
* @inv getBalance()>= 0
* @inv getInterest >= 0
*/

public interface Account {

    /** 
* @pre income > 0
* @post getBalance() >= 0
*/

public void deposit (double income);

    /** 
* @pre withdrawal > 0
* @post getBalance() ==
* getBalance()@pre - withdrawal
*/

public void withdraw (double withdrawal);

    public double getBalance (); 

} 

public class AccountImp implements Account { 

    private double interest; 

    private double balance; 

    public AccountImp() { 
this.balance = 0; 

    } 

    public void deposit (double income) { 
this.balance = this.balance - income; 

    } 

    public void withdraw (double withdrawal) { 
this.balance = this.balance - withdrawal; 

    } 

    public double getBalance() { 
return this.balance; 

    } 
}

Fig. 2. Interface Account and class AccountImp source code

Table 2. Diagnosis of the method Withdraw by using a test case

Inputs: {balance@pre = 0, withdrawal = 100}
TC Outputs: {balance = 0}

Test code: Method Withdraw

Inv. (AB(Inv) ∨ (balance@pre >= 0)) ∧
PD Pre. (AB(Pre) ∨ (withdrawal > 0)) ∧

Post. (AB(Post) ∨ (balance = balance@pre - withdrawal)) ∧
Inv. (AB(Inv) ∨ (balance >= 0))

– Diagnosis of assertions by using test cases: It is possible to obtain
more information about the viability of the method assertions by applying
test cases to the sequence {invariants + precondition + postcondition +
invariants } in each method.

Example. In order to clarify the methodology, the class AccountImp is used.
This class implements the interface Account that simulates a bank account. It
is possible to deposit money and to withdraw money. Figure 2 shows the source
code. The method deposit has a bug, because it decreases the account balance.

Table 2 shows the PD for the method withdraw. In this example there are
four constraints: the invariants before and after the method, the precondition,
and the postcondition. The test case specifies that the initial and final balance
of the account must be 0, when a positive amount is withdrawn.

The invariant specifies that the balance must be equal or greater than zero
when the method finishes, but if this invariant is satisfied, it implies that the pre-
condition and the postcondition could not be satisfied together. The postcondi-
tion implies that balance = balance@pre - withdrawal, that is, 0−withdrawal > 0,
and this is impossible if the withdrawal is positive. The error stays in the precon-
dition, since this precondition is not strong enough to stop the program execution
when the withdrawal is not equal or greater than the balance.



5.3 Diagnosing Source Code (with Assertions)

As we are looking for the minimal diagnosis, this work proposes to use a Max-
CSP in order to maximize the number of satisfied constraints of the PD. The
constraint obtained by the assertions must be satisfied, because these constraints
give us information about the correct behaviour. But the constraints obtained
from the source code can be satisfied or not. The result of the diagnosis process
depends on the outputs obtained by using the test case and the final state of the
program:

– State 1: If the program ended up with a failed assertion, and did not reach
the end as specified in the test case, then the error can be a strict assertion
(the assertion is very restrictive) or one or more bugs before the assertion.
In order to determine the cause of the problem, the program should be
executed again without the assertion, in order to check if the program can
finish without the assertion.

– State 2: If the program ends, but the result is not the one specified by the
test case, then the error can be a bug, or an assertion which is not enough re-
strictive (this enables executing statements which obtain an incorrect result).
If the error is a bug, the resolution of the Max-CSP provides the minimal
diagnosis that includes the bug. If the error is due to a weak assertion, then
a deeper study of the assertions is necessary. At present, we are researching
this point.

Example. In order to clarify the methodology, an example is proposed in
Table 3. This is an account with an initial balance of 300 units. Two sequential
operations are applied (a withdrawal of 300 units and a deposit of the same
quantity). The final balance should be 300 units. The constraints solver deter-
mines that the error is caused by the statement included in the method deposit.
If the method is examined closely, it can be seen that there is a subtraction
instead of an addition. The postcondition of this method was too weak, and did

Table 3. Class AccountImp checking by using a test case

Inputs: {balance@pre = 300, withdrawal = 300, income = 300}
TC Outputs: {balance = 300}

Test code: S1: account.withdraw(withdrawal)
S2: account.deposit(income)

Inv. balance0 >= 0 ∧
Pre. withdrawal > 0 ∧
Code (AB(S1) ∨ (balance1 = balance0 - withdrawal)) ∧
Post. balance1 = balance0 - withdrawal ∧

PD Inv. balance1 >= 0 ∧
Pre. income > 0 ∧
Code (AB(S2) ∨ (balance2 = balance1 - income)) ∧
Post. balance2 >= 0 ∧
Inv. balance2 >= 0



not permit to detect the error. The statement included in the method withdraw
influences the final result of the balance; however, it is not a possible bug because
of the postcondition, since it is strong enough to guarantee the balance value at
the end of the method. We can conclude that if the contracts are strong enough
the diagnosis will be better.

6 Conclusion and Future Work

This paper is an improvement of a previous work [7] in order to automate the
diagnosis of DbC software. This approach incorporates a more precise way to
diagnose software since more DbC characteristics are incorporated. As shown by
the studied examples, the stronger the contracts are, the better the diagnosis is,
because the framework has more information of the expected behaviour.

A more complex diagnosis process is being developed in order to obtain a
more precise minimal diagnosis. We are extending this methodology to include
all the characteristics of an Object-Oriented language, such as inheritance, ex-
ceptions and concurrence. Another important direction is the application of the
methodology to more complex and real examples where the transformation of
the system into constraints is less straightforward.
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