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A neural network for semantic labelling of structured information
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Abstract

Semantic labelling consists in assigning known labels to the data from a source of structured information.
This can be useful in a variety of tasks related to information extraction and integration into information
systems and their local ontologies. Semantic labelling can be seen as a classification problem in which the
input is structured information from which features can be computed in order to apply machine learning
techniques. The existing proposals, based on machine learning so far, have focused on what features should
be computed while relying on simple classification models like logistic regression or random forest, and may
not be powerful enough to properly classify some classes, especially in scenarios in which a large number of
features contain the necessary information but it is hard for the classifiers to properly combine them. In this
paper, we propose and test the novel application of neural networks to semantic labelling, which benefits
from non-linearity and can deal with the increasing number of features. Our proposal has been validated
with datasets from three real world sources, and our conclusion is that state-of-the-art neural networks
consistently improve the accuracy of the labelling when compared to traditional classification.

Keywords: Semantic labelling, Information Integration, Neural Networks

1. Introduction 20 best describe each element according to its fea-
a1 tures. Figure 1(a) shows an example of a structured
2> dataset from the Jisc repository (Jisc, 2018), dis-
23 playing labelled information about a R&D project
2 related to education. A semantic labelling pro-
25 posal would learn from the examples in this and
26 other datasets a classification model for each class,
27 such as "jisc:name", "jisc:title", or "jisc:start-date".
28 Then, when fed a new unlabelled dataset like the
20 one in Figure 1(b), it would iterate every element in
30 it and endow it with a known class. Consequently,
;1 semantic labelling can be seen as a classification
32 problem in which the input is one of the elements in
33 the structure and the features are whatever aspect
s« are measured from them. In the former example,
ss instance 12 could be classified as a "jisc:title" after
se an analysis of some of its features, including the
sz number of words that start with an uppercase let-
ss ter and the position of the instance in the structure,
3e 13 could be classified as a "jisc:start-date" because
s of the number of digits, and I10 could be classi-
*Corresponding author a1 fied as a "jisc:status" because programme statuses
Email addresses: dayalal@us.es (Daniel Ayala), «2 only have a few possible values (”Complete", "Run-

borregoQus.es (Agustin Borrego), inmahernandez@us.es a3 ning", etc.), and the value of the instance matches
(Inma Hernandez), druiz@us.es (David Ruiz)

The Web is a rich source of semi-structured data
which usually has to be integrated into information
systems before its exploitation (Knoblock et al.,
1998). The first step towards the integration in
one such system is the crawling of the Web to ob-
tain a set of HTML documents (Hernandez et al.,
2018, Batzios et al., 2008). The second step is to
extract structured information from them (Sleiman
and Corchuelo, 2013, Wang et al., 2007). The ex-
tracted structured information lacks semantics, so
the third step is to establish correspondences be-
tween the data and a known ontology. This is
the goal of semantic labelling, which consists in
labelling elements in data structures with known
classes from a Web ontology (Pham et al., 2016).
Semantic labelling proposals take the structured
elements as input, and assign them one or sev-
eral labels, which correspond to the classes that

Preprint submitted to Elsevier February 11, 2019



44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

20

91

92

93

24

95

that of other known examples of the same class.

We can apply the same model to data from any
source in order to label it with the same known
classes, as long as the model was able to properly
learn what features can be used to identify each
class. Semantic labelling is therefore related to the
integration of heterogeneous information from dif-
ferent sources by modelling classes in structured
information. Beyond the direct integration of in-
formation, the modelling has other applications
such as information extraction (Banko et al., 2007)
(which, as we mentioned, is also a step of informa-
tion integration), information verification (Kushm-
erick, 2000, Lerman et al., 2003, McCann et al.,
2005), or ontology matching (Euzenat and Shvaiko,
2013). These areas are all tightly related to the
Web and the integration of information from exter-
nal sources.

The current trend in the state of the art proposals
is to focus on feature engineering(Ayala et al., 2019,
Ramnandan et al., 2015, Neumaier et al., 2016,
Pham et al., 2016), that is, identifying new fea-
tures that endow the classifier with enough power
as to discern between different classes, even when
those classes are highly similar like "jisc:name" and
"jisc:title". Devising elaborate features is crucial to
achieve good accuracy, and the most recent work
related to semantic labelling (Ayala et al., 2019)
has resulted in a large explosion of features, with
potentially hundreds of them. However, our study
of the literature reveals that existing proposals are
based on baseline classification techniques, neglect-
ing advanced classification techniques that use the
features efficiently. The most recent proposals only
use random forest or logistic regression classifiers,
and do not study more elaborate alternatives, leav-
ing room for improvement.

Our hypothesis is that neural networks can sig-
nificantly improve the accuracy of a semantic la-
belling model, while using the same initial low-level
features as a traditional classification model. While
some areas like Natural Language Processing, Com-
puter Vision, or even other tasks related to integrat-
ing information from external sources like informa-
tion retrieval from the Web have been transformed
by the successful application of modern neural net-
work technology (Deng and Yu, 2014), semantic
labelling has so far relied on the more traditional
machine learning techniques we have mentioned.
While the potential of neural networks has been
tested in some related tasks like information extrac-
tion, to the best of our knowledge it remains com-

26

pletely unexplored in the field of semantic labelling,
which motivated us to study it as a novel applica-
tion, checking what strategies and architectures are
applicable and what results they achieve. Our ex-
periments, in which we use a neural network with
dense layers for semantic labelling in several scenar-
ios using real world data, reveal that the accuracy of
the labels improves consistently when compared to
four traditional classification techniques, even when
there is little margin for improvement.

The rest of the paper is organised as follows: Sec-
tion 2 reports on some preliminaries that are neces-
sary to understand the domain of the problem; Sec-
tion 3 describes the analysis of the relevant propos-
als we have identified in the literature; Section 4 de-
scribes the nature of features in semantic labelling;
Section 5 contains a detailed description of the ap-
plication of neural networks to semantic labelling;
Section 6 describes the experiments we used to test
our hypothesis and their result; finally, Section 7
recaps on our main conclusions.

2. Preliminaries

In this Section, we introduce definitions of con-
cepts related to the problem of semantic labelling.

Class: a piece of text that denotes semantics in
a Web ontology. The output of semantic la-
belling is a set of labels that should match
the class of every data item. Example: classes
"jisc:Project" and "jisc:start-date".

Attribute: A data item with a textual value that
can be an instance of a class and have a label
that denotes it. The textual value can repre-
sent a number, date, boolean, or any other data
type. Note that in this context, an attribute
does not refer to an element of the schema,
but to a specific data item. It may be possible
to have an attribute that does not belong to
any class in a particular ontology, i.e., a piece
of text that is automatically extracted from a
website by a crawler but does not correspond
to any known class. Example: in Figure 1(a),
one of the two attributes of class "jisc:name"
has a textual value of "Support & Synthesis
Project", and the attribute of class "jisc:start-
date" has a textual value of "01/08/2009". In
Figure 1(b) there are several attributes: 12 (a
name), I3 (a start date), I5 (a title), I6 (a de-
scription), I7 (a doi), 19 (a name), 110 (a home-
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jisc:Project
I—e jisc:name — “Support & Synthesis Poject’
[—e jisc:start-date - "01/08/2009”
[—e jisc:Organization
jisc:name - “CETIS, University of Bolton”
—e jisc:Article
—e jisc title - “Programme Definition”
—e jisc:description - “Programme Definition document ..”
—e jisc:status - “In Progress”
'—e jisc:Programme
I—e jisc:name - “Flexible Service Delivery Programme”
I—e jisc:homepage - “http://www jisc.ac uk/whatwedo/...”
—e jiscstatus - “Running’

(a) Labelled dataset.

i

—e 12 - “Physical Sciences Subject Portd for the RDN”
—e 13 - “19/12/2002

—e 14

—e 15 - “Subject portal”

—e 16 - “This proposal will develop a...”

—e |7 - “d0i:12.3456/7890"

Lo I8

—e 19 - “Infrasfructure programme”
—e 110 - “http//www.jisc.ac .uk/whatwedo/...”
—e 11 - “Complete”

(b) Unlabelled dataset.

Figure 1: Dataset examples.

page), and I11 (a status), but their class is un-
known by the system. Attribute I7 is clearly
a doi, but there is no doi class in the known
ontology, so it would have no class in it.

Record: a text-less data item that has other at-

tributes or records as children, may be an in-
stance of a class and have a label that de-
notes it. Record classes admit a certain de-
gree of variability in their schema, that is,
different records of the same class may have
variable attributes and records if some of
them are optional or have different multiplic-
ity. Example: in Figure 1(a) there are four
records. The "jisc:Project" record contains
instances of classes "jisc:name", "jisc:start-
date", "jisc:Organization", "jisc:Article", and
"jisc:Programme". Some of them are
also records with their own instances, like
the "jisc:Organization" record that has a
"jisc:name. Figure 1(b) also shows several
records: I1 (a project), I4 (an article), and
I8 (a programme). Note that I1 belongs to
class "jisc:Project", but it does not contain any
"jisc:Organization" record, since it is optional.

Dataset: a set of attributes and records in a hi-

erarchical structure. Usually, there is a single
root record at the first level of the dataset, but
nothing prevents the presence of several ones,
having a forest-like structure. Example: Fig-
ure 1(a) displays a dataset with 4 records and
9 attributes, and the root is the "jisc:Project"
record. Figure 1(b) displays a dataset with 3
records and 8 attributes, and the root is the I1
record.
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Model: a classifier that takes attributes as the in-

put, and outputs their label. A model could
classify a single instance or a group of them.
Example: a random forest classifier that takes
the attributes in Figure 1(b), computes some
features, and outputs a label for each of them.

Feature: a numeric or categorical measure that

can be taken from an attribute or group of at-
tributes. It can be seen as a function that takes
an instance or group of attributes as input and
outputs a feature value. Example: a feature
that computes the number of digits in the tex-
tual value of an attribute, which in Figure 1(b)
would output 0.0 for 12 and 8.0 for I3.

Internal model: a model that learns from a set

of examples (labelled attributes) by using fea-
tures obtained from the data item themselves,
without relying on external sources of data.
Example: a classifier that computes features
related to the format of the attributes such as
the number of uppercase letters or the average
word length, and labels them using a random
forest or logistic regression classifier.

External model: a model that learns from a set

of examples by using at least one feature
that requires an external knowledge base (e.g.
YAGO, DBpedia) to be computed. These fea-
tures are usually computed by mean of queries
to the knowledge base. Example: a classifier
that queries DBPedia using the textual value
of attributes and labels them with the class of
the result with the highest score.
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3. Related work

In the literature, there are several types of pro-
posals that are able to provide structured informa-
tion with labels that describe it. These propos-
als have different goals, but they can all be ap-
plied to the problem of semantic labelling, which
is why we include them in this analysis. Further-
more, these proposals work with different types of
features; however, in our analysis, we focus on the
type of classification technique on which they are
based, regardless of the specific features. Note that
none of them use neural networks, and instead use
more traditional techniques like random forest, lin-
ear regression, and nearest neighbour classifiers.

The proposals by Limaye et al. (2010), Venetis
et al. (2011), Mulwad et al. (2013), Ritze et al.
(2015), and Zhang (2016) focus on labelling Web
tables, which may include labels for individual cells,
rows, columns, and relationships between columns.
Tables can be transformed into generic structures,
each row being a record, and its cells the attributes.
These proposals use knowledge bases to perform the
labelling. These contain a set of entities that belong
to classes, and usually offer the possibility of query-
ing them to obtain entities that seem to match the
query. In most cases, tables are labelled in an it-
erative process by first obtaining a set of candidate
entities for each cell, then labelling the columns ac-
cording to the most frequent classes among the can-
didate entities, and then refining the candidates by
limiting them to the column classes. These propos-
als are based on external models, since the classifi-
cation is ultimately based on the score of queries to
external sources, which in turn usually depends on
the TF-IDF score and cosine distances computed
from the documents in the knowledge base. The
labels are limited to the existing classes in the ex-
ternal source.

The proposals by Ramnandan et al. (2015),
Pham et al. (2016), Neumaier et al. (2016), and Ay-
ala et al. (2019) label attributes by comparing them
to sets of examples of known classes. The labels are
obtained through a classification process, based on
features such as the value of numeric attributes,
string distance metrics, similarity metrics, or fea-
tures related to the structure of the data. These
proposals are based on internal modes. The pro-
posal by Ramnandan et al. (2015) selects the class
with the highest score when querying a Lucene in-
dex that contains examples of a class in each stored
document. The proposal by Pham et al. (2016)
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uses a one-vs-all logistic regression classifier with
several similarity measures. The proposal by Neu-
maier et al. (2016) uses a nearest neighbour clas-
sifier. The proposal by Ayala et al. (2019) uses a
one-vs-all random forest classifier.

In addition to the former proposals, those by
Kushmerick (1999), Lerman et al. (2003) and Mc-
Cann et al. (2005) focus on information verification,
and their goal is to confirm that a dataset is correct
according to the reference model. They learn from
a number of verified labelled examples, they com-
pute the collections of values of each feature, and in-
fer the statistical normal distributions that best fit
them. When a dataset must be verified, the values
of its features are compared to the inferred distribu-
tions. If some of the values associated to an element
or the entire dataset deviate too much from the ver-
ified ones according to statistical tests, the dataset
is considered to be anomalous. Information veri-
fication is very similar to semantic labelling, since
verifying an already labelled dataset amounts to ap-
plying semantic labelling to re-compute the set of
labels for the dataset and checking that the two sets
of labels are identical.

We have observed that the classification of in-
stances is not trivial when the number of classes is
large. The similarity between classes may be such
that even if the computed features hold enough in-
formation to differentiate classes, their efficient use
by a model may require complex non-linear com-
binations that represent a challenge to most tech-
niques. For example, instances of classes "jisc:title"
and "jisc:name" are usually similar, and correctly
separating their classes could require a combina-
tion of several features related to their length, pres-
ence of certain characters or tokens, and other
measures. The existing proposals use techniques
that do not deal well with cases that require non-
linearity, which motivated us to implement the
novel application of neural network techniques to
semantic labelling.

4. Features

Features in the field of semantic labelling do not
necessarily measure the occurrence of specific words
in the textual value of attributes; instead, they are
mostly related to its format, i.e., the kind of char-
acters and tokens it contains, how long it is, or how
similar it is to sets of examples according to dif-
ferent distance functions. The features catalogue
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does not necessarily depend on the particular clas-
sification algorithm that is being applied, i.e., we
can create several classifiers for semantic labelling
using the exact same features.

In the past, the features set used in related
proposals was limited to around a dozen fea-
tures (Kushmerick, 2000, Lerman et al., 2003, Mc-
Cann et al., 2005). However, the most recent work
has started to develop larger, more expressive sets
of features to include as much information as possi-
ble in the input. One of the recent additions are the
so-called parametric features (Ayala et al., 2019).
They are a kind of feature that fits well this need
to include as much low-level information as possi-
ble in the first layer. They take a parameter, which
means that each parametric feature results in a fam-
ily of features, each of them related to a different
value of the parameter. The parameter can be one
of the known classes, so that each variant of the fea-
ture gives information related to it. For example,
feature F3 expands into 6 different features of the
same family.

Table 1 displays the final features that we have
selected from the literature. Note that several fea-
tures are parametrical, three of them on a per class
basis. Features Fy, Iy, F3, and Fy give information
about the textual format of the attribute. Fea-
tures F5 and Fg help detect starting and ending
patterns. Feature F; measures overall similarity to
each class. Feature Fy gives additional informa-
tion when an attribute has a numeric value that
can be considered a feature itself. Features Fy,
Fip and Fi; give information about the structure
in which the attribute is present. For example,
if we have trained a classifier with three known
classes: "jisc:title", "jisc:name" and "jisc:start-
date", feature F7, "Average edit distance", would
have three versions: "Average edit distance to ex-
amples of class jisc:title/jisc:name/jisc:start-date".
With three classes there would be a total of 35 fea-
tures. Since in the real world cases we have studied
there are usually several dozens of classes, paramet-
ric features can result in a features explosion which
is difficult to handle for traditional classifiers.

5. Our proposal

In this Section we present the neural network we
have devised. First, we describe the application
workflow in which the neural network is framed.
Then, we describe in detail the architecture of the
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network. Finally, we justify the choices in the ar-
chitecture and analyse why some popular strategies
could not be applied.

5.1. Workflow

Figure 2 summarizes the classification workflow.
The original input is a dataset containing several
records and attributes. Each individial attribute
is fed to a features calculator that computes the
low-level features. The features must be any mea-
surement that we can take from the text of an at-
tribute and the structure of the dataset that con-
tains it. The neural network should benefit from a
large number of low-level features that can later be
combined.

The features are used to create a vector that is
fed to the first layer of the neural network, whose
size is always equal to the number of features. After
going through the hidden layers, the output layer,
whose size is always equal to the number of known
classes, gives a score to each class, which is used to
select the final label.

A strengh of our proposal is that it labels individ-
ual instances as opposed to labelling a group of sev-
eral attribute instances that are known to share the
same class. For example, the proposal by Ramnan-
dan et al. (2015) would take as input a set of several
dozens or hundreds of instances and output a single
label for them. We consider individual labelling to
be a more challenging task due to the limited infor-
mation available during classification. One possible
real-world scenario in which the inputs are individ-
ual attributes is unsupervised information extrac-
tion (Roldan et al., 2017), which extracts general
useful information from web pages in generic vari-
able structures with no schema by means of univer-
sal rules that do not require training. However, the
application to groups of attributes would be trivial,
simply requiring a change of features, so that they
are computed from several instances instead of a
single one.

While structured datasets may include both
records and attributes, our application of neural
networks focuses on classifying attributes, so that
our results are comparable with those in the re-
lated work, which does not include the labelling
of records in many cases. However, the attributes
used for training and testing are still positioned in
a structured datasets, and consequently, features
can make use of the records or their structure (for
example, a feature could be "Number of adjacent
records").



Feature

Description

Number of occ. of

The number of occurrences in the attribute of symbols of type S (letters, numbers, punctuation,

F . .
«(S) symbol type S symbols, separators, other). The considered types can be customised.
The number of occurrences in the attribute of token of type T (words starting with a lowercase
Number of occ. of token . .
F2(T) type T letter, words starting with an uppercase letter followed by a non-separator character,
P uppercase words, numeric strings, HTML tags). The considered types can be customized.
. The density in the attribute of symbols of type S. The density is computed as the number of

F3(S) |Density of bol t S o . }

3(S) |Density of symbol type occurrences of a character type divided by the total number of symbols in the attribute.

F4(T) |Density of token type T |The density in the attribute of token of type T. The density is computed as described in AF3

) Average length of the shared prefix between the text of the attribute and a set of stored
Average shared prefix - - }
Fs(C) length for class C examples of class C. The shared prefix is the set of characters that two attributes have in
g common in the beginning. If the attributes start with a different character, the length is 0.
] Average length of the shared prefix between the text of the attribute and a set of stored
Average shared suffix L . ;
Fs(C) length for class C examples of class C. The shared suffix is the set of characters that two attributes have in
9 common in the end. If the attributes end with a different character, the length is 0.
A it dist t - .

F+(C) cl\:;rsage edit distance to Average Jaro edit distance between the attribute and a set of stored examples of class C.
Fg |Numeric Value The numeric value of the text of the attribute if it matches a number pattern. -1.0 otherwise
Fo |Depth The depth in the dataset of the attribute.

Fio [Same level attributes The number of attributes at the same structural level.
Fi1 [Same level attributes The number of records at the same structural level.

Table 1: Features.

Features
calculator
Input dataset
= o . -
=5 [a\]
g |gg| S
- = |28 5
Feature name Description a |=Es| T Output score
F1(number) Numer of occurrences of numer symbols 000 | 000 | 800 E 2| &
s [Bg| 8
Fa(starting- Number of tokens starting with an 100 | 100 | 000 % § E =
uppercase) uppercase letter ’ ' ’ % L >
B |= 2| T
F3(number) Ratio of numeric tokens 0.00 | 0.00 | 0.80 "Q\ d
@ [—iiscitile—» 0.82 [ 013 | 0.10
Fe(jisc:title) Average‘fhalrled ”preﬂx length for examples 057 | 023 | 011 _’Q_’ o}
of class “jisc:title o L iscram 015 | 073 | 004
Fs(jisc:name) Averageﬁhalred pr:eﬂx length for examples 061 072 | 003 _0/7 § e—P
of class “jisc:name £ S 003 | 014
Fs(jisc:start- | Average shared prefix length for examples isc:startdated 0 ‘ 086
. . 013 ] 019 | 0.77
date) of class “jisc:start-date
Fr(jisc:title) Averag_e gqlt (1|stance to examples of 068 | 093 | 08
class “jisc:title
_— Average edit distance to examples of
Fz(jisc:name) dlass ‘Jisc: name” 087 | 023 | 098
F1(jisc:start- Averaug_ez eldltdlstantyzve to examples of 092 | 095 | 050
date) class “jisc:start-date
Feature vectors

Figure 2: Workflow.




5.2. Architecture

Figure 3 summarises the architecture of our net-
work. Keep in mind that we have devised a multi-
purpose architecture for any scenario. However, it
could be adapted for a specific situation. For exam-
ple, the size of the hidden layers could be increased
or decreased in concordance with the number of fea-
tures (the size of the input layer). The following
paragraphs describe the architecture, which is jus-
tified in the next subsection.

Our network has three wide, fully connected hid-
den layers (each neuron in a layer is connected to
every neuron in the next layer). Their sizes are
2048, 1024 and 512. The size of the input layer is
equal to the number of initial features, and that of
the output layer, equal to the number of classes.

We have applied dropout, a probability of setting
a value being transmitted between layers to 0 in
order to decrease overfitting. The dropout rates
of the layers are 0.01, 0.1 and 0.1. We have set
ReLU as the activation function of all intermediary
layers, and cross entropy as the loss function, since
it is applicable to multiclass classification.

The final layer outputs the score of each label
after a softmax function from which we select the
one with the highest score. The user could also
choose not to accept a label below a given threshold.
The softmax function takes a vector of real values
and turns it into a new vector of real values in the
(0,1) range that add up to 1.

5.3. Discussion

Next, we justify our choices with regards to the
architecture, and offer some insights on why we did
not include some popular neural network strategies.

A popular machine learning practise is data aug-
mentation (Witten et al., 2016), which consists in
expanding the number of data points (in this case,
attributes used for training) by creating new syn-
thetic ones, derived from the original ones by means
of transformations that create different but still
valid data. For example, in computer vision this
can be done by panning, zooming, or rotating the
input images. Implementing data augmentation in
semantic labelling would require manually creat-
ing transformation functions that slightly alter at-
tributes while keeping them valid. For example,
one such transformation could be to add the coun-
try code to phone numbers, so that apart from the
training example "954123456", there is the exam-
ple "+434 954123456". For dates, we could create
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several training examples for a particular date by
changing the date format.

Transformations would have to be created for
each of, potentially, several dozens of classes. Their
creation is not trivial, and it would be needed to
check that a transformation does not worsen train-
ing, i.e., always adding the same country code to
phone numbers would lead to overfitting. More-
over, while some attributes allow simple changes of
format like the aforementioned ones, others would
require more complex alterations, such as classes
"jisc:description" or "jisc:chomepage". Altering a
description would require somehow changing its
contents while keeping it a valid description, and
altering a homepage would require changing some
parts of the url while keeping it a valid homepage.
At this point, it is clear that the necessary analysis
to determine when transformations of the original
data can be applied to attributes of a class, and the
manual work needed to create them is so large, that
it would be easier to manually define rules to label
attributes. Therefore, data augmentations does not
seem to be applicable to semantic labelling.

Regarding the layer types, we decided not to in-
clude some layer types like convolution or pooling
layers (LeCun et al., 2015). These and other similar
layers aggregate the values of a region of "nearby",
related features from a features vector, for example
with a weighted mean (convolution) or by taking
the maximum value (pooling). Evidently, these op-
erations can only be performed when there is some
kind of relation between features of the input that
allows us to identify regions of nearby features, as
is the case with pictures and sounds: the features
from an image (the value of its pixels) have two
spatial dimensions, and the features of a sound sig-
nal (the value of the samples) have a temporal one.
Even in NLP tasks where the input is a sentence
of a fixed size and there is a feature for each word
of the sentence, we can apply convolution or pool-
ing to groups of embeddings from nearby words. In
semantic labelling, however, features are mostly re-
lated to the format of attributes, and there is no
relation between them that makes it reasonable to
talk about a region of features from which the mean
or maximum is computed.

Regarding the amount and size of layers, since
the initial features already have some level of ab-
straction, the network should not require a large
depth to be effective, and three layers should be
enough. The number of layers is in line with other
architectures related to structured data in differ-
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Figure 3: Architecture of our network.

ent tasks (Kazemi and Poole, 2018, Huang et al.,
2015, Leng and Jiang, 2016), and is enough to allow
nonlinear combinations of the input features which
should correspond to more complex textual formats
and data structures. The decreasing size helps force
the abstraction of features and avoid overfitting.

To the best of our knowledge, there is no way to
determine the optimal value for hyperparameters in
a completely unsupervised way. The dropout prob-
ability in the first layer is very low to preserve most
of the information in low-level features, while it is
higher in the later layers that correspond to more
abstract features. The exact value of hyperparam-
eters were selected by fine-tuning the network in
tests, using values that seem to be popular and
make sense, i.e. a dropout value no bigger than
0.2. Changing them (for example, adding some ad-
ditional layers or increasing dropout) did not seem
to have a significant impact.

The softmax functions is an appropriate choice
for the output layer, since each input is only given
a single label. Note that, if several labels per in-
stance are wanted, it is enough to replace it with a
different function without altering the architecture
of the network.
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6. Experimental analysis

The experimental validation of our proposal con-
sists in performing semantic labelling on individ-
ual attributes in three different scenarios with real-
world datasets, which have been selected for their
high number of classes:

NSF Datasets from the National Science Foun-
dation Awards database (Foundation, 2018a),
corresponding to the first 500 awards with the
latest end date in 2017.

Newcastle Datasets from the Newcastle Univer-
sity repository (University, 2018), correspond-
ing to article references. We set up a SPARQL
server using the rdf dump, queried it to obtain
resources with class "akt:Article-Reference",
and used the first 250 results, each as the root
of a dataset where linked resources are records
and data properties are attributes.

Jisc Datasets from the Jisc repository (Jisc, 2018),
corresponding to projects. We obtained 250
datasets in the same way as the Newcastle Uni-
versity datasets, using class "jisc:Project" as
the root of each dataset.



Scenario Root class i e Lo L
datasets | classes | attributes | features

NSF nsf.award 500 34 117,723 135

Newcastle [aktAricle-Reference | 250 23 7,657 102

Jisc jisc:Project 250 18 9,985 87

All Variable 1,000 75 | 35365 258

Table 2: Scenarios.

All The datasets from the former 3 scenarios,
added up.

Table 2 summarises some statistics about them.
The number of features is obtained after fully com-
puting all the parametric features in Table 1

The data we used in our experiments, including
the computed features, have been made available
online! for the sake of reproducibility.

We compare the results obtained by the dense
network architecture we described to the following
one-vs-all classifiers, which are common in the liter-
ature (Ayala et al., 2019, Pham et al., 2016), since
they ease the separation of one class from the rest
when there is a large number of classes:

e A random forest classifier with 20 trees, and
maximum depth of 5.

e A logistic regression classifier.

e A linear SVC classifier with a maximum of 20
iterations, and tolerance of 1074,

o A gradient boosted trees classifier with a max-
imum of 20 iterations.

We used the Spark (Foundation, 2018b) implemen-
tation of all classifiers, leaving all the unspecified
hyperparameters at their default value.

For the implementation of our neural network,
we used PyTorch (PyTorch, 2018). We used a sin-
gle neural network as a multiclass classifier. The
training of the neural network consisted of 5 train-
ing cycles of length 3 (15 epochs total) with learning
rate 1073, 2 training cycles of lengths 4 and 8 (12
epochs total) with learning rate 0.5 * 1073, and 2
training cycles of lengths 4 and 8 (12 epochs to-
tal) with learning rate 0.1 * 10=3. In each fold, we
took the best accuracy among all 39 epochs. The
starting learning rate was determined by using the
technique described by Smith (2017), in which the

Thttp://www.tdg-seville.info/ /Download.ashx?id=490
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learning rate is set to a small value and progres-
sively increased, showing the point at which the
loss starts to increase. We diminish the learning
rate in the later cycles to allow subtler changes in
the weights. Further cycles did not improve the
results.

We set the batch size to 16, which achieved the
best results in optimal time, though this value could
vary depending on the size of the training sets.

We have used 10-fold cross validation, measur-
ing accuracy (fraction of correct labels), since it is
the most appropiate metric for multiclass problems
such as semantic labelling. Figure 4 shows the ac-
curacy achieved by the traditional classifiers and
the dense network implementation in a box plot,
with separated results for each scenario, applying
10-fold cross validation. Table 3 shows a numerical
summary. Dense networks achieve better accuracy
consistently, even in the cases in which traditional
classifiers have a high accuracy ("Newcastle" and
"Jisc"), where there is a difference of approximately
2.7 percent points (in the median) when compared
to the best traditional classifier (random forest). In
the "NSF" scenario, where results are worse overall
showing a greater labelling difficulty, the improve-
ment is of 4.6 points. In the "AIl" scenario, the
most complex one because of the high number of
classes, the improvement is of 8.9 points. It could
seem strange that classifiers achieve very similar,
and in some cases even better results in the "AIl"
scenario than in the "NSF" scenario, which has a
lower number of existing classes. This is caused by
the fact that we add relatively easy to classify cases
from the "Jisc" and "Newcastle" scenarios to the
harder "NSF" scenario, increasing the average ac-
curacy. However, the easier cases become harder to
classify due to the higher number of classes. The
classification power of the dense network classifier
is most visible in "difficult" scenarios, such as those
in which there is a large number of classes or highly
similar classes, in which the difference in accuracy
is more noticeable.

Note that the dense network approach only
needed a single multiclass classifier to outperform
the one-vs-all classifiers despite the high number of
classes, which was a cause for concern.

To prove the significance of the differences, we
have applied the Wilcoxon signed ranked test. In
all scenarios, the p-value is below 0.002. Since it
is lower than the standard significance level of o =
0.05, we reject the null hypothesis that differences
in distributions are caused by chance.
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Figure 4: Experimental results. DN = Dense Network, RF = Random Forest, LR = Logistic Regression, GBT = Gradient
Boosted Trees, LSVC = Linear SVC.

Scenario Median Minimum Maximum

DN | RF | LR |GBT|LSVC| DN | RF | LR |GBT |LSVC| DN | RF | LR | GBT |LSVC|
NSF 0.88)|082(081)|081(057|086|082(0.79]|0.77 (053|088 |0.84]083]0.84] 061
Newcastle| 098 | 0.95| 094 [ 0.90| 0.86] 097 | 0.94 | 0.90 | 0.88 | 0.84 | 0.98 | 0.97 [ 0.95| 0.93 | 0.87
Jisc 097)|1094(093)085(069|096|091(091]|082[065|098]0.95]|0.95]|0.88|0.85
All 095)|086(080)079(054]094|084(0.76]|0.75[050( 095 0.87|0.82| 0.80| 057

Table 3: Summary of the results (accuracy).
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7. Conclusions

Semantic labelling and its many applications
have become more relevant than ever thanks to the
increasing availability of structured information in
the Web and the need to homogenize heterogeneous
data sources. Existing proposals have focused on
the development of new features that contain the
necessary information to classify instances properly,
but have not explored the application of neural net-
works, whose recent development has proven effec-
tive in other fields. In this paper, we have explored
semantic labelling as a novel application for neu-
ral network techniques by devising an architecture
that suits well an input with a large number of fea-
tures computed from attributes. We have tested
our dense network implementation of semantic la-
belling in 4 scenarios created from real world struc-
tured data. The results show that neural networks
of average depth outperform traditional classifiers
in every scenario.

This confirms that the former work was not mak-
ing full use of the information available in the fea-
tures. Future semantic labelling proposals should
take this into account and use classification tech-
niques that allow the inference of abstract features
through non-linear combinations.
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