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Abstract

Semantic labelling consists in assigning known labels to the data from a source of structured information.
This can be useful in a variety of tasks related to information extraction and integration into information
systems and their local ontologies. Semantic labelling can be seen as a classi�cation problem in which the
input is structured information from which features can be computed in order to apply machine learning
techniques. The existing proposals, based on machine learning so far, have focused on what features should
be computed while relying on simple classi�cation models like logistic regression or random forest, and may
not be powerful enough to properly classify some classes, especially in scenarios in which a large number of
features contain the necessary information but it is hard for the classi�ers to properly combine them. In this
paper, we propose and test the novel application of neural networks to semantic labelling, which bene�ts
from non-linearity and can deal with the increasing number of features. Our proposal has been validated
with datasets from three real world sources, and our conclusion is that state-of-the-art neural networks
consistently improve the accuracy of the labelling when compared to traditional classi�cation.
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1. Introduction1

The Web is a rich source of semi-structured data2

which usually has to be integrated into information3

systems before its exploitation (Knoblock et al.,4

1998). The �rst step towards the integration in5

one such system is the crawling of the Web to ob-6

tain a set of HTML documents (Hernández et al.,7

2018, Batzios et al., 2008). The second step is to8

extract structured information from them (Sleiman9

and Corchuelo, 2013, Wang et al., 2007). The ex-10

tracted structured information lacks semantics, so11

the third step is to establish correspondences be-12

tween the data and a known ontology. This is13

the goal of semantic labelling, which consists in14

labelling elements in data structures with known15

classes from a Web ontology (Pham et al., 2016).16

Semantic labelling proposals take the structured17

elements as input, and assign them one or sev-18

eral labels, which correspond to the classes that19
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best describe each element according to its fea-20

tures. Figure 1(a) shows an example of a structured21

dataset from the Jisc repository (Jisc, 2018), dis-22

playing labelled information about a R&D project23

related to education. A semantic labelling pro-24

posal would learn from the examples in this and25

other datasets a classi�cation model for each class,26

such as "jisc:name", "jisc:title", or "jisc:start-date".27

Then, when fed a new unlabelled dataset like the28

one in Figure 1(b), it would iterate every element in29

it and endow it with a known class. Consequently,30

semantic labelling can be seen as a classi�cation31

problem in which the input is one of the elements in32

the structure and the features are whatever aspect33

are measured from them. In the former example,34

instance I2 could be classi�ed as a "jisc:title" after35

an analysis of some of its features, including the36

number of words that start with an uppercase let-37

ter and the position of the instance in the structure,38

I3 could be classi�ed as a "jisc:start-date" because39

of the number of digits, and I10 could be classi-40

�ed as a "jisc:status" because programme statuses41

only have a few possible values ("Complete", "Run-42

ning", etc.), and the value of the instance matches43
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that of other known examples of the same class.44

We can apply the same model to data from any45

source in order to label it with the same known46

classes, as long as the model was able to properly47

learn what features can be used to identify each48

class. Semantic labelling is therefore related to the49

integration of heterogeneous information from dif-50

ferent sources by modelling classes in structured51

information. Beyond the direct integration of in-52

formation, the modelling has other applications53

such as information extraction (Banko et al., 2007)54

(which, as we mentioned, is also a step of informa-55

tion integration), information veri�cation (Kushm-56

erick, 2000, Lerman et al., 2003, McCann et al.,57

2005), or ontology matching (Euzenat and Shvaiko,58

2013). These areas are all tightly related to the59

Web and the integration of information from exter-60

nal sources.61

The current trend in the state of the art proposals62

is to focus on feature engineering(Ayala et al., 2019,63

Ramnandan et al., 2015, Neumaier et al., 2016,64

Pham et al., 2016), that is, identifying new fea-65

tures that endow the classi�er with enough power66

as to discern between di�erent classes, even when67

those classes are highly similar like "jisc:name" and68

"jisc:title". Devising elaborate features is crucial to69

achieve good accuracy, and the most recent work70

related to semantic labelling (Ayala et al., 2019)71

has resulted in a large explosion of features, with72

potentially hundreds of them. However, our study73

of the literature reveals that existing proposals are74

based on baseline classi�cation techniques, neglect-75

ing advanced classi�cation techniques that use the76

features e�ciently. The most recent proposals only77

use random forest or logistic regression classi�ers,78

and do not study more elaborate alternatives, leav-79

ing room for improvement.80

Our hypothesis is that neural networks can sig-81

ni�cantly improve the accuracy of a semantic la-82

belling model, while using the same initial low-level83

features as a traditional classi�cation model. While84

some areas like Natural Language Processing, Com-85

puter Vision, or even other tasks related to integrat-86

ing information from external sources like informa-87

tion retrieval from the Web have been transformed88

by the successful application of modern neural net-89

work technology (Deng and Yu, 2014), semantic90

labelling has so far relied on the more traditional91

machine learning techniques we have mentioned.92

While the potential of neural networks has been93

tested in some related tasks like information extrac-94

tion, to the best of our knowledge it remains com-95

pletely unexplored in the �eld of semantic labelling,96

which motivated us to study it as a novel applica-97

tion, checking what strategies and architectures are98

applicable and what results they achieve. Our ex-99

periments, in which we use a neural network with100

dense layers for semantic labelling in several scenar-101

ios using real world data, reveal that the accuracy of102

the labels improves consistently when compared to103

four traditional classi�cation techniques, even when104

there is little margin for improvement.105

The rest of the paper is organised as follows: Sec-106

tion 2 reports on some preliminaries that are neces-107

sary to understand the domain of the problem; Sec-108

tion 3 describes the analysis of the relevant propos-109

als we have identi�ed in the literature; Section 4 de-110

scribes the nature of features in semantic labelling;111

Section 5 contains a detailed description of the ap-112

plication of neural networks to semantic labelling;113

Section 6 describes the experiments we used to test114

our hypothesis and their result; �nally, Section 7115

recaps on our main conclusions.116

2. Preliminaries117

In this Section, we introduce de�nitions of con-118

cepts related to the problem of semantic labelling.119

Class: a piece of text that denotes semantics in120

a Web ontology. The output of semantic la-121

belling is a set of labels that should match122

the class of every data item. Example: classes123

"jisc:Project" and "jisc:start-date".124

Attribute: A data item with a textual value that125

can be an instance of a class and have a label126

that denotes it. The textual value can repre-127

sent a number, date, boolean, or any other data128

type. Note that in this context, an attribute129

does not refer to an element of the schema,130

but to a speci�c data item. It may be possible131

to have an attribute that does not belong to132

any class in a particular ontology, i.e., a piece133

of text that is automatically extracted from a134

website by a crawler but does not correspond135

to any known class. Example: in Figure 1(a),136

one of the two attributes of class "jisc:name"137

has a textual value of "Support & Synthesis138

Project", and the attribute of class "jisc:start-139

date" has a textual value of "01/08/2009". In140

Figure 1(b) there are several attributes: I2 (a141

name), I3 (a start date), I5 (a title), I6 (a de-142

scription), I7 (a doi), I9 (a name), I10 (a home-143

2



jisc:Project

jisc:name – “Support & Synthesis Project”

jisc:start-date - ”01/08/2009”

jisc:Organization

jisc:name - “CETIS, University of Bolton”

jisc:Article

jisc:title - “Programme Definition”

jisc:description - “Programme Definition document...”

jisc:status - “In Progress”

jisc:Programme

jisc:name - “Flexible Service Delivery Programme”

jisc:homepage - “http://www.jisc.ac.uk/whatwedo/...”

jisc:status - “Running”

(a) Labelled dataset.

I1

I2 - “Physical Sciences Subject Portal for the RDN”

I3 - “19/12/2002”

I4

I5 - “Subject portal”

I6 - “This proposal will develop a...”

I8

I9 - “Infrastructure programme”

I10 - “http://www.jisc.ac.uk/whatwedo/...”

I11 - “Complete”

I7 - “doi:12.3456/7890”

(b) Unlabelled dataset.

Figure 1: Dataset examples.

page), and I11 (a status), but their class is un-144

known by the system. Attribute I7 is clearly145

a doi, but there is no doi class in the known146

ontology, so it would have no class in it.147

Record: a text-less data item that has other at-148

tributes or records as children, may be an in-149

stance of a class and have a label that de-150

notes it. Record classes admit a certain de-151

gree of variability in their schema, that is,152

di�erent records of the same class may have153

variable attributes and records if some of154

them are optional or have di�erent multiplic-155

ity. Example: in Figure 1(a) there are four156

records. The "jisc:Project" record contains157

instances of classes "jisc:name", "jisc:start-158

date", "jisc:Organization", "jisc:Article", and159

"jisc:Programme". Some of them are160

also records with their own instances, like161

the "jisc:Organization" record that has a162

"jisc:name. Figure 1(b) also shows several163

records: I1 (a project), I4 (an article), and164

I8 (a programme). Note that I1 belongs to165

class "jisc:Project", but it does not contain any166

"jisc:Organization" record, since it is optional.167

Dataset: a set of attributes and records in a hi-168

erarchical structure. Usually, there is a single169

root record at the �rst level of the dataset, but170

nothing prevents the presence of several ones,171

having a forest-like structure. Example: Fig-172

ure 1(a) displays a dataset with 4 records and173

9 attributes, and the root is the "jisc:Project"174

record. Figure 1(b) displays a dataset with 3175

records and 8 attributes, and the root is the I1176

record.177

Model: a classi�er that takes attributes as the in-178

put, and outputs their label. A model could179

classify a single instance or a group of them.180

Example: a random forest classi�er that takes181

the attributes in Figure 1(b), computes some182

features, and outputs a label for each of them.183

Feature: a numeric or categorical measure that184

can be taken from an attribute or group of at-185

tributes. It can be seen as a function that takes186

an instance or group of attributes as input and187

outputs a feature value. Example: a feature188

that computes the number of digits in the tex-189

tual value of an attribute, which in Figure 1(b)190

would output 0.0 for I2 and 8.0 for I3.191

Internal model: a model that learns from a set192

of examples (labelled attributes) by using fea-193

tures obtained from the data item themselves,194

without relying on external sources of data.195

Example: a classi�er that computes features196

related to the format of the attributes such as197

the number of uppercase letters or the average198

word length, and labels them using a random199

forest or logistic regression classi�er.200

External model: a model that learns from a set201

of examples by using at least one feature202

that requires an external knowledge base (e.g.203

YAGO, DBpedia) to be computed. These fea-204

tures are usually computed by mean of queries205

to the knowledge base. Example: a classi�er206

that queries DBPedia using the textual value207

of attributes and labels them with the class of208

the result with the highest score.209
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3. Related work210

In the literature, there are several types of pro-211

posals that are able to provide structured informa-212

tion with labels that describe it. These propos-213

als have di�erent goals, but they can all be ap-214

plied to the problem of semantic labelling, which215

is why we include them in this analysis. Further-216

more, these proposals work with di�erent types of217

features; however, in our analysis, we focus on the218

type of classi�cation technique on which they are219

based, regardless of the speci�c features. Note that220

none of them use neural networks, and instead use221

more traditional techniques like random forest, lin-222

ear regression, and nearest neighbour classi�ers.223

The proposals by Limaye et al. (2010), Venetis224

et al. (2011), Mulwad et al. (2013), Ritze et al.225

(2015), and Zhang (2016) focus on labelling Web226

tables, which may include labels for individual cells,227

rows, columns, and relationships between columns.228

Tables can be transformed into generic structures,229

each row being a record, and its cells the attributes.230

These proposals use knowledge bases to perform the231

labelling. These contain a set of entities that belong232

to classes, and usually o�er the possibility of query-233

ing them to obtain entities that seem to match the234

query. In most cases, tables are labelled in an it-235

erative process by �rst obtaining a set of candidate236

entities for each cell, then labelling the columns ac-237

cording to the most frequent classes among the can-238

didate entities, and then re�ning the candidates by239

limiting them to the column classes. These propos-240

als are based on external models, since the classi�-241

cation is ultimately based on the score of queries to242

external sources, which in turn usually depends on243

the TF-IDF score and cosine distances computed244

from the documents in the knowledge base. The245

labels are limited to the existing classes in the ex-246

ternal source.247

The proposals by Ramnandan et al. (2015),248

Pham et al. (2016), Neumaier et al. (2016), and Ay-249

ala et al. (2019) label attributes by comparing them250

to sets of examples of known classes. The labels are251

obtained through a classi�cation process, based on252

features such as the value of numeric attributes,253

string distance metrics, similarity metrics, or fea-254

tures related to the structure of the data. These255

proposals are based on internal modes. The pro-256

posal by Ramnandan et al. (2015) selects the class257

with the highest score when querying a Lucene in-258

dex that contains examples of a class in each stored259

document. The proposal by Pham et al. (2016)260

uses a one-vs-all logistic regression classi�er with261

several similarity measures. The proposal by Neu-262

maier et al. (2016) uses a nearest neighbour clas-263

si�er. The proposal by Ayala et al. (2019) uses a264

one-vs-all random forest classi�er.265

In addition to the former proposals, those by266

Kushmerick (1999), Lerman et al. (2003) and Mc-267

Cann et al. (2005) focus on information veri�cation,268

and their goal is to con�rm that a dataset is correct269

according to the reference model. They learn from270

a number of veri�ed labelled examples, they com-271

pute the collections of values of each feature, and in-272

fer the statistical normal distributions that best �t273

them. When a dataset must be veri�ed, the values274

of its features are compared to the inferred distribu-275

tions. If some of the values associated to an element276

or the entire dataset deviate too much from the ver-277

i�ed ones according to statistical tests, the dataset278

is considered to be anomalous. Information veri-279

�cation is very similar to semantic labelling, since280

verifying an already labelled dataset amounts to ap-281

plying semantic labelling to re-compute the set of282

labels for the dataset and checking that the two sets283

of labels are identical.284

We have observed that the classi�cation of in-285

stances is not trivial when the number of classes is286

large. The similarity between classes may be such287

that even if the computed features hold enough in-288

formation to di�erentiate classes, their e�cient use289

by a model may require complex non-linear com-290

binations that represent a challenge to most tech-291

niques. For example, instances of classes "jisc:title"292

and "jisc:name" are usually similar, and correctly293

separating their classes could require a combina-294

tion of several features related to their length, pres-295

ence of certain characters or tokens, and other296

measures. The existing proposals use techniques297

that do not deal well with cases that require non-298

linearity, which motivated us to implement the299

novel application of neural network techniques to300

semantic labelling.301

4. Features302

Features in the �eld of semantic labelling do not303

necessarily measure the occurrence of speci�c words304

in the textual value of attributes; instead, they are305

mostly related to its format, i.e., the kind of char-306

acters and tokens it contains, how long it is, or how307

similar it is to sets of examples according to dif-308

ferent distance functions. The features catalogue309
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does not necessarily depend on the particular clas-310

si�cation algorithm that is being applied, i.e., we311

can create several classi�ers for semantic labelling312

using the exact same features.313

In the past, the features set used in related314

proposals was limited to around a dozen fea-315

tures (Kushmerick, 2000, Lerman et al., 2003, Mc-316

Cann et al., 2005). However, the most recent work317

has started to develop larger, more expressive sets318

of features to include as much information as possi-319

ble in the input. One of the recent additions are the320

so-called parametric features (Ayala et al., 2019).321

They are a kind of feature that �ts well this need322

to include as much low-level information as possi-323

ble in the �rst layer. They take a parameter, which324

means that each parametric feature results in a fam-325

ily of features, each of them related to a di�erent326

value of the parameter. The parameter can be one327

of the known classes, so that each variant of the fea-328

ture gives information related to it. For example,329

feature F3 expands into 6 di�erent features of the330

same family.331

Table 1 displays the �nal features that we have332

selected from the literature. Note that several fea-333

tures are parametrical, three of them on a per class334

basis. Features F1, F2, F3, and F4 give information335

about the textual format of the attribute. Fea-336

tures F5 and F6 help detect starting and ending337

patterns. Feature F7 measures overall similarity to338

each class. Feature F8 gives additional informa-339

tion when an attribute has a numeric value that340

can be considered a feature itself. Features F9,341

F10 and F11 give information about the structure342

in which the attribute is present. For example,343

if we have trained a classi�er with three known344

classes: "jisc:title", "jisc:name" and "jisc:start-345

date", feature F7, "Average edit distance", would346

have three versions: "Average edit distance to ex-347

amples of class jisc:title/jisc:name/jisc:start-date".348

With three classes there would be a total of 35 fea-349

tures. Since in the real world cases we have studied350

there are usually several dozens of classes, paramet-351

ric features can result in a features explosion which352

is di�cult to handle for traditional classi�ers.353

5. Our proposal354

In this Section we present the neural network we355

have devised. First, we describe the application356

work�ow in which the neural network is framed.357

Then, we describe in detail the architecture of the358

network. Finally, we justify the choices in the ar-359

chitecture and analyse why some popular strategies360

could not be applied.361

5.1. Work�ow362

Figure 2 summarizes the classi�cation work�ow.363

The original input is a dataset containing several364

records and attributes. Each individial attribute365

is fed to a features calculator that computes the366

low-level features. The features must be any mea-367

surement that we can take from the text of an at-368

tribute and the structure of the dataset that con-369

tains it. The neural network should bene�t from a370

large number of low-level features that can later be371

combined.372

The features are used to create a vector that is373

fed to the �rst layer of the neural network, whose374

size is always equal to the number of features. After375

going through the hidden layers, the output layer,376

whose size is always equal to the number of known377

classes, gives a score to each class, which is used to378

select the �nal label.379

A strengh of our proposal is that it labels individ-380

ual instances as opposed to labelling a group of sev-381

eral attribute instances that are known to share the382

same class. For example, the proposal by Ramnan-383

dan et al. (2015) would take as input a set of several384

dozens or hundreds of instances and output a single385

label for them. We consider individual labelling to386

be a more challenging task due to the limited infor-387

mation available during classi�cation. One possible388

real-world scenario in which the inputs are individ-389

ual attributes is unsupervised information extrac-390

tion (Roldán et al., 2017), which extracts general391

useful information from web pages in generic vari-392

able structures with no schema by means of univer-393

sal rules that do not require training. However, the394

application to groups of attributes would be trivial,395

simply requiring a change of features, so that they396

are computed from several instances instead of a397

single one.398

While structured datasets may include both399

records and attributes, our application of neural400

networks focuses on classifying attributes, so that401

our results are comparable with those in the re-402

lated work, which does not include the labelling403

of records in many cases. However, the attributes404

used for training and testing are still positioned in405

a structured datasets, and consequently, features406

can make use of the records or their structure (for407

example, a feature could be "Number of adjacent408

records").409
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ID Feature Description

F1(S)
Number of occ. of 
symbol type S

The number of occurrences in the attribute of symbols of type S (letters, numbers, punctuation, 
symbols, separators, other). The considered types can be customised.

F2(T)
Number of occ. of token 
type T

The number of occurrences in the attribute of token of type T (words starting with a lowercase 
letter, words starting with an uppercase letter followed by a non-separator character, 
uppercase words, numeric strings, HTML tags). The considered types can be customized.

F3(S) Density of symbol type S
The density in the attribute of symbols of type S. The density is computed as the number of 
occurrences of a character type divided by the total number of symbols in the attribute.

F4(T) Density of token type T The density in the attribute of token of type T. The density is computed as described in AF3

F5(C)
Average shared prefix 
length for class C

Average length of the shared prefix between the text of the attribute and a set of stored 
examples of class C. The shared prefix is the set of characters that two attributes have in 
common in the beginning. If the attributes start with a different character, the length  is 0.

F6(C)
Average shared suffix 
length for class C

Average length of the shared prefix between the text of the attribute and a set of stored 
examples of class C. The shared suffix is the set of characters that two attributes have in 
common in the end. If the attributes end with a different character, the length is 0.

F7(C)
Average edit distance to 
class C

Average Jaro edit distance between the attribute and a set of stored examples of class C.

F8 Numeric Value The numeric value of the text of the attribute if it matches a number pattern. -1.0 otherwise

F9 Depth The depth in the dataset of the attribute.

F10 Same level attributes The number of attributes at the same structural level.

F11 Same level attributes The number of records at the same structural level.

Table 1: Features.
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Figure 2: Work�ow.
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5.2. Architecture410

Figure 3 summarises the architecture of our net-411

work. Keep in mind that we have devised a multi-412

purpose architecture for any scenario. However, it413

could be adapted for a speci�c situation. For exam-414

ple, the size of the hidden layers could be increased415

or decreased in concordance with the number of fea-416

tures (the size of the input layer). The following417

paragraphs describe the architecture, which is jus-418

ti�ed in the next subsection.419

Our network has three wide, fully connected hid-420

den layers (each neuron in a layer is connected to421

every neuron in the next layer). Their sizes are422

2048, 1024 and 512. The size of the input layer is423

equal to the number of initial features, and that of424

the output layer, equal to the number of classes.425

We have applied dropout, a probability of setting426

a value being transmitted between layers to 0 in427

order to decrease over�tting. The dropout rates428

of the layers are 0.01, 0.1 and 0.1. We have set429

ReLU as the activation function of all intermediary430

layers, and cross entropy as the loss function, since431

it is applicable to multiclass classi�cation.432

The �nal layer outputs the score of each label433

after a softmax function from which we select the434

one with the highest score. The user could also435

choose not to accept a label below a given threshold.436

The softmax function takes a vector of real values437

and turns it into a new vector of real values in the438

(0, 1) range that add up to 1.439

5.3. Discussion440

Next, we justify our choices with regards to the441

architecture, and o�er some insights on why we did442

not include some popular neural network strategies.443

A popular machine learning practise is data aug-444

mentation (Witten et al., 2016), which consists in445

expanding the number of data points (in this case,446

attributes used for training) by creating new syn-447

thetic ones, derived from the original ones by means448

of transformations that create di�erent but still449

valid data. For example, in computer vision this450

can be done by panning, zooming, or rotating the451

input images. Implementing data augmentation in452

semantic labelling would require manually creat-453

ing transformation functions that slightly alter at-454

tributes while keeping them valid. For example,455

one such transformation could be to add the coun-456

try code to phone numbers, so that apart from the457

training example "954123456", there is the exam-458

ple "+34 954123456". For dates, we could create459

several training examples for a particular date by460

changing the date format.461

Transformations would have to be created for462

each of, potentially, several dozens of classes. Their463

creation is not trivial, and it would be needed to464

check that a transformation does not worsen train-465

ing, i.e., always adding the same country code to466

phone numbers would lead to over�tting. More-467

over, while some attributes allow simple changes of468

format like the aforementioned ones, others would469

require more complex alterations, such as classes470

"jisc:description" or "jisc:homepage". Altering a471

description would require somehow changing its472

contents while keeping it a valid description, and473

altering a homepage would require changing some474

parts of the url while keeping it a valid homepage.475

At this point, it is clear that the necessary analysis476

to determine when transformations of the original477

data can be applied to attributes of a class, and the478

manual work needed to create them is so large, that479

it would be easier to manually de�ne rules to label480

attributes. Therefore, data augmentations does not481

seem to be applicable to semantic labelling.482

Regarding the layer types, we decided not to in-483

clude some layer types like convolution or pooling484

layers (LeCun et al., 2015). These and other similar485

layers aggregate the values of a region of "nearby",486

related features from a features vector, for example487

with a weighted mean (convolution) or by taking488

the maximum value (pooling). Evidently, these op-489

erations can only be performed when there is some490

kind of relation between features of the input that491

allows us to identify regions of nearby features, as492

is the case with pictures and sounds: the features493

from an image (the value of its pixels) have two494

spatial dimensions, and the features of a sound sig-495

nal (the value of the samples) have a temporal one.496

Even in NLP tasks where the input is a sentence497

of a �xed size and there is a feature for each word498

of the sentence, we can apply convolution or pool-499

ing to groups of embeddings from nearby words. In500

semantic labelling, however, features are mostly re-501

lated to the format of attributes, and there is no502

relation between them that makes it reasonable to503

talk about a region of features from which the mean504

or maximum is computed.505

Regarding the amount and size of layers, since506

the initial features already have some level of ab-507

straction, the network should not require a large508

depth to be e�ective, and three layers should be509

enough. The number of layers is in line with other510

architectures related to structured data in di�er-511
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Figure 3: Architecture of our network.

ent tasks (Kazemi and Poole, 2018, Huang et al.,512

2015, Leng and Jiang, 2016), and is enough to allow513

nonlinear combinations of the input features which514

should correspond to more complex textual formats515

and data structures. The decreasing size helps force516

the abstraction of features and avoid over�tting.517

To the best of our knowledge, there is no way to518

determine the optimal value for hyperparameters in519

a completely unsupervised way. The dropout prob-520

ability in the �rst layer is very low to preserve most521

of the information in low-level features, while it is522

higher in the later layers that correspond to more523

abstract features. The exact value of hyperparam-524

eters were selected by �ne-tuning the network in525

tests, using values that seem to be popular and526

make sense, i.e. a dropout value no bigger than527

0.2. Changing them (for example, adding some ad-528

ditional layers or increasing dropout) did not seem529

to have a signi�cant impact.530

The softmax functions is an appropriate choice531

for the output layer, since each input is only given532

a single label. Note that, if several labels per in-533

stance are wanted, it is enough to replace it with a534

di�erent function without altering the architecture535

of the network.536

6. Experimental analysis537

The experimental validation of our proposal con-538

sists in performing semantic labelling on individ-539

ual attributes in three di�erent scenarios with real-540

world datasets, which have been selected for their541

high number of classes:542

NSF Datasets from the National Science Foun-543

dation Awards database (Foundation, 2018a),544

corresponding to the �rst 500 awards with the545

latest end date in 2017.546

Newcastle Datasets from the Newcastle Univer-547

sity repository (University, 2018), correspond-548

ing to article references. We set up a SPARQL549

server using the rdf dump, queried it to obtain550

resources with class "akt:Article-Reference",551

and used the �rst 250 results, each as the root552

of a dataset where linked resources are records553

and data properties are attributes.554

Jisc Datasets from the Jisc repository (Jisc, 2018),555

corresponding to projects. We obtained 250556

datasets in the same way as the Newcastle Uni-557

versity datasets, using class "jisc:Project" as558

the root of each dataset.559
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Scenario Root class

# of

datasets

# of 

classes

# of

attributes

# of

features

NSF nsf:award 500      34      17,723   135     

Newcastle akt:Article-Reference 250      23      7,657     102     

Jisc jisc:Project 250      18      9,985     87       

All Variable 1,000   75      35,365   258     

Table 2: Scenarios.

All The datasets from the former 3 scenarios,560

added up.561

Table 2 summarises some statistics about them.562

The number of features is obtained after fully com-563

puting all the parametric features in Table 1564

The data we used in our experiments, including565

the computed features, have been made available566

online1 for the sake of reproducibility.567

We compare the results obtained by the dense568

network architecture we described to the following569

one-vs-all classi�ers, which are common in the liter-570

ature (Ayala et al., 2019, Pham et al., 2016), since571

they ease the separation of one class from the rest572

when there is a large number of classes:573

• A random forest classi�er with 20 trees, and574

maximum depth of 5.575

• A logistic regression classi�er.576

• A linear SVC classi�er with a maximum of 20577

iterations, and tolerance of 10−4.578

• A gradient boosted trees classi�er with a max-579

imum of 20 iterations.580

We used the Spark (Foundation, 2018b) implemen-581

tation of all classi�ers, leaving all the unspeci�ed582

hyperparameters at their default value.583

For the implementation of our neural network,584

we used PyTorch (PyTorch, 2018). We used a sin-585

gle neural network as a multiclass classi�er. The586

training of the neural network consisted of 5 train-587

ing cycles of length 3 (15 epochs total) with learning588

rate 10−3, 2 training cycles of lengths 4 and 8 (12589

epochs total) with learning rate 0.5 ∗ 10−3, and 2590

training cycles of lengths 4 and 8 (12 epochs to-591

tal) with learning rate 0.1 ∗ 10−3. In each fold, we592

took the best accuracy among all 39 epochs. The593

starting learning rate was determined by using the594

technique described by Smith (2017), in which the595

1http://www.tdg-seville.info//Download.ashx?id=490

learning rate is set to a small value and progres-596

sively increased, showing the point at which the597

loss starts to increase. We diminish the learning598

rate in the later cycles to allow subtler changes in599

the weights. Further cycles did not improve the600

results.601

We set the batch size to 16, which achieved the602

best results in optimal time, though this value could603

vary depending on the size of the training sets.604

We have used 10-fold cross validation, measur-605

ing accuracy (fraction of correct labels), since it is606

the most appropiate metric for multiclass problems607

such as semantic labelling. Figure 4 shows the ac-608

curacy achieved by the traditional classi�ers and609

the dense network implementation in a box plot,610

with separated results for each scenario, applying611

10-fold cross validation. Table 3 shows a numerical612

summary. Dense networks achieve better accuracy613

consistently, even in the cases in which traditional614

classi�ers have a high accuracy ("Newcastle" and615

"Jisc"), where there is a di�erence of approximately616

2.7 percent points (in the median) when compared617

to the best traditional classi�er (random forest). In618

the "NSF" scenario, where results are worse overall619

showing a greater labelling di�culty, the improve-620

ment is of 4.6 points. In the "All" scenario, the621

most complex one because of the high number of622

classes, the improvement is of 8.9 points. It could623

seem strange that classi�ers achieve very similar,624

and in some cases even better results in the "All"625

scenario than in the "NSF" scenario, which has a626

lower number of existing classes. This is caused by627

the fact that we add relatively easy to classify cases628

from the "Jisc" and "Newcastle" scenarios to the629

harder "NSF" scenario, increasing the average ac-630

curacy. However, the easier cases become harder to631

classify due to the higher number of classes. The632

classi�cation power of the dense network classi�er633

is most visible in "di�cult" scenarios, such as those634

in which there is a large number of classes or highly635

similar classes, in which the di�erence in accuracy636

is more noticeable.637

Note that the dense network approach only638

needed a single multiclass classi�er to outperform639

the one-vs-all classi�ers despite the high number of640

classes, which was a cause for concern.641

To prove the signi�cance of the di�erences, we642

have applied the Wilcoxon signed ranked test. In643

all scenarios, the p-value is below 0.002. Since it644

is lower than the standard signi�cance level of α =645

0.05, we reject the null hypothesis that di�erences646

in distributions are caused by chance.647
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Figure 4: Experimental results. DN = Dense Network, RF = Random Forest, LR = Logistic Regression, GBT = Gradient
Boosted Trees, LSVC = Linear SVC.

DN RF LR GBT LSVC DN RF LR GBT LSVC DN RF LR GBT LSVC

NSF 0.88 0.82 0.81 0.81 0.57 0.86 0.82 0.79 0.77 0.53 0.88 0.84 0.83 0.84 0.61

Newcastle 0.98 0.95 0.94 0.90 0.86 0.97 0.94 0.90 0.88 0.84 0.98 0.97 0.95 0.93 0.87

Jisc 0.97 0.94 0.93 0.85 0.69 0.96 0.91 0.91 0.82 0.65 0.98 0.95 0.95 0.88 0.85

All 0.95 0.86 0.80 0.79 0.54 0.94 0.84 0.76 0.75 0.50 0.95 0.87 0.82 0.80 0.57

Maximum

Scenario

Median Minimum

Table 3: Summary of the results (accuracy).
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7. Conclusions648

Semantic labelling and its many applications649

have become more relevant than ever thanks to the650

increasing availability of structured information in651

the Web and the need to homogenize heterogeneous652

data sources. Existing proposals have focused on653

the development of new features that contain the654

necessary information to classify instances properly,655

but have not explored the application of neural net-656

works, whose recent development has proven e�ec-657

tive in other �elds. In this paper, we have explored658

semantic labelling as a novel application for neu-659

ral network techniques by devising an architecture660

that suits well an input with a large number of fea-661

tures computed from attributes. We have tested662

our dense network implementation of semantic la-663

belling in 4 scenarios created from real world struc-664

tured data. The results show that neural networks665

of average depth outperform traditional classi�ers666

in every scenario.667

This con�rms that the former work was not mak-668

ing full use of the information available in the fea-669

tures. Future semantic labelling proposals should670

take this into account and use classi�cation tech-671

niques that allow the inference of abstract features672

through non-linear combinations.673
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