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a b s t r a c t

In the recent paper [Limon, D., Alvarado, I., Alamo, T., & Camacho, E.F. (2008). MPC for tracking of piece- wise constant references for constrained linear systems. Automatica, 44, 2382–2387], a novel predictive control technique for tracking changing target operating points has been proposed. Asymptotic stability of any admissible equilibrium point is achieved by adding an artificial steady state and input as decision variables, specializing the terminal conditions and adding an offset cost function to the functional.
In this paper, the closed-loop performance of this controller is studied and it is demonstrated that the offset cost function plays an important role in the performance of the model predictive control (MPC) for tracking. Firstly, the controller formulation has been enhanced by considering a convex, positive definite and subdifferential function as the offset cost function. Then it is demonstrated that this formulation ensures convergence to an equilibrium point which minimizes the offset cost function. Thus, in case of target operation points which are not reachable steady states or inputs for the constrained system, the proposed control law steers the system to an admissible steady state (different to the target) which is optimal with relation to the offset cost function. Therefore, the offset cost function plays the role of a steady-state target optimizer which is built into the controller. On the other hand, optimal performance of the MPC for tracking is studied and it is demonstrated that under some conditions on both the offset and the terminal cost functions optimal closed-loop performance is locally achieved.
© 2009 Elsevier Ltd. All rights reserved.


	


1. Introduction
Model predictive control (MPC) is one of the most successful techniques of advanced control in the process industry (Camacho & Bordons, 2004). Considering a suitable penalization of the terminal state and an additional terminal constraint, asymptotic stability and constraint satisfaction of the closed-loop system can be proved (Mayne, Rawlings, Rao, & Scokaert, 2000). Moreover, if the terminal cost is the infinite-horizon optimal cost of the unconstrained system, then the MPC control law results in being optimal in a neighborhood of the steady state (Hu & Linnemann, 2002).
These stabilizing conditions’ terminal ingredients are suitable for a given operating point, but if the target operating point changes then the feasibility of the controller may be lost and    the controller fails to track the reference (Pannocchia & Kerrigan, 2005; Shead & Rossiter, 2007). For such a case, the steady-state target can be determined by solving an optimization problem that determines the steady-state and input targets (Rao & Rawlings, 1999). In the literature some strategies have been proposed for
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0005-1098/$ – see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.automatica.2009.04.007

recovering feasibility such as switching strategies (Chisci & Zappa, 2003; Rossiter, Kouvaritakis, & Gossner, 1996), or the command governors approach (Angeli, Casavola, & Mosca, 2000; Bemporad, Casavola, & Mosca, 1997). In Limon, Alvarado, Alamo, and Camacho (2008) a novel MPC for tracking is proposed, which is able to lead the system to any admissible set point in an admissible way. The main characteristics of this controller are: an artificial steady state considered as a decision variable, a cost that penalizes the error with the artificial steady state, an additional term that penalizes the deviation between the artificial steady state and the target steady state (the so-called offset cost function) and an extended terminal constraint, the invariant set for tracking. This controller ensures that under any change of the steady-state target, the closed-loop system maintains the feasibility of the controller, converging to the target if admissible. The additional ingredients of the controller have been demonstrated to affect the closed- loop performance of the controlled system (Alvarado, 2007). The objective of this paper is to study this effect and to show that  the offset cost function plays an important role in the closed-loop performance.
Firstly, the MPC for tracking has been extended to consider   a convex, positive definite and subdifferential function as the offset cost function. This choice ensures convergence to a set- point which minimizes the offset cost function and, moreover, allows the proposed MPC for tracking to deal with targets that are inconsistent with the prediction model or the constraints. In this
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case this control law steers the system to an admissible steady state (different to the target) which minimizes the offset cost function. This property means that the offset cost function plays the role
 (
of a steady-state target optimizer built in the proposed MPC.
)

The proposed cost function of the MPC is given by
 (
N
 
−
1
) (
N
) (
Q
) (
R
)V O(x, yt ; u, θ¯ ) = Σ ǁx(i) − x¯sǁ2   + ǁu(i) − u¯sǁ2
 (
i
=
0
)

Furthermore, under some mild sufficient assumptions on the offset
and the terminal cost function, a local optimality property holds, letting the controller achieve optimal closed-loop performance.
This paper is organized as follows. In the following section the constrained tracking problem is stated. In Section 3 the new MPC for tracking is presented, and in Section 4 the property of local optimality is introduced and proved. Finally some conclusions are
drawn.

+ ǁx(N) − x¯sǁ2  + VO(y¯s − yt )
 (
P
) (
¯ 
 
=
¯
¯
) (
¯ 
 
¯
=
)where x(i) denotes the prediction of the state i-samples ahead, the pair (xs, us) Mθ θ¯ is the artificial steady state and input and ys Nθ θ the artificial output, all of them parameterized by θ ; yt
 (
N
)is the target of the controlled variables. The controller is derived from the solution of the optimization problem PO(x, yt ) given by
V O∗(x, yt ) = min V O(x, yt ; u, θ¯ )

N	u,θ¯	N

2. Problem description
Let a discrete-time linear system be described by
+

s.t. x(0) = x,
x(j + 1) =  Ax(j)  +  Bu(j), (x(j), u(j)) ∈ Z, j = 0, . . . , N − 1

x    = Ax + Bu	(1)

(x¯s, u¯s) = Mθ θ¯ ,

y = Cx + Du
 (
∈
) (
∈
∈
)where x      Rn  is the current state of the system, u       Rm  is    the current input, y    Rp  is the controlled output and x+  is     the successor state. Note that no assumption is considered on the
dimension of the states, inputs and outputs, and hence non-square systems (namely p > m or p < m) might be considered.
The controlled output is the variable used to define the target to be tracked by the controller. Since no assumption is made on matrices C and D, these variables might be (a linear combination
of) the states, (a linear combination of) the inputs or (a linear

y¯s = Nθ θ¯
 (
t
,
K
)(x(N), θ¯ ) ∈ Ωw .
Considering the receding horizon policy, the control law is given by
 (
N
)κO(x, yt ) = u∗(0; x, yt ).
 (
N
)Since the set of constraints of PO(x, yt ) does not depend on yt , its feasibility region does not depend on the target operating point yt . Then there exists a polyhedral region XN  ⊆ X  such that for all
 (
N
)x ∈ XN , PO(x, yt ) is feasible. This is the set of initial states that can
 (
w
)

combination of) both.
The state of the system and the control input applied at sampling time k are denoted as x(k) and u(k), respectively. The system is subject to hard constraints on state and control:
(x(k), u(k)) ∈ Z	(2)
 (
≥
⊂
)for all k 0. Z Rn+m is a compact convex polyhedron containing the origin in its interior.
Assumption 1. The pair (A, B) is stabilizable and the state is measured at each sampling time.
Under this assumption, the set of steady states and inputs of the

be admissibly steered to the projection of Ωt,K onto x in N steps.
Consider the following assumption on the controller parame- ters:
 (
∈
) (
∈
) (
:
→
)Assumption 2.   (1)  Let R   Rm×m  be a positive definite matrix and Q     Rn×n   a positive semi-definite matrix such that the pair    (Q 1/2, A) is observable.
(2)  (
=
)Let the offset cost function VO Rp R be a convex, positive
definite and subdifferentiable function such that VO(0) 0.
(3)  (
∈
+
)Let K Rm×n be a stabilizing control gain such that (A BK)
is Hurwitz.
(4) Let P ∈ Rn×n be a positive definite matrix such that
(A + BK)TP(A + BK) − P = −(Q + K TRK).

 (
t
,
K
)system (1) is an m-dimensional linear subspace of Rn+m Alvarado	(5) Let Ωw ⊆ Rn+m be an admissible polyhedral invariant set for
(2007) given by	tracking for system (1) subject to (2), for a given gain K . That is,

x u =

for all (x, θ) ∈ Ωw , then ((A + BK)x + BLθ, θ) ∈ Ωw

where

( s, s)

Mθ θ.

L = [−K I ]

t,K

t,K

Every pair of steady-state and input values (xs, us) ∈ Rn+m is

m Mθ . See Limon et al. (2008) for more details.
The set of admissible steady outputs consistent with the invariant

 (
∈
)characterized by a given parameter θ Rm. The steady controlled outputs are given by
ys = Nθ θ
 (
=
 
[
]
)where Nθ C D Mθ .
 (
N
)The problem we consider is the design of an MPC controller κO(x, yt ) to track a (possibly changing) target steady output yt .  If yt is an admissible steady output (that is, the corresponding operation point fulfills the constraints), the closed-loop system evolves to this target without offset. If yt is not consistent with the
linear model considered for predictions, namely, it is not a possible steady output of system (1) or this is not admissible, the closed- loop system evolves to an admissible steady state which minimizes a given performance index.

3. Enhanced formulation of the MPC for tracking
In this section, the role of the offset cost function in the MPC for tracking (Limon et al., 2008) is studied. As will be demonstrated later on, under mild assumptions, this function provides significant properties to the controlled system.

set for tracking Ωw is given by
 (
t
,
K
) (
t
,
K
)Ys = {ys = Nθ θ : (xt , ut ) = Mθ θ, and (xt , θ) ∈ Ωw }.
This set is potentially the set of all admissible outputs for system
(1) subject to (2), (Limon et al., 2008).
Taking into account the proposed conditions on the controller parameters, the following theorem proves the asymptotic stability and constraint satisfaction of the controlled system.
 (
∈
) (
N
) (
→∞
 
ǁ
−
ǁ
 
=
/
∈
∗
∗
) (
∈
)Theorem 1 (Stability). Consider that Assumptions 1 and 2 hold and consider a given target operation point yt . Then for  any  feasible initial state x0 XN , the system controlled by the proposed MPC controller κO(x, yt ) is stable, fulfills the constraints throughout the time  and,  if  yt   Ys, converges  to  an  equilibrium  point  yt  such that limk	y(k)   yt	0. If yt Ys, the closed-loop system
asymptotically converges to a steady state and input (xs , us ) and y∗s   = Cx∗s   + Du∗s , where
 (
=
−
s
)y∗	arg min VO(ys	yt ).
ys ∈Ys
Proof. Feasibility and convergence can be proved by following a similar procedure to Limon et al. (2008).
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 (
¯ 
−
) (
¯ ¯
)The proof will be finished by demonstrating that (x∗s , u∗s ) is the minimizer of the offset cost function VO(ys yt ), proving the second assertion of the theorem. The first assertion is a direct consequence
of the latter.
This result is obtained by contradiction. Consider the following set of the optimal solutions:
 (
y
¯
 
∈
Y
s
      
 
s
)Γ = {y¯s : y¯s = arg min VO(y¯s − yt )}.
Consider  that  y¯∗s      /∈  Γ .  Then  there  exists  a  y˜s   ∈  Γ ,  such  that
VO(y˜s − yt ) < VO(y¯∗s   − yt ). Define θ˜ as a parameter (contained

operating point according to the offset cost function VO( ). Then it can be considered that the proposed controller has a steady-state optimizer built in and VO( ) defines the function to optimize. Notice that the only mild assumptions on this function are to be convex, positive definite, subdifferentiable and zero when the entry is null
 (
·
) (
·
)(to ensure offset-free control if yt ∈ Ys).
Remark 2 (Offset Cost Function and Stability). Taking into account Theorem 1, stability is proved for any offset cost function satisfying Assumption 2. Therefore, if this cost function varies with the time, the results of the theorem still hold.

 (
t
,
K
)in the projection of Ωw

onto θ ) such that y˜s = Nθ θ˜.
ˆ

This property allows us to tune the cost function along the
time  maintaining  the  stabilizing  properties  of  the  controller.

 (
∗
) (
¯
ˆ
) (
=
+
=
 
[−
]
)In can be proved (Alvarado, 2007) that there exists a λ ∈ [0, 1) such that for every λ ∈ [λˆ, 1), the parameter θˆ = λθ¯ ∗ + (1 − λ)θ˜ is such that the control law u        Kx      Lθˆ (with L	K, Im  Mθ )
steers the system from xs to xs fulfilling the constraints.
Defining as u the sequence of control actions derived from the
control  law  u   =  K(x  − xˆs) + uˆs,  it  is  inferred  that  (u, x¯∗s , θˆ)

Besides, this property  can  be  exploited  to  consider  an  offset  cost  function  which  depends  on  the  target,  namely  VO(yt    ys   yt ) defining different optimal criterion for the operating point selection depending on the chosen target.
 (
; 
¯ 
−
)Remark 3 (QP Formulation). The optimization problem PO(x, yt ) is

 (
P
O
(
x
,
 
y
t
 
)
 
can
 
be
 
posed
 
as
 
a
 
quadratic
 
programming
 
by
 
means
 
of
 
an
)O     ∗	N

 (
¯
)is a feasible solution for PN (xs , yt ) (Limon et al., 2008). From Assumption 2,
 (
N
) (
s
) (
N
) (
s
)V O∗(x¯∗, yt ) ≤ V O(x¯∗, yt ; u, yˆs)

a convex mathematical programming problem that can be effi- ciently solved. In the case that the offset cost function VO(yt ; y¯s−yt ) is such that the region {y¯s : VO(yt ; y¯s − yt ) ≤ 0} is polyhedral, then

 (
N
)

 (
P
)= ǁx¯∗s   − xˆsǁ2  + VO(yˆs − yt ).
 (
x
) (
=
)Then,  defining  H	MTPMx and considering the previous statements,
V O(x¯∗, yt ; u, yˆs) = ǁx¯∗ − xˆsǁ2  + VO(yˆs − yt )

epigraph formulation.
Remark 4 (Robustness). Taking into account that the control law is derived from a parametric convex problem, the closed-loop system is input-to-state stable for small uncertainties (Limon et al.,

N      s	s	P

2008). In Alvarado, Limon, Alamo, Fiacchini, and Camacho (2007)

 (
H
)= ǁθ¯s∗ − θˆsǁ2   + VO(yˆs − yt )
 (
H
)= (1 − λ)2ǁθ¯s∗ − θ˜sǁ2   + VO(yˆs − yt ).
 (
N
)The partial of V O about λ is

a robust formulation of this controller has been proposed. In this case, offset free control can be achieved by means of disturbances models (Pannocchia & Kerrigan, 2005) or adding an external loop (Alvarado, 2007).

 (
N
∂λ
)∂V O
 (
(
)= −2 1 −

ǁ¯ ∗ − ˜ ǁ + g

y¯∗ − y˜

Remark 5 (Terminal Equality Constraint). Following the same argu-
 (
λ)
 
θ
s
) (
θ
s
) (
2
H
) (
T
 
(
) (
s
) (
s
)
) (
ments, it can be proved that the results of 
Theorem 1 
still hold
)

where g T  ∈ ∂VO(yˆs−yt ), defining ∂VO(yˆs−yt ) as the subdifferential of VO(yˆs −yt ), (Boyd & Vandenberghe, 2006). Evaluating this partial for λ = 1 we obtain that

when posing the terminal constraint as an equality constraint, by considering (x¯s, u¯s) ∈ Z, x(N) = x¯s and P  = 0.
4. Local optimal control

 (
.
∂
V
)O
 (
∂λ
) (
λ
=
1
)N .	= g

∗T (y¯∗s
· 
y˜s)


 (
system to the target 
y 
, 
κ
r
 
(
x
, 
y 
) 
is derived from the solution of
)Assume that the standard MPC control law to regulate the

where  g ∗T	∈   ∂V  (y¯∗
· 
y  ),  defining  ∂V  (y¯∗
· 
y  ) as  the	O

t	N	t

O     s	t

O     s	t

PN (x, yt ) subject to y¯s  = yt . The resulting optimization problem,

subdifferential  of  VO(y¯∗s    − yt ).  Taking  into  account  that  VO  is  a

denoted as Pr (x, yt ), is feasible for any x in a polyhedral region

subdifferentiable function, we can state that

denoted as

N
 (
r
)XN (yt ). Under certain assumptions (Mayne et al.,

 (
O
)∂V .

 (
N
)

2000), for any feasible initial state x ∈ Xr (yt ), the control law

 (
∂λ 
λ
=
1
).	= g ∗T (y¯∗s   − y˜s) ≥ VO(y¯∗s   − yt ) − VO(y˜s − yt ).

N
 (
N
)κr (x, yt ) steers the system to the target fulfilling the constraints.

Considering that VO(y¯∗s   − yt ) − VO(y˜s − yt ) > 0, it can be derived
that there exists a λ ∈ [λˆ, 1) such that V O(x¯∗s , yt ; u, yˆs) is smaller

However, this control law is suboptimal since the cost function
of the MPC is only minimized for a finite prediction horizon, and hence the MPC does not ensure the best closed-loop performance.

N
than  the  value  of  V O(x¯∗, y  ; u, yˆ ) for  λ

1, which is equal to

Fortunately, as stated in the following lemma, if the terminal cost

 (
N
)V O∗(x¯∗s ,

yt ).

N   s	t	s	=

function is the optimal cost of the unconstrained LQR, then the resulting finite horizon MPC is equal to the constrained LQR in a

This contradicts the optimality of the solution and hence the
result is proved, finishing the proof. Q
Remark 1 (Steady-State Optimization). It is not unusual that the output target yt is not contained in Ys. This may happen when there does not exist an admissible operating point whose steady

neighborhood of the terminal region (Bemporad, Morari, Dua, & Pistikopoulos, 2002; Hu & Linnemann, 2002).
Lemma 6. Consider that Assumptions 1 and 2 hold. Consider that the terminal control gain K is the one of the unconstrained linear
quadratic regulator. Let  θt be the parameter such that  yt   = Nθ θt .

output is equal to the target or when the target is not a possible

Define  the  set  ΥN (yt )  ⊂  Rn  as  ΥN (yt )  =  {x¯  ∈  Rn   :  φ(N ; x¯,

steady output of the system (that is, this is not in the subspace

κ∞(·, yt ), θt ) ∈ Ωw }. Then for all x  ∈ ΥN (yt ), V r,∗(x, yt ) = V∞∗

spanned by the columns of matrix Nθ ). To deal with this situation

(x, y ) and κr (x, y t,K    κ  (x, y ).	N

in predictive controllers, the standard solution is to add an upper

t	N	t ) =  ∞	t

level steady-state optimizer to decide the best reachable target of the controller (Rao & Rawlings, 1999; Tatjewski, 2008).
From the latter theorem it can be clearly seen that, in this case, the proposed controller steers the system to the optimal

The proposed MPC for tracking might not ensure this local optimality property under the assumptions of Lemma 6 due to the artificial steady state and input and the functional cost to minimize (Alvarado, 2007). However, as is demonstrated in the
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following property, under some conditions on the offset cost function VO(·), this property holds.
 (
·
)Assumption 3. Let the offset cost function VO( ) fulfill Assump- tion 2.2 and be such that
α1ǁyǁ ≤ VO(y) ≤ α2ǁyǁ, ∀y ∈ Ys
where α1 and α2 are positive real constants.

 (
N
)Property 1 (Local Optimality). Consider that Assumptions 1–3 hold. Then, for all x ∈ Xr (yt ) there exists an α∗ > 0 such that, for all α1 ≥ α∗:
· The proposed MPC for tracking is equal to the MPC for regulation;
that is, κO(x, yt ) = κr (x, yt ) and V O∗(x, yt ) = V r∗(x, yt ) for all
5. 
Conclusions

In this paper, the role of the offset cost function has been studied. In particular a convex, positive definite and subdifferential function is considered.
Under some assumptions, it is proved that the proposed controller steers the system to a point which minimizes the offset cost function. This point is the target if it is admissible. If not, the controller converges to an admissible steady-state optimum according to the offset cost function. Besides, the closed-loop evolution is also optimal in the sense that provides the best possible performance index.
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∞
)κO(x, yt ) is equal to the optimal control law κ (x, yt ) for all x
Υ (yt ).
 (
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