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Abstract: In this paper, a new concept of invariance for saturated linear systems is
presented. This new notion of invariance, denoted SNS-invariance, has a number of
geometrical properties that makes its use suitable for the estimation of the domain of
attraction of saturated systems. The notion of SNS-domain of attraction, that serves as an
estimation of the domain of attraction of a saturated system, is introduced. It is shown
that, in case of single input saturated systems, any contractive set is contained in the SNS-
domain of attraction. A simple algorithm that converges to the SNS-domain of attraction
is presented. Some illustrative examples are given.
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1. INTRODUCTION

Saturation is probably the most commonly encoun-
tered nonlinearity in control engineering. For this rea-
son, the estimation of the domain of attraction of linear
systems subject to control saturation have received
the attention of many authors in the last years (see,
for example, (Gomes Da Silva Jr. and Tarbouriech,
1999; Milani, 2002; Hu and Lin, 2001) and references
therein).

The domain of attraction of a saturated system can
be estimated by means of a linear difference inclu-
sion (LDI) of the system. The politopic representa-
tion provided by the LDI simplifies the analysis of
the non-linear system. In (Gomes Da Silva Jr. and
Tarbouriech, 2001), an LDI is used to obtain invariant
ellipsoids for saturated systems.
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The linear difference inclusion presented in (Gomes
Da Silva Jr. and Tarbouriech, 2001) is generalized
in (Hu and Lin, 2001) and (Hu et al., 2002). Based
on this generalization, the authors propose how to
choose an auxiliary matrix, that characterizes the LDI,
in order to obtain the greatest ellipsoid that is invariant
under the corresponding LDI. This LDI representation
has also been used in (Cao and Lin, 2003) to obtain
a saturation-dependent Lyapunov function that leads
to a less conservative estimation of the domain of
attraction.

In this paper a new notion of invariance, denoted as
SNS-invariance, is presented. Based on its geometrical
properties, a simple algorithm to estimate the domain
of attraction of a saturated linear system is proposed.
It is shown that in case of single input systems, any
contractive set is a SNS-invariant set.

The paper is organized as follows. In section 2 the
class of saturated systems considered is presented. The



new notion of invariance is introduced in section 3.
A polyhedral representation of the SNS-one-step set
operator is given in section 4. Based on this operator,
an algorithm that converges to the SNS-domain of
attraction is proposed in section 5. Some illustrative
examples are given in section 6. The paper draws to a
close with a section of conclusions.

2. PROBLEM STATEMENT

Consider the following system

x+ = Ax+Bσ(Kx) (1)

where x ∈ IRn denotes the state vector. The function
σ : IRm→ IRm is the vector-valued standard saturation
function defined as follows:

σ(u) = [σ(u1) σ(u2) . . . σ(um)]> ,

where σ(ui) = sign(ui)min{1, |ui|}.

Denote M = {1,2, . . . ,m}. Denote also Bi, i = 1, . . . ,m
the columns of matrix B and Ki, i = 1, . . . ,m the rows
of matrix K. With this notation, system (1) can be
rewritten as:

x+ = Ax+
m

∑
i=1

Biσ(Kix) = Ax+ ∑
i∈M

Biσ(Kix)

3. DEFINING THE NOTION OF
SNS-INVARIANCE

In this section, the concept of SNS-invariance is pre-
sented. For this purpose, some auxiliary notation is
required:

Definition 1. Given a set of integers T , set VT is the
set of all subsets of T . That is,

VT = { S : S⊆ T }

Example: If m = 2, then M = {1,2} and VM =
{ /0,{1},{2},{1,2}}. Note that the empty set /0 belongs
to VM .

Throughout this paper: Sc denotes the complementary
of S in M . That is, Sc = { i ∈M : i /∈ S }.

Definition 2. Given a set S ∈ VM , F(x,S) is defined
as follows:

F(x,S) = Ax+ ∑
i∈Sc

BiKix+∑
i∈S

Biσ(Kix)

Note that with these definitions, x+ = Ax+Bσ(Kx) =
F(x,M ). Also, x+ = F(x, /0) = (A + BK)x represents
the evolution of the system without saturation.

The notion of SNS-invariance is introduced in the
following definition:

Definition 3. A set Ω is said to be SNS-invariant for
system x+ = Ax+Bσ(Kx) if x∈Ω implies F(x,S)∈Ω
for every S ∈ VM .

It is clear from the previous definition that if Ω is a
SNS-invariant set then Ω is an invariant set for the
saturated system x+ = Ax + Bσ(Kx). In effect, if Ω is
SNS-invariant then Ax + Bσ(Kx) = F(x,M ) ∈ Ω, for
all x ∈Ω.

For single input systems (m = 1), the SNS-invariance
of a given set Ω is equivalent to the invariance of Ω for
the Saturated and Non Saturated systems: x+ = Ax +
Bσ(Kx) and x+ = Ax+BKx. Note that SNS stands for
Saturated and Non Saturated.

3.1 Geometric condition of SNS-invariance

In the context of set invariance theory, the one-step
set plays an important role (Blanchini, 1999). This
concept, for the saturated system (1), is introduced in
the following definition.

Definition 4. Given system x+ = Ax+Bσ(Kx) and set
Ω, the one-step set Q(Ω) is defined as

Q(Ω) = { x : Ax+Bσ(Kx) ∈Ω }

It is well known that Ω is an invariant set for sys-
tem x+ = Ax + Bσ(Kx) if and only if Ω ⊆ Q(Ω)
(Blanchini, 1999). Given a convex set Ω, the one-step
set Q(Ω) is not necessarily convex due to the non-
linear nature of the saturation function. The non con-
vex nature of Q(Ω) makes it difficult to use operator
Q(·) in the computation of invariant sets for saturated
systems.

In order to provide a geometric condition of SNS-
invariance, the following definitions are introduced.

Definition 5. Given a set Ω and S ∈ VM :

QS(Ω) = { x : F(x,S) ∈Ω },

and given a set Ω:

QSNS(Ω) =
⋂

S∈VM

QS(Ω)

From the definition of QSNS(·), the following property
is directly inferred:

Property 1. A set Ω is SNS-invariant if and only if
Ω⊆ QSNS(Ω).

The most remarkable property of QSNS(·) is that given
a polyhedral set Ω, QSNS(Ω) is a convex polyhedron.
This striking property will be proved in the following
section.



4. POLYHEDRAL REPRESENTATION OF
QSNS(Ω)

In this section, a polyhedral representation of QSNS(Ω)
is provided. Given a polyhedral set Ω and a set S
in VM , QS(Ω) is not necessarily a polyhedral set.
Surprisingly,

QSNS(Ω) =
⋂

S∈VM

QS(Ω)

is a polyhedral set that can be obtained in a direct way
from polyhedron Ω as it is claimed in the following
theorem.

Theorem 1. Let us suppose that Ω is a convex polyhe-
dron in IRn given by Ω = { x : Rx¹ g }. Then:

QSNS(Ω)=
⋂

S∈VM

{ x : R(A+ ∑
i∈Sc

BiKi)x−∑
i∈S
|RBi| ¹ g }

where Sc denotes the complementary of S in M and
|RBi| is the vector with entries equal to the absolute
value of the entries of vector RBi.

PROOF: See appendix A.

5. SNS-DOMAIN OF ATTRACTION

In this section, the notion of SNS-domain of attraction
is introduced. It is shown that the SNS-domain of
attraction is included in the domain of attraction of
the saturated system. Taking into account the results of
the previous section, a simple algorithm that converges
to the SNS-domain of attraction of the system is
proposed. It is also shown in this section that, in case
of single input systems, any contractive set belongs to
the SNS-domain of attraction.

Definition 6. A sequence {S0,S1,S2, . . .} is admissi-
ble if all the elements of the sequence belong to VM .

Definition 7. The initial condition x0 belongs to the
SNS-domain of attraction of system x+ = Ax +
Bσ(Kx) if the recursion

xk+1 = F(xk,Sk)

converges to the origin for any admissible sequence
{S0,S1,S2, . . .}= {Sk}

∞
0 .

It is clear from the previous definition that the SNS-
domain of attraction is included in the domain of at-
traction of the saturated system. The following theo-
rem states that it is possible to obtain the SNS-domain
of attraction by means of a simple recursion.

Theorem 2. Denote L(K) the region of linear be-
haviour of the saturated system, that is, L(K) = { x ∈
IRn : ‖Kx‖∞ ≤ 1 }. Suppose that Φ ⊆ L(K) is a
convex polyhedron with non zero volume. Suppose

also that Φ is an invariant set for the asymptotically
stable system x+ = (A + BK)x. Denote now C0 = Φ
and consider the following recursion:

Ck+1 = QSNS(Ck).

Then:

(i) Ck is a convex polyhedron that can be obtained
by means of theorem 1, ∀k ≥ 1.

(ii) Ck is a SNS-invariant set for system x+ = Ax +
Bσ(Kx), ∀k ≥ 0.

(iii) Ck ⊆Ck+1, ∀k ≥ 0.
(iv) Ck belongs to the SNS-domain of attraction of

system x+ = Ax+Bσ(Kx), ∀k ≥ 0.
(v) The sequence {C0,C1,C2, . . .} converges to the

SNS-domain of attraction of system x+ = Ax +
Bσ(Kx).

(vi) The SNS-domain of attraction of the saturated
system x+ = Ax+Bσ(Kx) is a convex set.

PROOF :

(i) Theorem 1 states that if Ω is a convex polyhedron
then QSNS(Ω) is also a convex polyhedron. This,
and the fact that C0 is a convex polyhedron, prove
that the recursion Ck+1 = QSNS(Ck) always yields
convex polyhedrons.

(ii) As C0 belongs to L(K) it results that F(x,S) =
(A + BK)x, for all x ∈ C0 and for all S ∈ VM .
From this and the invariance of C0 it is inferred
that F(x,S) ∈ C0 for all x ∈ C0 and for all S ∈
VM ; that is to say, C0 is SNS-invariant.

Let us now suppose that Ck−1 is SNS-invariant,
then Ck−1 ⊆ QSNS(Ck−1) = Ck (see property 1).
Therefore, if x ∈Ck = QSNS(Ck−1) then F(x,S) ∈
Ck−1 ⊆Ck, for all S ∈ VM .

(iii) From the geometric condition of SNS-invariance
(see property 1): Ck ⊆ QSNS(Ck) = Ck+1

(iv) From the SNS-invariance of C0 ⊆ L(K) and the
asymptotically stability of the non saturated sys-
tem it is inferred that C0 belongs to the SNS-
domain of attraction of the system. Note that if
Ck−1 belongs to the SNS-domain of attraction
then Ck = QSNS(Ck−1) also belongs to the SNS-
domain of attraction. This is due to the fact that
F(x,S) ∈Ck−1, for all x ∈Ck and for all S ∈VM .
Therefore, the recursion Ck+1 = QSNS(Ck) with
C0 = Φ yields SNS-invariant sets that belong to
the SNS-domain of attraction.

(v) Suppose now that x belongs to the SNS-domain
of attraction of the system. As Φ is an invariant
set with nonzero volume, there exists p such
that the recursion xk+1 = F(xk,Sk) with x0 = x
satisfies xp ∈Φ = C0 for all admissible sequence
S0,S1, . . . ,Sp. This is equivalent to say that x is
included in Cp and, consequently, x belongs to
the SNS-domain of attraction.



(vi) It suffices to show that given two points x1 and
x2 belonging to the SNS-domain of attraction,
λx1 + (1− λ)x2 belongs to the SNS-domain of
attraction for every λ ∈ [0,1]. If x1 and x2 belong
to the SNS-domain of attraction then it is clear
from the previous claim that there exists p1 and
p2 such that x1 ∈Cp1 , x2 ∈Cp2 . Denote now p =
max{p1, p2}, taking into account that Ck ⊆Ck+1,
∀k ≥ 0, it is inferred that x1 ∈ Cp and x2 ∈ Cp.
From the fact that Cp is a convex set contained
in the SNS-domain of attraction of the system it
is concluded that λx1 +(1−λ)x2 belongs to Cp
and therefore to the SNS-domain of attraction for
every λ ∈ [0,1].

The recursion presented in theorem 2 requires an in-
variant set of the linear system x+ = Ax + BKx, in-
cluded in L(K). Note that this admissible invariant set
can be obtained by standard algorithms (see (Gilbert
and Tan, 1991; Blanchini, 1999)).

Let us consider any set Ck obtained from the recursion
presented in theorem 2; any set included in Ck belongs
to the SNS-domain of attraction. For example, an el-
lipsoidal inner approximation of set Ck serves as an
estimation of the domain of attraction of the saturated
system. From the convexity of the SNS-domain of
attraction it is inferred that the convex hull of a given
collection of sets belonging to the SNS-domain of at-
traction also belongs to the SNS-domain of attraction.

The following property states, for single input sys-
tems, that any contractive set of the saturated system
belongs to the SNS-domain of attraction. This means
that the maximal contractive set for a given single
input system is characterized, in a non conservative
way, by the recursion proposed in theorem 2.

Property 2. Let us suppose that m = 1 (single input
case), and that Ω is a contractive set for system (1).
That is, there is λ ∈ [0,1) such that x ∈ εΩ implies
Ax + Bσ(Kx) ∈ λεΩ, ∀ε ∈ [0,1]. Then Ω is a SNS-
invariant set that belongs to the SNS-domain of attrac-
tion of the system.

PROOF :

It will be first shown that if x ∈ εΩ then F(x,S) ∈ λεΩ
for all S ∈ VM = { /0,1}. That is, Ax +Bσ(Kx) ∈ λεΩ
and Ax+BKx ∈ λεΩ. The first inclusion is clear from
the assumptions of the property. It is now shown that
Ax+BKx ∈ λεΩ. In effect, if x ∈ εΩ then there exists
γ ∈ (0,1] such that |Kγx| ≤ 1. Moreover, as x ∈ εΩ,
it results that γx ∈ γεΩ. From the assumptions of the
property, it can be now concluded that :

Aγx+BKγx = Aγx+Bσ(Kγx) ∈ λγεΩ

Note that Aγx + BKγx ∈ λγεΩ implies Ax + BKx ∈
λεΩ. It has then been proved that x ∈ εΩ, ε ∈ [0,1]
implies:

F(x,S) ∈ λεΩ, ∀S ∈ VM = { /0,1}.

It is clear that this implies that Ω is SNS-invariant.

In what follows it is shown that Ω belongs to the

recursion: xk+1 = F(xk,Sk) with x0 = x ∈ Ω. From
the previous discussion it is clear that xk ∈ λkΩ, for
every admissible sequence S0,S1, . . . ,Sk−1. Therefore,
lim
k→∞

xk = 0, for every admissible sequence {Sk}
∞
0 . This

proves the claim.

6. NUMERICAL EXAMPLES

6.1 Example 1

Let us consider the system x+ = Ax+Bσ(Kx) with

A =

[

1 1
0 1

]

, B =

[

0.5
1

]

, K = [−0.6167 −1.2703]

Figure (1) shows the sequence {C0,C1, . . . ,C27} pro-
vided by the recursion of theorem (2): Ck+1 = QSNS(Ck).
The sequence starts with an invariant set Φ = C0 con-
tained in the region of linear behaviour of the system
(shadowed in the figure). The sequence leads to the
SNS-domain of attraction of the system. The SNS-
invariant sets Ck, k = 1, . . . ,27, are displayed in the fig-
ure (note that, as it is claimed in theorem 2, Ck ⊆Ck+1,
∀k ≥ 0).
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Fig. 1. Sequence Ck leading to the SNS-domain of
attraction.

The domain of attraction of this system has been esti-
mated by means of a saturation-dependent Lyapunov
function in (Cao and Lin, 2003). In that paper, the au-
thors propose how to choose matrix H (that character-
izes a linear difference inclusion of the saturation non-
linearity) in such a way that a saturation-dependent



Lyapunov function is strictly decreasing. Therefore,
the authors are obtaining an estimation of the domain
of attraction of the system by means of the concept of
linear difference inclusion.

Figure (2) compares the SNS-domain of attraction
with the estimation obtained by means of a saturation-
dependent Lyapunov function (Cao and Lin, 2003).
This figure shows that the SNS-domain of attraction
contains the estimation provided by the LDI approach.
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Fig. 2. SNS-domain of attraction (solid line) and es-
timation of the domain of attraction obtained by
means of a saturation-dependent Lyapunov func-
tion (dotted line).

6.2 Example 2

Consider the system x+ = Ax+Bσ(Kx), with:

A =

[

1.2 0
0.4 0.5

]

, B =

[

2 0
0 2

]

, K =

[

−0.475 0
0.55 0.075

]

This example was introduced in (Gomes Da Silva Jr.
and Tarbouriech, 1999). In that paper, the authors use
an initial contractive polyhedral set ϒ ⊆ L(K) and
show how to enlarge it in such a way that the con-
tractiveness of the enlarged polyhedron is maintained.
That is, the maximum value of the scalar α such
that αϒ is a contractive polyhedron for the saturated
system is obtained. Using this approach, the authors
showed that the region { x : ‖x‖∞ ≤ 10 } is included
in the domain of attraction of the system.

Figure (3) shows the sequence {C0,C1, . . . ,C25} pro-
vided by the recursion of theorem (2). The domain
of attraction of the system of this example is Γ =
{ x ∈ IR2 : |x1| < 10 }. It can be shown that, in this
particular case, the sequence {Ck} converges not only
to the SNS-domain of attraction of the system but also
to the actual domain of attraction.
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Fig. 3. Sequence Ck leading to the SNS-domain of
attraction of the system.

7. CONCLUSIONS

In this paper a new notion of SNS-invariance is in-
troduced. The geometrical properties of the SNS-
invariance concept leads to the definition of the SNS-
domain of attraction of a given saturated system. A
recursive algorithm that converges to the SNS-domain
of attraction is presented. One of the most remarkable
properties of the SNS-domain of attraction is that any
contractive set for a saturated single input system is
included in the SNS-domain of attraction. Numerical
examples demonstrate the effectiveness of the new
approach.

Appendix A. PROOF OF THEOREM 1

Denote

PSNS =
⋂

S∈VM

{ x : R(A+ ∑
i∈Sc

BiKi)x−∑
i∈S
|RBi| ¹ g }

In what follows, it will be proven that PSNS ⊆QSNS(Ω).
Let us suppose that there is x̂ ∈ PSNS such that x̂ 6∈
QSNS(Ω). That is, there is Ŝ∈VM such that x̂ 6∈QŜ(Ω).
In this case, there must be j such that denoting R j and
g j the j-esime row of R and j-esime component of g
respectively:

R jF(x̂, Ŝ) =

R j

(

(A+ ∑
i∈Ŝc

BiKi)x̂+∑
i∈Ŝ

Biσ(Kix̂)

)

> g j

(A.1)

It will be shown that the above inequality contradicts
the fact that x̂∈ PSNS . In effect, taking into account that
aσ(y)≤max {ay,−|a|} (see appendix B ):

R jF(x̂, Ŝ) = R j(A+ ∑
i∈Ŝc

BiKi)x̂+∑
i∈Ŝ

R jBiσ(Kix̂)

≤ R j(A+ ∑
i∈Ŝc

BiKi)x̂+∑
i∈Ŝ

max {R jBiKix̂,−|R jBi|}



Denote:

T = { i ∈ Ŝ : R jBiKix̂ <−|R jBi| }

From this definition and the previous inequality:

R jF(x̂, Ŝ)≤ R j(A+ ∑
i∈Ŝc

BiKi)x̂

+ ∑
i∈Ŝ,i6∈T

R jBiKix̂−∑
i∈T
|R jBi|

= R j(A+ ∑
i∈M ,i6∈Ŝ

BiKi + ∑
i∈Ŝ,i6∈T

BiKi)x̂−∑
i∈T
|R jBi|

= R j(A+ ∑
i∈M

BiKi−∑
i∈Ŝ

BiKi +∑
i∈Ŝ

BiKi−∑
i∈T

BiKi)x̂

−∑
i∈T
|R jBi|

= R j(A+ ∑
i∈M

BiKi−∑
i∈T

BiKi)x̂−∑
i∈T
|R jBi|

= R j(A+ ∑
i∈T c

BiKi)x̂−∑
i∈T
|R jBi|

It is clear that T ∈ VM . Thus x̂ ∈ PSNS implies:

R(A+ ∑
i∈T c

BiKi)x̂−∑
i∈T
|RBi| ¹ g

In particular,

R j(A+ ∑
i∈T c

BiKi)x̂−∑
i∈T
|R jBi| ≤ g j

This inequality contradicts equation (A.1). Therefore,
it is inferred that R jF(x̂, Ŝ) ≤ g j and consequently:
PSNS ⊆ QSNS(Ω).

To conclude the prove, it will be shown that QSNS(Ω)⊆
PSNS . In effect, due to the fact that−|RBi| ¹RBiσ(Kix),
it results that, for every S ∈ VM :

R(A+ ∑
i∈Sc

BiKi)x−∑
i∈S
|RBi| ¹

R(A+ ∑
i∈Sc

BiKi)x+∑
i∈S

RBiσ(Kix) = RF(x,S)(A.2)

Suppose now that x ∈ QSNS(Ω), that is, RF(x,S) ¹ g,
∀S ∈VM . Then, taking into account equation (A.2), it
results that

R(A+ ∑
i∈Sc

BiKi)x−∑
i∈S
|RBi| ¹RF(x,S)¹ g, ∀S∈VM

It is concluded that x ∈QSNS(Ω) implies x ∈ PSNS . This
proves the claim.

Appendix B.

Property 3. Given a ∈ IR and y ∈ IR:

aσ(y)≤max {ay,−|a|}

PROOF :

1. |y| ≤ 1: max {ay,−|a|}= ay = aσ(y)
2. |y| > 1 and ay ≥ 0: max {ay,−|a|} = ay ≥

a sign (y) = aσ(y)
3. |y| > 1 and ay < 0: max {ay,−|a|} = −|a| =

a sign (−a) = a sign (y) = aσ(y)
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