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a b s t r a c t

This paper proposes some ultimate bounded stability analysis and stabilization conditions for systems involving actuators with different nonlinear elements, like for instance both saturation and dead-zone or both saturation and stick–slip. Results are based on the use of a convex differential inclusion approach. Indeed, an adequate property allowing to upper-bound some product terms related to the nonlinearity is provided. Thus, constructive conditions associated to convex optimization schemes are developed to determine suitable regions of the state space in which the closed-loop trajectories can be captured.
© 2011 Elsevier Ltd. All rights reserved.


	


1. Introduction
Many industrial processes exhibit non-smooth nonlinearities, generally due to physical, technological or safety constraints, as in the cases of hydraulic servo valves or electric servo motors. The interest for this kind of system mainly comes from the fact that neglecting these nonlinearities, during the stability analysis or the control design, can be a source of undesirable and even catastrophic behaviors (see, for example, Nordin, Ma, & Gutman, 2002; Tarbouriech, Garcia, & Glattfelder, 2007; Taware & Tao, 2003). For all these reasons, the specific case of nonlinear actuators involving saturation elements (position and/or higher dynamics) has been extensively studied in the last ten years Hu and Lin (2001), Kapila and Grigoriadis (2002) and Tarbouriech and Garcia (1997). In particular, several results have been provided in a local context for stability analysis and synthesis purposes, in which the key point is to determine an estimate of the basin of attraction  of the closed-loop nonlinear system: see Tarbouriech et al. (2007) for recent advances on this topic. On the other hand, practical actuators often involve more complex nonlinearities, such as friction terms for example, which may generally be represented by hysteresis, backlash, dead-zone or stick–slip elements Gomes,
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da Rosa, and Albertini (2006), Olsson and Åström (1989) and Shoukat Choudhury, Thornhill, and Shah (2005). However, such nonlinear actuators have been rarely studied, and in many cases only practical solutions without a priori guarantees of stability have been derived. One reason is certainly that such nonlinearities are generally poorly known and that mathematical descriptions are often not very well adapted for stability analysis or synthesis purposes Thiery, Kunze, Karimi, Curnier, and Longchamp (2006). Nevertheless, different solutions can be investigated to guarantee the closed-loop stability requiring some knowledge about the nonlinearities (see for example Corradini, Orlando, & Parlangeli, 2004; Tarbouriech, Prieur, & Queinnec, 2010, and references therein).
The current paper is concerned with the study of nonlinear actuators involving different nonlinear characteristics like both dead-zone and saturation elements. Literature on this subject is very limited. One can however cite preliminary results concerning semi-global stabilization of linear systems interconnected with such nonlinear elements Lin (1997), but with the main drawback that open-loop stability hypothesis has to be satisfied. More recently, attention was paid to bifurcation analysis of such nonlinear systems Ortega, Aracil, Gordillo, and Rubio (2000). The state feedback stabilization problem was addressed in Fong and Hsu (2000), but for the particular case of single input systems. In Gomes da Silva, Robaski, and Reginatto (2002), stability analysis conditions are proposed by considering a hybrid modeling for the closed-loop discrete-time system. Fliegner, Logemann, and Ryan (2003) reported some recent results on integral control, but for single-input single-output open-loop stable systems only.
In this paper, the notion of a generalized saturated function is presented, which is directly related to the notion of convex
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[image: ]differential inclusion Alamo, Cepeda, Fiacchini, and Camacho (2009) and Fiacchini (2010). Such a tool allows us to address the problem of computing estimates of the domain of attraction for a broad class of actuator nonlinearities. Based on this, an adequate property allowing to upper-bound some pertinent product terms related to the nonlinearity is provided. Then, using quadratic Lyapunov functions, constructive conditions are proposed in a quasi-LMI form, in the sense that the nonlinearity only appears through the product of a matrix by a scalar variable. The proposed approach allows us to characterize both an inner and an outer set. The closed-loop trajectories starting in the outer set are ultimately bounded in the inner set. The outer set is a positively invariant and contractive set for the closed-loop system. The objective of

the related optimization problem is then to maximize a measure of the size of the outer set, whereas the inner set is minimized.  It is important to point out that the technique proposed does not require the open-loop system to be stable. The main contribution resides in the fact that the results developed encompass those in Alamo, Cepeda, and Limon (2005), Fong and Hsu (2000), Gomes da Silva et al. (2002) and Hsu and Fong (2003). Furthermore,    the proposed conditions can be considered as complementary to that ones provided in Dai, Hu, Teel, and Zaccarian (2009) and Hu, Thibodeau, and Teel (2009).
Notation. 1 and 0 denote respectively the identity matrix and the null matrix of appropriate dimensions. Furthermore, 1m denotes
 (
≥
) (
| 
|
) (
[
 
]
 
=
+
) (
=
) (
∈
 
ℜ
=
)a vector of dimension m with all components equal to 1. The elements of a  matrix A	m×n  are denoted by  A(i,j), i	1, . . . , m, j	1, . . . , n. A(i) and Ai denote the ith row and ith column of matrix A, respectively. A′ denotes the transpose of A. He A		A A′.   A   is the matrix given by the absolute value of each element of
 (
−
)A. For two symmetric matrices, A and B, A > B (resp. A	B) means
 (
∀ 
 
=
∈
 
ℜ
∈
 
ℜ
) (
∈
 
ℜ
≥
−
≥
)that A B is positive definite (resp. positive semi-definite). For two vectors x, y	n, the notation x	y  means that x(i)	y(i)
 (
=
)0,  i	1, . . . , n. For any vector u	m  and u0	m, with
 (
=
 
{
 
;
⊆
}
) (
=
 
{
}
) (
|
|
=
)u0 > 0, one defines each component of satu0 (u) by satu0 (u(i)) sign(u(i)) min(u0(i),  u(i)  ), i	1, . . . , m. Given an integer m, the set Vm is defined as the set of all the subsets of Tm	1, 2, . . . , m , that is, Vm	S S	Tm . Sc denotes the complement of S in Tm (see Alamo et al., 2005, for more details). Given a set E , ∂E denotes its boundary. Given a symmetric and positive definite matrix P , an ellipsoid E (P, 1) is defined by E (P, 1) = {x ∈ ℜn; x′Px ≤ 1}.
2. Generalized saturated functions
In this section, the notion of generalized saturated functions is introduced. As it will be shown, this class of functions encompasses many common nonlinearities which appear in real control processes. The following definition introduces this notion for scalar (possibly time-varying) nonlinearities.
 (
:
 
ℜ
 
×
 
ℜ
 
→
 
ℜ
)Definition  1   (Scalar Case).  The scalar function ϕ	is said to be a generalized saturated function with saturation level     u0 ∈ ℜ, u0 > 0, dead-zone σ ∈ ℜ, σ ≥ 0, and linear slope
µ ∈ ℜ,µ > 0, if
−Γ (−u) ≤ ϕ(u, t) ≤ Γ (u),  ∀u, ∀t
where Γ (u) = max{µ(u + σ ), −u0}.
See Fig. 1 for an example of a scalar generalized saturated function. Any nonlinear function involving a combination of dead- zone, stick–slip and saturation elements can be shown to be an element of the class of generalized saturated functions (see Figs. 2 and 3). Moreover, it is also worth mentioning that some time- varying nonlinear phenomena like, for example, hysteresis and friction can be easily modeled by means of this class of functions (see Fig. 4).
The notion of (scalar) generalized saturated function is easily extended to the vector case.

Fig. 1. Generalized saturated function (scalar case).
[image: ]

Fig. 2. Input–output characteristics of a nonlinear actuator involving a dead-zone plus a saturation element.
[image: ]

Fig. 3. Input–output characteristics of a nonlinear actuator involving a stick–slip plus a saturation element.
[image: ]

Fig. 4. Input–output characteristics of a nonlinear actuator involving a hysteresis plus a saturation element.

 (
: ℜ × ℜ → ℜ
)Definition 2  (Vector  Case).  The  function ϕ        m	m is said to be a generalized saturated function with saturation level     u0 ∈ ℜm, u0 > 0, dead-zone σ ∈ ℜm, σ ≥ 0, and linear slope






µ ∈ ℜm,µ > 0, if
−Γ (−u) ≤ ϕ(u, t) ≤ Γ (u), ∀u, ∀t
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On the other hand, according to the saturation level u0, we face the classical problem of determining admissible initial state sets. In other words, we want to estimate an outer set of safe operation,

where the m components of function Γ (u) are given by
Γ(i)(u) = max{µ(i)(u(i) + σ(i)), −u0(i)}, i = 1, . . . , m.
The main results of the paper are based on the following common properties of the (scalar and vector) generalized saturated function (see the Appendix for a proof).

 (
u
)Property 1 (Scalar Case). Suppose that the scalar function ϕ : ℜ × ℜ → ℜ is a generalized saturated function with saturation level
0    ∈  ℜ, u0   >  0, dead-zone σ  ∈ ℜ, σ  ≥  0, and linear slope
µ  ∈  ℜ,µ  >  0. Then the following inequality is satisfied for every    z ∈ ℜ, u ∈ ℜ, and t ∈ ℜ:
zϕ(u, t) ≤ max{zµu + |z|µσ, −|z|u0}.	(1)
By extension, a general property may be stated in the vector case (see the Appendix for a proof).

 (
− 
−
 
|
z
)Property 2 (Vector Case). Suppose that ϕ : ℜm × ℜ → ℜm is a generalized saturated function with saturation level u0 ∈ ℜm, u0 > 0, dead-zone σ ∈ ℜm, σ ≥ 0, and linear slope µ ∈ ℜm,µ > 0. Then the following inequality is satisfied for every z ∈ ℜm, u ∈ ℜm, and t ∈ ℜ:

such that the associated closed-loop trajectories are contractive, as far as they are captured in the inner set. Hence, the problem we intend to solve by exploiting Property 2 can be summarized as follows:
 (
•
)Problem 1  (Analysis Problem).  Given the state feedback K , compute an outer ellipsoidal invariant and contractive set Ω1, as
large as possible, for the closed-loop system (3);
 (
•
)compute an inner set Ω2, as small as possible, in which the closed-loop trajectories, initiated in the outer ellipsoid Ω1, are ultimately bounded.
Throughout the paper, this problem is addressed by considering quadratic Lyapunov functions. Related to the computation of both ellipsoidal sets Ω1 and Ω2, optimization issues are discussed. Moreover, some remarks regarding the control design are also provided.

4. Stability analysis and stabilization conditions

4.1. Main result

The following theorem uses Property 2 (and Properties 3 and 4

 (
≤
)z′ϕ(u, t)	max
S∈Vm

−i∈Sc

 (
(
i
)
)

z(i)µ(i)u(i) + |z(i)|µ(i)σ(i)
 (
.
(2)
)

 (
|
u
) (
0
(
i
)
)

given in the Appendix) in order to solve Problem 1.

 (
S 
∈ 
V
m
, positive vector 
β 
and positive scalar 
θ 
satisfying:
)Theorem 1. If there  exist  three  symmetric  positive  definite  matrices W ∈ ℜn×n, Q ∈ ℜn×n, R ∈ ℜn×n, matrix Y S ∈ ℜm×n for every

i∈S

He AW + − B µ

 (
∈
)

K   W + − B Y S  	
 (
i
∈
S
)

Relation (2) is enclosed in the convex differential inclusion

 (
−
−
≤
≤
)

i Sc
−

i (i)
 (

+
) (
i 
i
)

(i)	 	
B B′ 

i (i)
 (

)

 (
∈ ℜ
) (

)framework. Notice that the component-wise nonlinear inclusion

µ(i)σ(i)

β(i)R +	− θ W	θ W 

 (
ℜ
) (

)Γ (  u)	ϕ(u, t)	Γ (u), and the inequality (2) are valid for
every u	m. This is clearly an advantage with respect to most
of the inclusions (and/or sector conditions) that can be found in

i∈Sc

β(i)
θ W	−θ Q

the literature, which are valid only on a bounded region of	m
(see Alamo, Cepeda, Limon, & Camacho, 2006; Hu & Lin, 2001; Pittet, Tarbouriech, & Burgat, 1997; Tarbouriech et al., 2007).

< 0,  ∀i ∈ Vm	(4)
 (
[ 
u
) (
]
Y
) (
W
Q
) (
≥
 
0
(6)
)W − Q ≥ 0	(5)
[ R	W ]

 (
(
i
)
) (
3. Problem statement
)2
0(i)

S
(i)	0	i

(7)

 (
∈ ℜ
)Consider the following continuous-time system:

Y S  ′	W	>   ,    ∀  ∈ S

x˙(t) = Ax(t) + Bϕ(Kx(t), t)	(3)
where x(t)	n  is the state. Matrices A, B and K  are  constant
matrices of appropriate dimensions. According to Section 2, the function ϕ  : ℜm  × ℜ → ℜm  is assumed to be a generalized

then the closed-loop trajectories of the nonlinear system (3) initiated
in the outer ellipsoid E (W −1, 1) are ultimately bounded in the set
E (Q −1, 1).
Proof. Consider the quadratic Lyapunov function V (x) = x′Px,

 (
−
−
)saturated function with saturation level u0 ∈ ℜm, u0 > 0, dead-
zone σ ∈ ℜm, σ ≥ 0, and linear slope µ ∈ ℜm,µ > 0.

with P  = P ′  > 0 and P  = W −1. We want to prove that V˙ (x) < 0

When  studying  the  behavior  of  such  a  system  (3),  any
nonlinear function ϕ(., .) bounded by Γ (.) and   Γ (  .) is suitable.
This means that the closed-loop trajectories do not necessarily
converge to the origin. However, under some conditions (see

along the trajectories of the nonlinear system (3) for any x such that
 (
≤
≥
=
=
)x′Px	1 and x′Ux	1 with U	U ′ > 0 and U	Q −1.
 (
(
i
)
) (

+
−
)If relation (4) is satisfied then one gets, by applying the Schur complement, that

Theorem 1), the ultimate boundedness of the trajectories Khalil
(2002) can be obtained. The first problem under consideration
is then to evaluate a domain, as small as possible, where it is

L = He

AW +

−i∈Sc

Biµ(i)K(i)W +

−i∈S

BiY S 

guaranteed that the trajectories will be ultimately bounded. Such
a domain is called the inner set.

+ −i∈Sc

µ(i)σ(i)

β(i)

R	BiB′i
β(i)

θ W +

θ WQ −1W

< 0.

Remark 1. The case of presence of dead-zone is a particular case,
which induces the system to behave in open-loop inside the inner
ellipsoid.

Hence, there exists an ϵ > 0 small enough such that
L < −ϵ1.	(8)
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From (7) and Property 3 (see Appendix), one gets	is a lower bound of (11) and therefore of the left-hand term of (10).

S	S ′

BiB′i



From this, for a proper positive value of α(i) (note that this value has

 (
(
i
)
)BiY(i) + (BiY(i)) ≥ −α(i)u0(i)W − α

u0(i), ∀α(i) > 0, ∀i ∈ S.

not to be expressly obtained) and using Property 4 the satisfaction
of

 (

)Hence, it follows from relation (8)

He AW +

− Biµ(i)K(i)W 

 (
∈
)	 (
 
)

x′

 (
 
)

PA +

−i∈Sc

PBiµ(i)K(i) +

PA +

−i∈Sc

′
 (

)PBiµ(i)K(i)

i Sc
 (
−
)				−

+	µ
i∈Sc

(i)

σ(i)

β(i)

R	BiB′i
 (
+
)β(i)

− −i∈S

α(i)

W	BiB′i
 (
+
)α(i)

u0(i)

− θ P + θ U

x − 2

i∈S

|x′PBi|u0(i)

− θ W + θ WQ −1W ≤ L < −ϵ1.
Thus, by pre- and post-multiplying both sides of the previous

+ −i∈Sc

µ(i)σ(i)

β(i)

x′PBiB′i Px
β(i)

< 0	(13)

inequality by x′P and Px, respectively, one obtains

implies the satisfaction of inequality (10). By using the fact that

 (
b
)x′

PA +
· 
PBiµ i K i

+ PA +

′
·  (

+
) (
i
∈
S
c
) (

)PBiµ i K i

 (
∈
)

2|a| ≤ b + a2 , for all b > 0 and for all a, it follows that

i∈Sc
+ − µ

( ) ( )
 (
(
i
)
) (
(
i
)
) (
(
i
)
)σ β

i Sc
PRP + PBiB′i P 

( ) ( )

x′

PA +
· 
PBiµ(i)K(i) +

PA +

′
·  (
i
∈
S
c
)PBiµ(i)K(i)

 (
−
 

) (

+
) (
c
) (
β
(
i
)
) (

) (
∈
)i  S	 	
	−

 (
−
)−	α(i)
i∈S

P	PBiB′i P	u
α(i)

0(i)

− θ P + θ U x

− θ P + θ U

x + 2

i∈Sc

µ(i)σ(i)|x′PBi|

 (

)≤ x′P LPx < −ϵx′P 2x.	 		(9)

− 2	|x′PBi|u0(i) < 0.	(14)
i∈S

 (
 
   
′ 
2
) (
i
∈
S
) (
m
) (
The inequality is satisfied for every 
S 
∈ 
V
m
, and therefore one gets
)Clearly  one  gets  ϵx′P 2x ≥ ∑	ϵ x′ P 2 x . Thus, by denoting ϵ¯ =
ϵx  P    x , it follows from  inequality (9)	′ ′

m
 (
−
) (
x
′
) (
PA
 
+
) (
PB
i
µ
(
i
)
K
(
i
) 
+
) (
PA
 
+
) (
PB
i
µ
(
i
)
K
(
i
)
)	−		−	′

 (
i
∈
S
c
)	 (
i
∈
S
c
)

x (A P + PA − θ P + θ U)x
 (
+
) (
2
 
max
S
∈
V
m
) (
x
′
PB
i
µ
(
i
)
K
(
i
)
x 
+ |
x
′
PB
i
|
µ
(
i
)
σ
(
i
)
)− 	
 (
i
∈
S
c
)

+	µ
i∈Sc


(i)

σ(i)

β(i)

PRP + PBiB′i P  − θ P + θ U x

− − |x′PBi|u0(i)


< 0.	(15)

 (
β
(
i
)
) (
−
) (
α
(
i
)
x
′
Px 
+
) (
i
α
(
i
)
) (
i
) (
−
) (
u
0
(
i
)
) (
u
0
(
i
)
)− 	x′PB B′Px	 ϵ¯ 

 (
i
∈
S
)

i∈S

 (
Then, by using 
Property 2 
with 
z 
= 
B
′
Px
, one has
)

≤ x′P LPx + ϵx′P 2x < 0.	(10)
Since x′Px ≤ 1 for all x ∈ E (W −1, 1), by definition, it follows that

2x′PAx + 2x′PBϕ(Kx, t) − θx′Px + θx′Ux
≤ x′(A′P + PA − θ P + θ U)x

	−		−	′

+ 2 max− x′PBiµ(i)K(i)x + |x′PBi|µ(i)σ(i)

 (
∈
)

x′ PA +

i∈Sc

PBiµ

(i)

K(i) +

PA +

i∈Sc

PBiµ

(i)

K(i)

S∈Vm
−

i Sc


+ − µ(i)σ(i)

β(i)PRP +

PBiB′i P 

− θ P + θ U x

−
i∈S

|x′PBi|u0(i) < 0

i∈Sc
− −i∈S  


α(i) +

x′PBiB′i Px

α(i)

β(i)
 (
−
)  ϵ¯
u0(i)

 u0(i)	(11)

along  the  trajectories  of  the  closed-loop  system,  for  all  x      E (W −1, 1) and x	E (Q −1, 1). Hence, the satisfaction of relations (4), (6) and (7) guarantees, by referring to the S-procedure Boyd,
 (
̸∈
) (
∈
) (
≤
≥
)El Ghaoui, Feron, and Balakrishnan (1994), that V˙ (x) < 0 for any x

 (
≥
) (
≥
)is a lower bound of the left-hand term of (10). Furthermore, from relation  (6)  it  follows that x′PRPx	x′Ux. Thus, since we are considering the decreasing of V for x such that x′Ux 1, it follows
that

such that x′Px     1 and x′Ux     1. Furthermore, from the definition of the ellipsoids E (W −1, 1) and E (Q −1, 1), the condition (5) means that E (Q −1, 1) is included in E (W −1, 1). Finally, the satisfaction of conditions (4)–(7) means that the ellipsoid E (W −1, 1) is

 (

)x′

PA +

− PBiµ

 (
∈
)



(i)


K(i)

+ PA +

− PBiµ



(i)

′
K(i)

contractive with respect to the trajectories of the nonlinear system
(3) until the state enters the set E (Q −1, 1). In other words, the closed-loop trajectories initiated in the outer ellipsoid E (W −1, 1)

i  Sc
	− 

i∈Sc
x′PB B′Px



  ϵ¯ 

are ultimately bounded in the inner ellipsoid

E (Q −1,

1).	Q

− θ P + θ U

x −
 (
−
) (

+
)i∈S

α(i) +

i   i
α(i)

− u0(i)

u0(i)

Remark 2. Note that the conditions stated in Theorem 1 do not
impose the asymptotic stability of the origin of the state space,

+	µ
i∈Sc


(i)

σ(i)

β(i)

x′PBiB′i Px	(12)
β(i)

and then, do not require any stability condition on the open-loop matrix A.




S. Tarbouriech et al. / Automatica 47 (2011) 1473–1481	1477


Remark 3. Theorem 1 gives a solution to the analysis Problem 1. The conditions can be directly extended to consider the control design case by considering matrix Y instead of terms KW , as further optimization variables.
Remark 4. In Theorem 1, the outer ellipsoid E (W −1, 1) is contrac- tive and invariant contrarily to the inner ellipsoid E (Q −1, 1). Nev- ertheless, we can determine the smallest invariant ellipsoid whose shape is determined by W and containing E (Q −1, 1). For this, it suffices to compute the greatest scalar ρ such that the resulting el-
lipsoid E (W −1, ρ−1) is invariant and contains E (Q −1, 1); in other words one has to compute the maximal scalar ρ  ≥  1 such that   W − ρQ ≥ 0.
 (
+
) (
≥
⊂
)Remark 5. It can be of interest to impose a rate of convergence  γ , γ > 0, for the closed-loop system trajectories by adding in the (1, 1) block of matrix in relation (4) the term γ W . Moreover, from the satisfaction of (4) and since according to Remark 4 there
 (
−
≤
−
)exists a scalar ρ 1 such that E (Q −1, 1) E (W −1, ρ−1), it follows V˙ (x) < θx′Px    θx′Q −1x      θ(1    ρ)x′Px. The positive scalar
 (
−
−
)θ(1 ρ) then represents a rate of convergence for the closed-loop system trajectories.

 (
=
∀
 
=
) (
=
=
)Remark 6. Consider a (normalized) saturation which is equivalent to the generalized saturated function with µ(i)	1, σ(i)	0, u0(i) 1,  i	1, . . . , m. By adapting to this case the conditions
 (
=
)of Theorem 1, it follows that the variable β does not appear   and R is no more affecting  (4)  but  is  involved  only  in  (6).  This relation  admits  infinite  solutions  R  provided  that  Q  > 0, as assumed in the statement of the theorem,  then (6)  does not affect the problem. Moreover, by choosing Q	W , (5) holds  and  hence,  in  this  case,  only  conditions  (4)  and  (7) of
 (
AW 
+ 
∑
i
∈
S
c 
B
i
K
(
i
)
W 
+ 
∑
i
∈
S 
B
i
Y 
S
)
)Theorem 1 have to be tackled. With Q =  W , relation (4) reads:
 (
He
)	 (
(
i
)	 (
< 
0 and therefore the
)

LMI conditions, due to vector β, and due to the products θ W and θ Q implying that the optimization problem proposed above is not convex. Note however, that, as pointed out in new Remark 5, θ  is  a sort of measure of how high the decreasing rate is required to be ensured. Posing θ very close to zero, means that inside E (W −1, 1) and outside E (Q −1, 1) the convergence rate is required to be close to null, that is, we are trying to approximate the basin of attraction (outer set) and the ultimately bounded stability region (inner set). Vice versa, high values of θ would entail the requirement of a high convergence rate, convergence rate that could be not possible to   be guaranteed inside any region (in fact, infeasibility can occur). Then, in the following, θ is viewed as a design parameter and fixed as a small value since we are interested in the set optimization problem. On the other hand, the influence of the choice of vector β cannot be neglected. Either an iterative search on the components of this vector or an encapsulation of the LMI optimization step
 (
=
) (
≥
) (
=
)(16) in some overall nonlinear optimization procedure (such as fminsearch Matlab function) may be considered. In the single-input case (m    1), β is a scalar and the optimal solution of (16) can    be obtained from a search over a mere one-dimensional grid. For systems with m 2, a preliminary hypothesis (which has been clearly sufficient in all tested examples) may be to consider a vector β a11m with scalar a1, that is, one yet considers a mere one- dimensional parameter of the problem. Hence, in all these cases an optimal or sub-optimal solution for (16) can be easily obtained from the solution of LMI-based problems. Such a point is illustrated in the numerical examples.

5. Numerical examples

5.1. Single input example

Let us consider the following single-input unstable example
 (
borrowed from 
Fong and Hsu 
(
2000
):
)

current Theorem 1 is equivalent to Theorem 1 in Alamo et al.
 (
1
)(2005). Then the current result can be viewed as an extension of the results proposed in Alamo et al. (2005), and thus also of those

0.5	1
 (
[
              
 
]
−
) (
A 
=
)1	0.5

;	B =

[0.5] .

in Hu and Lin (2001) and Hu, Lin, and Chen (2002).

4.2. Optimization aspects
Theorem 1 provides a condition on ellipsoids E (W −1, 1) and

The nonlinear element ϕ(Kx, t) is the one described in Fig. 2 (dead- zone + saturation) with u0 = 4,µ = 1 and σ = 0.4. The S- procedure parameter is set to: θ = 10−6. Let us first consider  the controller gain provided in Fong and Hsu (2000): K = Ka =

 (
⊆
) (
[
−
]
)E (Q

−1, 1) with E (Q −1, 1)	E (W
−1

−1, 1), such that E (W

−1, 1) is
0.93 
3.84 . The optimization of the ellipsoid sizes with respect
to the scalar β has been performed using the Matlab fminsearch

contractive and E (Q	, 1) captures the ultimate bounded closed-

function, from an initial guess 0.5, and with η1 = η2 = 1. The

loop trajectories. Finally, an optimization problem may be stated, for the analysis or the synthesis case, to simultaneously evaluate the smallest inner ellipsoid and the largest outer ellipsoid1:
min η1Trace(M) + η2T[race(Q ) ]

 (
1
W
)

optimal inner and outer ellipsoidal sets solution to (16), plotted in Fig. 5 (dashed lines), have then been obtained  for β	0.0125.
 (
=
)The synthesis problem is classically a compromise between several objectives, in the present case, a small activity around the

 (
=
)subject to (4)–(7) and    M	1	> 0

(16)

origin (small inner ellipsoid), a large domain of admissible initial
state (large outer ellipsoid), a not-too-high gain and a convenient
 (
−
)pole placement for the linear closed-loop system (ϕ(Kx, t) = Kx).

where ηi, i       1, 2, are weighting parameters. The search for the
 (
and Tarbouriech 
(
2005
) and 
Hu et al. 
(
2002
). The determination
)largest outer ellipsoidal set mainly corresponds to evaluate the influence of the saturation u0 on the stability properties of the nonlinear closed-loop system Alamo et al. (2005), Gomes da Silva

In this example, one considers a pole-placement requirement in
a disk of ray 5 and  centered in	5 Peaucelle, Arzelier, Bachelier,
and Bernussou (2000), and the optimization problem is solved
 (
=
) (
obtains the controller gain 
K 
= 
K
s
 
=
) (
.
6750 
−
8
.
1591 
and
)with  the  trade-off  objective  given  by  η1 0=  η2     =  1.  One then

of the smallest inner ellipsoidal set corresponds to the evaluation
of the smallest domain in which the closed-loop trajectories are
ultimately bounded. The conditions stated in Theorem 1 are not

1 Rigorously speaking, we do not compute the smallest and largest ellipsoids, due to the nonlinearities in the optimization problem. What we denote abusively the smallest and largest ellipsoids are only sub-optimal solutions, which depend also on the measure chosen to evaluate the size of the ellipsoid.

β      0.0035 as the solution to the encapsulation of problem (16)
in fminsearch.  The  optimal inner and  outer ellipsoids associated
to this controller are plotted in Fig. 5 in solid lines. Trajectories starting from several initial states are also plotted in Fig. 5. They illustrate that the outer ellipsoid obtained through Theorem 1 with the optimization procedure (16) remains a good approximation of the domain of attraction.
A zoom of the inner ellipsoids and, by the way, of the trajectories of the system for the controller gains Ka (dashed lines) and Ks (solid
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Fig.  5. Example 1—Inner and outer ellipsoids related to Ka  (dashed lines) and to  Ks (solid lines). State space trajectories initiated from various states, related to the controllers Ka (dotted line) Ks (dashed–dotted line).

Fig. 7. Example 1—Ellipsoidal approximations of the basin of attraction. The dotted ellipsoid refers to the case with saturation only Alamo et al. (2005). The solid line outer (W1) and inner (W2) ellipsoids refer to the case with η2 = 0.01. The dashed
line outer (W1) and inner (W2) ellipsoids refer to the case with η2 = 1.
Table 1
Illustration of the influence of β in the calculus of the optimal inner and outer ellipsoids.



[image: ]Case 1	Case 2
β 		[0.7250]	[0.1621]

√	0.7250

0.8142

 (
√
)det(W)	0.0576	0.0283
 (
nb iteration in 
fminsearch
8
26
nb execution pb 
(16)
16
52
)det(Q )	1.3219	1.5099

data:
−0.5    1.5	4
 (
=
)


−0.7 −1.3
 (
0
)

A	4.3      6.0    5.0
3.2     6.8   7.2

;	B =

0   −4.3
.8    −1.5

(17)

with nonlinear elements given by:
u0  = [2] ,	µ = [1] and σ = [0.2] .

 (
Fig. 6. 
Example 1—Zoom on the inner ellipsoids related to 
K
a
 
(dashed lines) and to
) (
2
) (
1
) (
0
.
2
)Ks (solid lines). State space trajectories related to the controllers Ka (dotted lines) Ks (dashed–dotted lines).

lines), is shown in Fig. 6. It illustrates that around the origin, the system is not controlled and does not converge to the origin but to a limit cycle. This limit cycle remains however confined inside the inner ellipsoid.
 (
=
=
) (
=
=
)According to Remark 6 focusing on the case of saturation only, the ellipsoidal approximation of the basin of attraction with the controller Ka is plotted in Fig. 7 (in black). Note that when the optimization (in Theorem 1 framework) is oriented mainly on the maximal outer set solution (in blue, with η1	1, η2		0.01), it approaches the case with saturation only. However, this is to the detriment of the size of the inner ellipsoid. A compromise is given by the solution issued from Theorem 1 with η1	η2	1
(in red).

5.2. Multivariable example
The second example is a multi-input example, with three states

Note that the open-loop system is unstable, with spectrum given by  13.9600  0.6300  0.7368i . One considers the following  control gain:
 (
{
;
 
−
±
}
) (
[
]
−
−
−
K
 
 
=
)1.5120        2.5839       5.2308
2.0067        3.1215       4.3454
 (
{−
;
 
−
±
}
) (
=
)for which the linear closed-loop spectrum (ϕ(Kx, t) Kx) is  8.1394 2.4180 1.6404i .
 (
=
)Two cases are considered to determine the smallest and largest inner and outer ellipsoids, using fminsearch and problem (16): the first case is with β a1m, and the second case considers that all components of β are independent. The results, presented in Table 1 provide a comparison in terms of computation time and volume2 of ellipsoids. They illustrate that considering only one parameter for β is sufficient to give a good approximation of the ellipsoids with a reasonable computation burden.
Finally, Figs. 8 and 9 show the outer and inner ellipsoids, respectively, for the two evaluation cases. State space trajectories

and two inputs derived from Amato, Cosentino, and Merola (2007),	 	

which intends to illustrate the computational burden associated to the nonlinear influence of β. System (3) is defined by the following

2 The expression √det(W) is proportional to the volume of the ellipsoid
E (W −1 , 1).
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[image: ]construction of more adequate Lyapunov functions (more complex than the quadratic ones).

Appendix

A.1. Proof of Property 1
Two cases are considered.
·  (
z
)If z ≥ 0, one obtains from the inequality: ϕ(u, t)  ≤  Γ (u),  ϕ(u, t) ≤ zΓ (u)  =  z max{µ(u  + σ ), −u0}  =  max{zµ(u  + σ ), −zu0} = max{zµu + |z|µσ, −|z|u0}.

1
0.5
x2



0
-0.5




-1
-1.5

4
2
0
-2	x1
-2	-4
· 
If z < 0 then one can multiply the inequality −Γ (−u) ≤
ϕ(u, t) by the negative scalar z to obtain: zϕ(u, t) ≤ −zΓ (−u) =
|z| max{µ(−u + σ ), −u0} =  max{|z|µ(−u + σ ), −|z|u0} =
max{zµu + |z|µσ, −|z|u0}.
A.2. Proof of Property 2

Fig. 8. Example 2—3D outer ellipsoids related to case 1 (internal blue ellipsoid) and case 2 (external red ellipsoid) and unstable state space trajectories. (For interpretation of the references to colour in this figure legend, the reader is referred

Following Property 1, one directly writes
m

to the web version of this article.)

z′ϕ(u, t) = − z(i)

ϕ(i)

(u, t)

illustrate both the correct approximation of the overall invariant
domain for the system (unstable trajectories for initial states taken outside the outer ellipsoids) and the confinement of the stable trajectories in the inner ellipsoids after some transient time.

6. Conclusion

i=1
 (
−
)m
≤	max{z(i)µ(i)u(i) + |z(i)|µ(i)σ(i), −|z(i)|u0(i)}.
i=1
Moreover one can verify that
 (
−
)m
max{z(i)µ(i)u(i) + |z(i)|µ(i)σ(i), −|z(i)|u0(i)}
i=1

In this paper, constructive conditions to deal with ultimate bounded stability analysis or stabilization have been proposed

= max − z(i)


µ(i)


u(i)

+ |z(i)

|µ(i)


σ(i)

− − |z



(i)

|u0(i) .

for systems interconnected with actuators involving different nonlinear elements, like for instance both saturation and dead-

S∈Vm

i∈Sc

i∈S

zone or both saturation and stick–slip. Appropriate properties allow to upper-bound the nonlinearity and then to derive quasi- linear matrix inequality conditions. Optimization schemes have been derived in order to evaluate two ellipsoids such that the
trajectories initiated inside the largest outer one will be ultimately
A.3. 
Additional properties

 (
0
)Property 3. Let a symmetric matrix W ∈ ℜn×n and a matrix Y ∈ ℜ1×n being such that

bounded in the smallest inner one, without any restriction on

[u2	Y ] > 0

the open-loop stability. The main limitation of the approach is

Y ′	W

related to the optimization scheme which involves several tuning	  
parameters. Some possible approaches are however proposed to	then, ∀B ∈ ℜn, one has	 	

select an adequate set of parameters.

′  ′	B B′

	



In  the  context  of  actuators  involving  different  nonlinear
elements, there are still some possible interesting extensions and

BY + Y B ≥ −αu0W − u0 α , ∀α > 0.

 (
0
) (
u
0
) (
α
) (
u
0
) (
α
) (


 


)open problems. The technique developed should be extended  to handle a larger class of nonlinear elements, like piecewise
 (
affine nonlinearities or dynamic nonlinearities, leading to the
)

The proof is directly extended from Alamo et al. (2005), by considering that: 0  ≤ u	√α Y ′ + √B	√α Y ′ + √B       ′ , ∀α > 0.



0.2
0.15
0.1
 (
x
3
)0.05
0
-0.05
-0.1
-0.15
-0.2
0.5

0
x2
















0
x1
-0.5 -0.5














0.5


[image: ]Fig. 9. Example 2—3D inner ellipsoids related to case 1 (external blue ellipsoid) and case 2 (internal red ellipsoid) and stable state space trajectories. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Property 4  (Alamo et al. 2005).  Suppose that  ϵ  >  0. Then, for every  a ∈ ℜ
    	a2	  
 (
α>
0
)−2|a| < sup −α − α + ϵ.
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