
Applying Constraint Databases in the
Determination of Potential Minimal Conflicts to

Polynomial Model-Based Diagnosis

Maria Teresa Gómez López, Rafael Ceballos Guerrero,
Rafael Mart́ınez Gasca, and Carmelo del Valle Sevilla

Departamento de Lenguajes y Sistemas Informáticos,
Escuela Técnica Superior de Ingenieŕıa Informática, Universidad de Sevilla, Spain

{mayte,ceballos,gasca,carmelo}@lsi.us.es

Abstract. Model-based Diagnosis allows the identification of the parts
which fail in a system. The models are based on the knowledge of the
system to diagnose, and may be represented by constraints associated
to the components. The variables of these constraints can be observable
or non-observable, depending on the situation of the sensors. In order to
obtain the potential minimal diagnosis in a system, an important issue is
related to finding out the potential minimal conflicts in an efficient way.
We consider that Constraint Databases represent an excellent option in
order to solve this problem in complex systems.
In this work we have used a novel logical architecture of Constraint
Databases which has allowed obtaining these potential conflicts by means
of the corresponding queries. Moreover, we have considered Gröbner
Bases as a projection operator to obtain the potential minimal conflicts
of a system. The first results obtained on this work, which are shown in
a heat exchangers example, have been very promising.

1 Introduction

In the industrial production, the faults produced in components and processes 
can cause undesirable stops and damage in the systems with the consequent 
cost rise and production decrease. It is also necessary to take into account that 
these faults can produce a negative impact on the environment, what has to 
be avoided. For this reason, in order to keep the systems within the desired 
security, production and reliability levels, mechanisms which allow the detection 
and diagnosis of the faults produced in the systems have to be developed.

Diagnosis allows us to identify the failures in a system. Most approaches 
proposed in the last decade use models (FDI and DX approaches) based on 
the knowledge of the system to diagnose. These models can be formally well 
structured or can be known by means of an expert’s experience and data of the 
system or process. Sometimes, a combination of both types of knowledge can also 
be presented. In the area of DX, the first work related to diagnosis was presented 
with the objective of identifying faults in the component systems based on the



structure and its behavior [3]. The first implementations to perform diagnosis
were DART [11] and GDE [5], which used different inference mechanisms to
detect possible faults.

Diagnosis formalization was presented in [20, 6], where a general theory was
proposed for the problem of explaining the discrepancies between the observed
and correct behaviors that the mechanisms subject to the diagnosis process
(logical-based diagnosis) have. Based on this, most DX approaches for compo-
nents characterize the diagnosis of a system as a collection of potential minimal
sets of failing components which explain the observed behaviors (symptoms).
The importance of having a good model in DX can be deduced from this. This
kind of diagnosis can correctly diagnose the important parts of the component
systems that are failing. An exhaustive revision of the approaches about diag-
nosis task automation can be found in [7], and a discussion about model-based
diagnosis for applications can be consulted in [2].

The models centered on mechanisms describe the systems by means of input-
output relations. Model-based diagnosis is considered by a pair {SD,OBS} where
SD is the system description and OBS is a set of values of the observable vari-
ables. In complex systems, it gets data from several observations, equations of
the system description and contexts at an enormous rate. In engineering appli-
cations, it is often overlooked the storage of these data and query processing.

In this paper, we present how some issues concerning Constraint Database
can be the improvement of the efficiency in some phases of the model-based
diagnosis. In concrete we tackle the determination of potential minimal conflicts
of a system. A conflict is a set of assumptions where at least one must be false.
The assumptions are about behavioral modes of components. GDE coupled with
an ATMS [4] as inference engine uses previously discovered conflicts to constrain
the search in the candidate space. In this approach, conflicts are identified in
the constraint propagation process through recording dependencies of predicted
values given the system description and the observations. A conflict is minimal,
if none of its subsets is a conflict. The main disadvantage of using it is a large
number of possible conflicts 2n, where n is the number of components. In the
previous years, this problem has been an active area of research, in order to
find a minimal conflict [18] or the finding all potential minimal conflicts, using
CS-Tree [15] or using preprocessing, independence and incrementally features of
initial model [9]. In the DX community there are a lot of works in this sense as
the calculation the minimal chains which can be evaluated, the minimal models
which can also be evaluated [19] and symbolic processing algorithms (Gröbner
bases) of the initial model [10]. The use of Gröbner bases in the FDI community
were also proposed in previous works [8].

Our work presents a novel methodology that uses Constraint Databases tech-
nology for the determination of potential minimal conflicts with the object of
promoting the advantages of this technology and its uses in real problem of
industrial diagnosis. There are some positive features to many model-based ap-
plications that can be exploited by a Constraint Database. First the easy rep-
resentation of the component-based model of a technical system by means of a



set of algebraic constraints and during the search in the space of possible con-
texts to model-based diagnosis, the constraints of the different contexts differ in
only a few constraints. This similarity can be exploited by incremental solving
techniques.

In our paper, the model is stored in a Polynomial Constraint Database and a
preprocessing step reduces in a significant way the number of possible contexts to
treat by means of symbolic techniques. This technique is based on the algorithm
for computing Gröbner bases given by Buchberger in [1]. This algorithm is our
projection operator and we will use it to eliminate the non-observable variables
of the constraints in the different contexts.

Moreover the relational model is not able to represent the scientific and
engineering data. For this reason we consider Constraint Databases [17, 16, 21,
12, 13] as a good tool for our reasoning processing.

Our paper has been organized as follows: firstly, we present definitions and
notation which allow us to formalize the subsequent operations. In sections 3 we
show an example to prove our solution and use a Constraint Database architec-
ture to treat the information. Afterwards, we show the obtained results when we
applied our methodology to the set of heat exchangers system example. Finally
we present our conclusions and future works in this research line.

2 Definitions and Notation

The definitions and notation used are based on the concepts developed in the
diagnosis community, based itself on the logic (DX) and on redundancies (FDI).
The objective is that the synergy of both approaches will produce diagnosis
results which are as representative as possible of what is happening in the system
in the shortest time. As it has already been mentioned, model-based diagnosis
requires a system model. This time, we will only deal with the case which has a
model of system constraints that derives from its own structure, and which has
links between components (structural model) and the behavior of each model
component. With this model and with the idea of formalizing the diagnosis
process, the definitions and notation used in the development of this work need
to be exposed.

Definition 1. The System Polynomial Model (SPM): It can be defined as a
finite set of polynomial equality constraints P which determine the system be-
havior. This is done by means of the relation between the system non-observable
variables (Vnob) and the observable variables (Vob) which are directly obtained
from sensors that are supposed to work correctly. Then, the following tuple for
a system polynomial model is obtained SPM (P,Vob,Vnob).

Definition 2. Diagnosis Problem (DP): It can be defined by means of a tuple
formed by a System Polynomial Model and an Observational Model. The result
of this problem will be a set of elements that belong to the set of the system
faults which reflects, in a minimal way, the information of the possible failing
components DP(SPM,OM). In this work we are not going to study the Ob-



servational Model, we only propose an improvement of the systems polynomial
model.

Definition 3. Context Network: It is a graph formed by all the elements of
the context set of the system according to the way proposed by ATMS [4]. In
our work this context network will be enriched with the Context Analytical
Redundancy Constraints.

Definition 4. Context Analytical Redundancy Constraint (CARC): Set of con-
straints derived from SPM and in such a way that only the observed variables are
related. In this work, we are only dealing with the models defined by polynomial
equality constraints. In these constraints, their truth value can be evaluated from
the observed variables of the system through the corresponding monitorization.

3 A Heat Exchangers System: A Case Study

To explain our methodology, we have been applied it to a system, like the one
shown in figure 1 from [10] and [14]. In this system, consisting of six heat ex-
changers, three flows fi come in at different temperatures ti. The behaviors of
the system is described by polynomial constraints coming from three different
kinds of balances:

∑
i fi = 0: mass balance at each node,∑
i fi ∗ ti = 0: thermal balance at each node,∑
in fi ∗ ti − ∑

out fj ∗ tj = 0: enthalpic balance for each heat
exchanger.

Fig. 1. System of heat exchangers

The resulting system, thus, consists of 34 equations and 54 variables, from
which 28 are observable: f11, f12, f13, f16, f17, f18, f19, f112, f21, f26, f27, f212,
f31, f33, t11, t12, t13, t16, t17, t18, t19, t112, t21, t26, t27, t212, t31 and t33. There
is no a direct measure of the rest of the variables. This defines three different
subsystems, each one formed by two exchangers: {E1, E2}, {E3, E4} and {E5,
E6}. Each of the six exchangers and each of the eight nodes of the system are
considered as components whose correct functioning have to be verified.



Table 1. System Polynomial Model of the System of Heat Exchangers

C. Constraints C. Constraints
N11 f11-f12-f13 E1 f12-f14

f11·t11-f12·t12-f13·t13 f22-f24
N12 f14+f15-f16 f12·t12-f14·t14+f22·t22-f24·t24

f14·t14+f15·t15-f16·t16 E2 f13-f15
N13 f17-f18-f19 f23-f25

f17·t17-f18·t18-f19·t19 f13·t13-f15·t15+f23·t23-f25·t25
N14 f110+f111-f112 E3 f26-f27

f110·t110+f111·t111-f112·t112 f31-f32
N21 f21-f22-f23 f26·t26-f27·t27+f31·t31-f32·t32

f21·t21-f22·t22-f23·t23 E4 f16-f17
N22 f24+f25-f26 f32-f33

f24·t24+f25·t25-f26·t26 f16·t16-f17·t17+f32·t32-f33·t33
N23 f27-f28-f29 E5 f18-f110

f27·t27-f28·t28-f29·t29 f28-f210
N24 f210+f211-f212 f18·t18-f110·t110+f28·t28-f210·t210

f210·t210+f211·t211-f212·t212 E6 f19-f111
f29-f211
f19·t19-f111·t111+f29·t29-f211·t211

Vob=f11,f12,f13,f16,f17,f18,f19,f21,f26,f27,f112,f212,f31,f33,t11,t12,t13,t16,t17,
t18,t19,t112,t21,t26,t27,t212,t31,t33

Vnob=f14,f15,f21,f22,f23,f24,f25,f28,f29,f210,f211,f110,f111,f32,t14,t15,t110,t111,t22,
t23,t24,t25,t28,t29,t210,t211,t32

For the example presented in figure 1, the SPM is represented in Table 1. The
context network for this example is too large to be shown, but in order to clarify
this concept, we present only one subsystem in the figure 2. This subsystem
includes the components {N12, N21, N22, E1, E2}.

4 Computing Potential Minimal Conflicts

The model which reflects the system structure and behavior contains the con-
straints that link the system inputs and outputs. Many times some intermediate
variables are not observable and do not allow to determine whether there are
faults in the components in a direct way. Then our idea is to produce an equiva-
lent constraints model which has the same solution as the original one, but with-
out non-observable variables. In order to transform the polynomial constraints
set of the system, we apply a function that obtains Gröbner bases.

To study the potential minimal conflicts with common techniques, we must
rebuild the full problem, if our system changes because we add or delete some
components. To solve this problem we will store information in a Constraint
Database. Also, if we do not use a Constraint Database and the execution of
the program diagnosis fails while being executed, we must reexecute the full
problem. It is because there is not any partial information stored. If we save the



Fig. 2. Context Network for a subsystem of the heat exchangers example. The com-
ponents included are {N12, N21, N22, E1, E2}

information in a database step by step, we can continue the process with the
obtained information. Constraint Databases allows us to use the power of SQL
standard in order to query the database and to obtain the necessary information.

In the following two subsections we explain the most important properties
about Gröbner bases and the Constraint Database architecture. In the last sec-
tion we propose an algorithm to obtain the potential minimal conflicts based on
Gröbner bases and Constraint Databases.

4.1 Gröbner Bases

Gröbner bases theory is the origin of many symbolic algorithms used to ma-
nipulate multiple variable polynomials. The algorithm used for the polynomial
equations system is based on the ideas proposed in [1]. It is a generalization of
Gauss’ elimination of multivariable lineal equations and of Euclides’ algorithm
for one-variable polynomial equations. Gröbner bases has better computational
properties than the original system. We can be said that it is very easy to de-
termine if the system can be solved or not.

The main idea is to transform the polynomial constraint set into a stan-
dard form for the resolution of problems. Having the set of equality polynomial
constraints of the form P=0, Gröbner bases produce an equivalent system G=0
which has the same solution as the original one, but it is generally easier to solve.

For our work, we have a function which is called GröbnerBasis. This function
calculates Gröbner bases by means of a finite set of polynomial equations (SPM)
and a set of observable and non-observable variables.

This function obtains the different contexts of a particular model and allows
the building of the context network. The signature of GröbnerBasis function
looks like this:

GröbnerBasis({Polynomials},{Observable Variables},{Non-observable
Variables})



Let us consider, for instance, the context represented by the following com-
ponents {N12E1E2}. Then, GröbnerBasis function takes the parameters:

GröbnerBasis({polynomialsOf(N12, E1, E2)},{f16, f12, f13, t16, t12, t13},
{f14, f15, f13, f15, t14, t15, t13, t15})

The result would be the following system of polynomial constraints:

{f12 + f13 − f16 = 0}

4.2 Constraint Database Architecture

One of the difficulties in diagnosing a system is handling the information. In this
paper we propose to store the information in a relational database. It will allow
us to store partial results.
Also, it is important to highlight the power of the query language in a database.
Using a database helps to improve the diagnosis and to access data.

First of all, we are going to explain the database architecture, and how we
store the information. It is shown in figure 3. The semantics of these storage
elements are explaining in the following items:

Fig. 3. Constraint Database Architecture (k: Primary Key)

Explanations about Constraint Database tables (figure):

1. Components: This table contains the names and identifiers of the compo-
nents which make up the system.



2. Polynomials: This table contains the different behaviors of the components.
The components can have more than one polynomial associated with them,
like the example of the figure 1. An example of this table for our problem is
shown in table 2.

Table 2. Polynomial table

IdPolynomial IdComponent Constraint
0 0 f11 − f12 − f13

1 0 f11 ∗ t11 − f12 ∗ t12 − f13 ∗ t13
2 1 f14 + f15 − f16

3 1 f14 ∗ t14 + f15 ∗ t15 − f16 ∗ t16

3. ContextNetwork: This table represents all the relations that the process
must study to obtain the minimal possible conflict context. The table has
potentially 2n combination of elements, where n is the number of components
that constitute the system.

4. Variables: Here all the variables which take part in the system are stored,
observable as well as non-observable. An example of it is shown in the table 3.

Table 3. Variables Table

IdVariable VarName Observable
25 t212 Yes
26 t31 Yes
27 t33 Yes
28 f14 No
29 f15 No
30 f110 No

5. VariablePolynomials: This table represents the variables of each polyno-
mial. This table is important because to obtain Gröbner bases we need to
use the observable and non-observable variables of each polynomial.

6. Constraints: All the constraints are stored in this table. These constraints
have only observable variables. We will fill in this table with the GröbnerBasis
results.

7. ConstraintNet:This table relates each context and the constraints related
to them.

4.3 Constraint Databases Approach

If we call GröbnerBasis for all contexts (214 times) to obtain the conflictive
contexts will take 4 days and 2 hours, and it will obtain 64 constraints. Some of
these 64 constraints are redundant because some of them are linear combination
of others. For that reason, we must detect these combinations and reduce them,
as it is done in [10].



We propose to use Constraint Databases and the power of SQL standard
to query the database and obtain the data. It helps us to improve the time of
obtaining the possible minimal conflictive contexts, and therefore obtain just the
necessary information.

Using the constraints databases and the SQL query language, we are propos-
ing a new way to improve the first solution. To improve the solution mentioned
above, we have avoided these two disadvantages of it. The disadvantages are the
handling of the data and the great amount of calls to GröbnerBasis function. To
improve it we use the algorithm of the figure 4.

1 for(i := 1 to i=numComponents)
2 j := 1
3 boolean promising:=true
4 while(promising AND j + i ≤numComponents)
5 if(IsAnObservableContext(i))
6 AddContext(i)
7 UpdateTables(i)
8 promising:=false
9 else
10 Set contexts=ObtainContexs(i, j))
11 for each c of contexts:
12 if (RelevantContext(c))
13 AddContext(c)
14 CallGröbner(c)
15 endif
16 endforeach
17 endif
18 j := j + 1
19 endwhile
20 endfor

Fig. 4. Pseudocode of the reduction algorithm

This algorithm offers a way to improve the obtaining of minimal possible
conflictive contexts without creating all the contexts nor calling to GröbnerBasis
function all the times.

In order to explain the algorithm, we need to add two new definitions.

Definition 5.Observable Context : It is a context without non-observable vari-
ables. It means that we do not have to eliminate any variables. An example of
an observable context is {N11}.

Definition 6.Relevant Context : It is a context whose components have, at least,
one polynomial whose non-observable variables also are in other components of
the same context. If we call GröbnerBasis in other cases, we will not obtain
any important results, because it is not possible to eliminate all non-observable
variables of at least one polynomial of all the components of the context:



C is a relevant context if
C≡ ⋃

i{ci} | ∀ ci ∈ C · ∃ pi ∈ ci

| ∀ x ∈ NonObsVar(pi) · x ∈ C \ ci

ci being a component, pi a polynomial and NonObsVar(pi)
the set of non-observable variable of pi

Methods of the reduction algorithm:

– IsAnObservableContext():This method returns true if the context has only
one component and this component does not have any polynomial with non-
observable variables.

– AddContext(Context c):Add to table ContextNetwork the context c.
– UpdateTables(Context c):Input all the polynomial constraints of the context

c, in the tables ConstraintNet and Constraint. Here it is not necessary to
call GröbnerBasis because the polynomials do not have non-observable vari-
ables, and Gröbner method does not have any non-observable variables to
eliminate.

– ObtainContext(Integer i, Integer j):This method returns all the contexts with
j components which have the component i in them.

– RelevantContext(Context c): Returns true if the context c is a relevant con-
text.
In section 4.3 it is explained how many calls to Gröbner are necessary to
study the full system. But if the system studies all the combinations, the
cost of time is very high. Moreover, if we try to execute all the contexts, we
will get redundant information that should be handled later. We propose a
way to reduce the use of Gröbner, and only use it when it is necessary, when
the results are interesting and non-redundant.

Example 1:
Context: N22, E1 and E2

In this case the component E1 does not have any
polynomial with all non-observable variable
couple with other component.

Example 2:
Context: N12, E1 and E2

In this case all the components have any polynomial
with all its non-observable variable couple
with other component.

To implement previous idea, we propose an interesting query to know which
are the non-observable variables of a polynomial constraint which are also in
the same context but in distinct component.

SELECT DISTINCT v.VARNAME
FROM VARIABLES v, VARIABLES v2, VARIABLEPOLYNOMIALS cv,

VARIABLEPOLYNOMIALS cv2, CONTEXTNETWORK rc,
CONTEXTNETWORK rc2, POLYNOMIALS c, POLYNOMIALS c2



WHERE c.ID=polynomial AND
c.IDCOMPONENT=rc.IDCOMPONENT AND rc.ID=context
AND c.ID=cv.ID AND cv.VARIABLE=v.IDVARIABLE AND
v.OBSERVABLE=false AND c.ID<>c2.ID AND AND
rc2.ID=rc.ID c2.IDCOMPONENT=rc2.IDCOMPONENT AND
c2.ID=cv2.ID AND cv.VARIABLE=cv2.VARIABLE AND
c.IDCOMPONENT<>c2.IDCOMPONENT

And with the next query, we will know which are the non-observable variables
of a polynomial constraint:

SELECT v.VARNAME
FROM VARIABLES v, VARIABLEPOLYNOMIAL cv
WHERE cv.ID=polynomial AND v.IDVARIABLE=cv.VARIABLE

AND v.OBSERVABLE=false

Comparing both results, we will know if all the non-observable variables of
a polynomial are in another component.
With these two queries we can check if it is a relevant context.

– CallGröbner():We build GröbnerBasis function with information of the ta-
bles ContextNetwork, Polynomials, VariablePolynomial and Components.
After the execution of the function we will pick the results up. If the so-
lution is not in Constraint table, we will add it. Finally, we will store the
constraint and the context related in the table CostraintNet.

Explanation of the reduction algorithm:
Our reduction algorithm studies each possible context before it is created and
calls GröbnerBasis. In line 1 each component is selected, and in line 4 it will be
possible to study all the contexts which have the component i in their j com-
ponents. In line 5 the algorithm studies if the context has only one component
(j == 1), and if it is an observable component. In this case we do not have
to study all the possible contexts with the component i, because they will not
be relevant. To avoid this useless computation (example 3), we use the boolean
variable promising. Let us see the following example:

Example 3:
Context: N11, E3 and E4

Really this context is constituted by two subcontexts:
{N11} and {E3, E4}. Thereby is not necessary to study
the full context because we will obtain redundant
information

With this algorithm, we only create 43 contexts as an alternative to 214 of
the first solution. With our solution we only call GröbnerBasis 41 times, because
the contexts {N11} and {N13} are observable contexts. Our reduction algorithm
spends 12 minutes and 27 seconds and obtains 17 CARCs which are shown on
table 4.



Table 4. Minimal conflict constraints for the system (CARCs)

1 f11 − f12 − f13

2 f11 ∗ t11 − f12 ∗ t12 − f13 ∗ t13
3 −f12 − f13 + f16

4 f21 − f26

5 −(f13 ∗ t12) + f16 ∗ t12 + f13 ∗ t13 − f16 ∗ t16 + f26 ∗ t21 − f26 ∗ t26
6 −f112 + f18 + f19

7 f212 − f27

8 f31 − f33

9 f26 − f27

10 f21 − f27

11 −(f17 ∗ t16) + f17 ∗ t17 − f27 ∗ t26 + f27 ∗ t27 − f33 ∗ t31 + f33 ∗ t33
12 f16 − f17

13 f13 ∗ t12 − f17 ∗ t12 − f13 ∗ t13 + f17 ∗ t17 − f27 ∗ t21 + f27 ∗ t27−f33 ∗ t31+f33 ∗ t33
14 −f12 − f13 + f17

15 f18 ∗ t112 + f19 ∗ t112 − f18 ∗ t18 − f19 ∗ t19 + f27 ∗ t212 − f27 ∗ t27
16 f17 − f18 − f19

17 f17 ∗ t17 − f18 ∗ t18 − f19 ∗ t19

4.4 Context Analytical Redundancy Constraint

In this section we will study, with the help of SQL and JavaTM languages,
if there are any contexts whose polynomial constraints have already been in
another context with less components. One example is shown in the figure 5. In
this case we can eliminate the context {N14, E3, E4, E5, E6}, because all their
constraints are in contexts with less components.

Fig. 5. Elimination of Redundancies

With this elimination technique, we have deleted 31 contexts with redundant
constraints. Thereby we have 12 contexts and 17 constraints, as we show in the
figure 6. To improve this result we are studying to use a module to eliminate
some linear combination.



Fig. 6. Minimal Context Network for the system

5 Conclusions and Future Works

In this paper we have proposed a database architecture to store polynomial
constraints in a Constraints Database. Using SQL standard and Java languages
is possible to obtain and handle the polynomial constraint of the model.The
proposed reduction algorithm has several advantages. One is the computational
improvement in the calculation of the potential minimal set conflicts. Another
advantage is to make the process automatic. Finally it is important highlight the
power of SQL that offers to store and get information in Constraint Databases
in a easy way.

As future works we want to improve our methodology dividing the system
into several subsystems. If the system is divided, it can be studied separately.
It is interesting in systems which have observable variables which allow to know
the problem by parts. The problem of the heat exchangers is an example of
this because it can be divided into five different parts. Also, we are consider-
ing to study how the minimal context network changes when some polynomial
constraints change, and to look for techniques to avoid restudying all the system.

Anyway, there is a great field to study the creation of systems with compo-
nents located in different Constraint Databases.

Acknowledgements

This work has been partially funded for the Ministerio de Ciencia y Tecnoloǵıa
of Spain (DPI2003-07146-C02-01) and European Regional Development Fund.
(ERDF/FEDER).



References

1. B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal theory.
In Multidimensional Systems Theory, N. K. Bose, ed., D. Reidel Publishing Co.,
pages 184–232, 1985.

2. L. Console and O. Dressler. Model-based diagnosis in the real world: Lessons
learned and challenges remaining. In Proceedings IJCAI’99, pages 1393–1400, 1999.

3. R. Davis. Diagnostic reasoning based on structure and behavior. In Artificial In-
telligence, 24:347–410, 1984.

4. J. de Kleer. An assumption-based truth maintenance system. Artificial Intelligence
28(2), pages 127–161, 1986.

5. J. de Kleer and Williams B.C. Diagnosing multiple faults. Artificial Intelligence,
1987.

6. J. de Kleer, A. Mackworth, and R. Reiter. Characterizing diagnoses and systems.
In Artificial Intelligence, 56(2-3):197–222, 1992.

7. E. Frisk. The consistency-based approach to automated diagnosis of devices. In
Brewka(ed). Principles of Knowledge Representation, CSLI, 1996.

8. E. Frisk. Residual generator design for non-linear, polynomial systems - a gröbner
basis approach. In Proc. IFAC Safeprocess 2000, Budapest Hungary, pages 979–
984, 2000.

9. M. Garcia de la Banda, P. Stuckey, and J. Wazny. Finding all minimal unsatisfiable
subsets proc. Of the 5th ACM Sigplan Internacional, 2003.

10. R.M Gasca, C Del Valle, R. Ceballos, and M. Toro. An integration of fdi and dx
approaches to polynomial models. DX, 2003.

11. M. Genesereth. The use of design descriptions in automated diagnosis. Artificial
Intelligence, 24:411–436, 1984.

12. D.Q. Goldin. Constraint query algebras. Doctorate thesis, 1997.
13. D.Q. Goldin and P.C. Kanellakis. Constraint query languages. Constraint Query

Algebras Constraints Journal, 1996.
14. C. Guernez. Fault detection and isolation on non linear polynomial system. 5th

IMACS Word Congress on Scientific, Computation, Modelling and Applied Math-
ematics, 1997.

15. B. Han and S. Lee. Deriving minimal conflict sets by cs-trees with mark set in di-
agnosis from first principles. IEEE Transcations on Systems, man and cybernetics,
29(2), 1999.

16. P. C. Kanellakis, G. M. Kuper, and P.Z. Revesz. Constraint query languages. Sym-
posium on Principles of Database Systems, pages 299–313, 1990.

17. G. Kuper, L. Libkin, and J. Paredaes. Constraint Databases. Springer, 1998.
18. Mauss and Mugur Tatar. Computing minimal conflicts for rich constraint languages

jakob. DX, 2002.
19. J. B. Pulido. Posibles conflictos como alternativa al registro de dependencias en lnea

para el diagnstico de sistemas continuos. Ph. Doctoral Dissertation. Universidad
de Valladolid, 2000.

20. R. Reiter. A theory of diagnosis from first principles. In Artificial Intelligence,
32(1):57–96, 1987.

21. P. Revesz. Introduction to Constraint Databases. Springer, 2002.


	1 Introduction
	2 Definitions and Notation
	3 A Heat Exchangers System: A Case Study
	4 Computing Potential Minimal Conflicts
	4.1 Gröbner Bases
	4.2 Constraint Database Architecture
	4.3 Constraint Databases Approach
	4.4 Context Analytical Redundancy Constraint

	5 Conclusions and Future Works
	References



