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Abstract. Two communities work in parallel in model-based diagnosis:
FDI and DX. In this work an integration of the FDI and the DX commu-
nities is proposed. Only relevant information for the identification of the
minimal diagnosis is used. In the first step, the system is divided into
clusters of components, and each cluster is separated into nodes. The
minimal and necessary set of contexts is then obtained for each clus-
ter. These two steps automatically reduce the computational complexity
since only the essential contexts are generated. In the last step, a signa-
ture matrix and a set of rules are used in order to obtain the minimal
diagnosis. The evaluation of the signature matrix is on-line, the rest of
the process is totally off-line.

1 Introduction

Diagnosis allows us to determine why a correctly designed system does not work 
as expected. Diagnosis is based on a set of integrated sensors which obtain a 
set of observations. The aim of diagnosis is to detect and identify the reason 
for any unexpected behaviour, and to isolate the parts which fail in a system. 
The behaviour of components is stored by using constraints. Inputs and outputs 
of components are represented as variables of the component constraints. These 
variables can be observable and non-observable depending on the allocation of 
the sensors.

Two communities work in parallel, although separately, in model-based di-
agnosis: FDI (from Automatic Control) and DX (from Artificial Intelligence). 
Nevertheless, the integration of FDI with DX theories has been shown in recent 
work [1],[2]. Within the DX community the work of Reiter [3] and De Kleer 
and Willians [4] introduce the basic definitions and foundations of diagnosis. A 
general theory was proposed to explain the discrepancies between the observed 
and the correct behaviour by using a logical-based diagnosis process. In the FDI 
community, [5] and [6] presented the formalization of structural analysis, the 
process to obtain the ARRs (Analytical Redundancy Relation) of the system.

In this work an integration of FDI theories with the DX community is pro-
posed, in order to improve the minimal diagnosis determination. This integra-
tion has three phases. The structural pre-treatment in the first phase and the



reduction of the model in the second phase enables the improvement of the
computational complexity. The minimal diagnosis is obtained by applying an
observational model to a signature matrix together with a set of compilation
rules. The evaluation of the signature matrix is on-line, however the rest of the
process is totally off-line.

Our paper has been organized as follows. First, definitions and notations are
established in order to clarify concepts. Section 3 shows an example of the val-
idation of this approach. Section 4 describes the advantages of the structural
pretreatment. After that, in Section 5, the process for the definition of the con-
text network is explained. Section 6 describes the determination of the minimal
diagnosis. Finally, conclusions are drawn and future work is outlined.

2 Definitions and Notation

In order to clarify the diagnosis process some definitions must be established.

Definition 2.1. System Model : A finite set of polynomial equality constraints
(P) which determine the system behaviour. This is done by means of the re-
lations between non-observable (Vi) and observable variables (sensors) of the
system (Oj).

Definition 2.2. Observational Model : A tuple of values for the observable vari-
ables.

Definition 2.3. Context : A collection of components of the system, and their
associated constraints. The number of possible contexts is 2nComp - 1, where
nComp is the number of components of the system.

Definition 2.4. Context Network : A graph formed by all the contexts of the
system in accordance with the way proposed by ATMS[7]. The context network
has a natural structure of a directed graph for set inclusion.

Definition 2.5. Diagnosis Problem: A tuple formed by a system model and
an observational model. The solution to this problem is a set of possible failed
components.

3 Example

Figure 1a shows a polybox system. This polybox system is derived from the
standard problem used in the diagnosis community [4]. The system consists of
fifteen components: nine multipliers, and six adders. The observable variables
are represented by shaded circles in Figure 1a.

4 Structural Pretreatment

The first part of this section shows the way to divide the diagnosis problem into
independent diagnosis subproblems. The second part of this section explains the
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Fig. 1. a) Polybox example b) Nodes of the polybox example

way of grouping the components into nodes in order to reduce the number of
non-observable variables to be considered in the system.

4.1 Identification of the Clusters

The objective of this section is the partition of the system into independent
subsets of components. This partition reduces the computational complexity of
the diagnosis process since it enables the generation of the diagnosis of the whole
system based on the diagnosis of the subsystems.

Definition 4.1. Cluster of components: A set of components T is a cluster, if
it does not exist a common non-observable variable of any component of the
cluster with any component outside the cluster, and if for all T’ ⊂ T, T’ is not a
cluster of components. In a cluster, all common non-observable variables among

the components belong to the same cluster, therefore all the connections with
components which are outside the cluster are monitored. A cluster of components
is totally monitored, and for this reason the detection of faults inside the cluster
is possible without information from other components which do not belong to
the cluster. A more detailed explanation and the cluster detection algorithm
appears in [2].

The diagnosis space for a system initially consists of 2nComp diagnoses [4],
where nComp is the number of components of the system. Therefore the compu-
tational complexity for the diagnosis process is always smaller for an equivalent
system divided into clusters, due to the reduced number of possible diagnoses.

4.2 Obtaining Relations Without Non-observable Variables

In the diagnosis process it is necessary to produce new relations without non-
observable variables, in order to monitor the system behaviour by using only the



observational model. Our approach uses a function named NewRelations (NR)
which takes a set of constraints and obtains a set of new constraints without
a set of non-observable variables. Example: NR({x-a·c, y-b·d, f-x-y}, {x ,y}) =
{a·c + b·d - f = 0}.

This function can be implemented using different techniques. The Gröbner
Basis algorithm [8] is used here. Gröbner basis theory is the origin of many
symbolic algorithms used to manipulate equality polynomials. It is a combination
of Gaussian elimination (for linear systems) and the Euclidean algorithm (for
univariate polynomials over a field). The Gröbner basis can be used to produce
an equivalent system which has the same solution as the original, and without
having non-observable variables.

4.3 Obtaining the Nodes of Each Cluster

The main assumption in this paper is to suppose that only one constraint is
associated to each component. If it is necessary to apply this methodology to
components with n constraints (where n > 1), it is then possible decoupling the
component x into n virtual components xi with one constraint each.

Our approach provides the minimal set of constraints to detect all the possible
diagnoses of a system. The introduction of new definitions is necessary in order
to efficiently generate this set of constraints:

Definition 4.2. Dispensable variable: A non-observable variable vi is dispens-
able if there exist only two components xi and xj which include this variable
in their related constraints. In the polybox example the variable x04 and the
variable x08 are dispensable variables.

Definition 4.3. Node of components : A single component could be a node of
components if none of its non-observable variables is a dispensable variable.
Two components, or, a component and a node of components, belong to the
same node of components if they have a common dispensable variable.

Algorithm: The algorithm for the identification of the nodes of a cluster begins
by creating n nodes, where n is the number of components of the cluster. All
these nodes have initially one component. When a dispensable variable v is
detected, the two nodes, which include v in their constraints, are merged into
one node. The process ends when all the dispensable variables are detected. Each
node contains a set of constraints and a set of dispensable variables.

When all the nodes are identified, new set of constraints, without the dis-
pensable variables is obtained, by applying the NewRelations function to the
set of constraints of each node. If the node of components have no dispensable
variables it is not necessary to apply the NewRelations function.

In the DX community diagnoses are determined by conflicts. Many method-
ologies try to use the structural description of the system, those methods are
known as compilation methods. In [9] the Possible Conflicts (PCs) concept is
proposed as a compilation technique. Each PC represents a subsystem within
system description containing minimal analytical redundancy and being capable



Table 1. Improvements obtained using structural pretreatment in the examples

No pretreatment With pretreatment
Example Clusters Nodes Vars. Ctxs. Elapsed time Vars. Ctxs. Elapsed time
Polybox 1 5 12 215-1 32 seconds 2 31 31 milliseconds

of becoming a conflict. Computing Analytical Redundancy Relations (ARRs)[5]
is the compilation technique of FDI methodology.

Our approach provide the minimal set of contexts which include an overdeter-
mined system of constraints that can detect a conflict in a cluster. The contexts
are built by using nodes of components instead of components, since it is impos-
sible to generate constraints without non-observable variables by using a subset
of a node, because it will be impossible to substitute a dispensable variable of
the node, which only appears in one component of the context.

Example: Figure 1b shows the partition of the polybox example into nodes.
Table 1 shows the results obtained in the proposed example. The column Nodes
shows the addition of all the nodes included in the clusters of the system. The
column Vars shows the initial number of non-observable variables, and the final
number of non-observable variables after the structural pretreatment. The col-
umn Ctxs shows the total number of possible contexts of the system, and the
final number of possible contexts by using the structural pretreatment. The col-
umn elapsed time shows the necessary time to process the set of contexts of the
system if the time to process one context is supposed to be 1 millisecond. In the
polybox example 1 cluster is obtained. The non-observable variables are reduced
from 12 to 2. Table 2 shows the list of nodes of the polybox example, and the
constraint obtained in each node by eliminating the dispensable variables.

5 Determination of the Context Network

Our approach provide the minimal set of contexts which can detect a conflict in a
cluster. The minimality issue was not guaranteed in the original ARR approach,
but its guaranteed in our approach. In [9] approach the PCs are obtained di-
rectly by using components, but our approach use nodes instead of components,

Table 2. Nodes for the polybox example

Nodes Components Constraints Dispensable var. Non-Obs var.
N1 M6M8A4A6 h·j + n·o - r + x05 {x06, x11, x12} {x05}
N2 M5 g·i - x05 {} {x05}
N3 M1M7A1A5 a·c + k·m - p + x02 {x01, x07, x08} {x02}
N4 M2 b·d - x02 {} {x02}
N5 M3M4M9A2A3 q - (f·h + x05)·(x02 + c·e) {x03, x04, x09, x10} {x02, x05}
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Fig. 2. Context network of the polybox example

therefore the size of the problem is reduced from 2c, where c is the number of
components, to 2n, where n is the number of nodes.

A context network, in accordance with the way proposed by ATMS[7], is
generated in order to obtain all the relevant contexts for the diagnosis process.
In order to establish the smallest set of contexts it is necessary to introduce the
following definitions.

Definition 5.1. Structural context : This is a context where all the nodes are
connected, that is, they compose a connected graph, and all the non-observable
variables appear in at least two constraints. The function to determine which are
structural contexts is named isAStructural and takes a context C and returns a
true value if it is a structural context.

Definition 5.2. Minimal completed context : A structural context C is a com-
pleted context if the set of constraints of the nodes of the context is an overde-
termined system of constraints, and, if it is possible to generate new constraints
without non-observable variables by using the set of constraints of the context.
A completed context is minimal if no context C’ ⊂ C exists such that C’ is a
completed context.

If C is a minimal completed context then all the context C’ exists, where C
⊂ C’, can only generate constraints which can be generated with context that
contains fewer nodes. Therefore, if a context C is a minimal completed context it

Table 3. CARCs obtained in the polybox example

Index Context CARC
1 N1N2 h·j + n·o - r + g·i
2 N3N4 a·c + k·m - p + b·d
3 N1N3N5 q - (f·h - h·j - n·o + r)·(-a·c - k·m + p + c·e)
4 N1N4N5 q - (f·h - h·j - n·o + r)·(b·d + c·e)
5 N2N3N5 q - (f·h + g·i)·(-a·c - k·m + p + c·e)
6 N2N4N5 q - (f·h + g·i)·(b·d + c·e)



is not necessary to process contexts C’ such that C ⊂ C’, since it is not possible 
to generate new relevant constraints for the diagnosis process.

The algorithm which generates the contexts of each cluster has n stages, first 
the context with 1 node are obtained, then the context with 2 nodes, until it reaches 
the context with n nodes, where n is the number of nodes. The function NewRe-
lations is only applied to the contexts which are structural contexts. When a min-
imal completed context C is found, the new constraints without non-observable 
variables are stored, and no contexts C’, such that C ⊂ C’, are generated. These 
new constraints are named Context Analytical Redundancy Constraint.

Definition 5.3. Context Analytical Redundancy Constraint (CARC): A  con-
straint obtained from a minimal completed context in such a way that only the 
observed variables are related.

Example: In order to clarify this section, Tables 2 and 3 shows the results ob-
tained for the polybox example. This system includes only one cluster with 15 
components. The number of possible contexts is reduced from 215−1 to  25−1. 
By applying the rules and the algorithm proposed in this section, 14 contexts 
of the possible 31 (25−1) are generated, however only 6 are minimal completed 
contexts. These 6 contexts generate 6 CARCs. Figure 2 shows the context net-
work of the polybox example. Only the treated contexts are circled. The minimal 
completed contexts are circled in bold.

6 Determination of the Minimal Diagnoses

The last step is the determination of the minimal diagnoses using the set of 
CARCs. In order to clarify the methodology, we suppose that the sensor ob-
servations are correct. We propose using a signature matrix as in FDI, but in 
order to obtain the same minimal diagnoses as in DX approach, it is necessary 
to apply a set of rules which guarantee the no-exoneration case in the solution.

Definition 6.1. Fault signature: Given a set of n CARCs, denoted CARC= 
{CARC1, CARC2, ..., CARCn}, and a set  of m faults denoted F = {F1,...,Fm}, 
the signature of a fault Fj is given by FSj = [s1j,..., snj]T in which sij = 1 if the  
context which generated the CARCi involves the nodes included in the fault Fj , 
and sij = 0  otherwise.

Definition 6.2. Signature matrix : All the signatures for the set of possible faults 
constitute the signature matrix.

Definition 6.3. Signature of an observation: This is given by OS=[OS1,...,OSn] 
where OSi=0 if the CARCi is satisfied, and OSi=1 otherwise.

Definition 6.4. Diagnosis set : The set of faults whose signatures are consistent 
with the signature of the observational model. Our approach assumes that an 
observation signature OS is consistent with another signature FSj if OSi = sij ∀ i.



Definition 6.5. Minimal diagnosis: A fault Fj is a minimal diagnosis if Fk is
not a diagnosis ∀ faults Fk ⊂ Fj .

Table 4 shows the signature matrix for the polybox example in order to
clarify these definitions and the process to obtain the minimal diagnoses. The
signature OK = [0, ..., 0]T represents the no-fault case. The signature matrix is
very similar to the corresponding matrix in the FDI methodology. However in
our approach, the faults involve nodes instead of components.

In this example it is necessary to expand the number of columns of the sig-
nature matrix in order to consider multiple faults. Each fault Fj , which involves
n nodes, is obtained using a fault Fk, which involves n−1 nodes, and a simple
fault Fs which is not involved in Fk. The multiple fault signature Fj is given
by FSj = [s1j ,..., snj ]T in which sij = 0 if sik=sis, and sij = 1 otherwise. The
multiple fault signature Fj is not added to the signature matrix if ∀ sij : sij = 1
→ sij = sik, due to the implication that the new multiple fault is a superset of
a previously obtained fault which involves fewer nodes, and therefore cannot be
part of a minimal diagnosis. The generation of the signature matrix stops when
it is impossible to generate new signatures of faults which involve n nodes, with
the faults which involve n−1 nodes.

In FDI, the exoneration assumption [1] is implied, that is, given an observa-
tional model, each component of the support of a satisfied CARC is considered
as functioning correctly, that is, it is exonerated. In the DX approach, the exon-
eration is not considered by default.

In order to obtain the same results as in the DX approach by using a sig-
nature matrix, it is necessary to apply a new definition of consistency. In the
no-exoneration case an observation signature OS is consistent with another sig-
nature FSj if ∀ OSi = 1 then sij = 1. That is, only the non-satisfied CARCs
are used, and Fj must have the value 1 in each non-satisfied CARC. When the
diagnosis set is obtained by using the new definition of consistency, we propose
the application of a set of rules in order to detect which of the faults are mini-
mal diagnoses, since many faults will be consistent with the observational model
although they are not a minimal diagnosis. The following algorithm generates
the rules to obtain the minimal diagnoses.

Algorithm: Let CS(OS,FS) be a function which evaluates whether the signature
OS is consistent with signature FS. For each possible fault Fj in the signature
matrix, let MDFj be a Boolean variable which holds information on whether a
fault Fj is a minimal diagnosis, and let VCFj be a Boolean variable which holds
information on whether a fault Fj is a valid candidate for the generation of new
faults that could be a minimal diagnosis. For each possible fault Fj it is initially
supposed that VCFj = true.

The first step is to validate if the OK (no fault case) is a minimal diagnosis:
MDOK = CS(OS,OKS), and, for any simple fault Fj , the equality VCFj = ¬
MDOK must be satisfied.

If OK is not a minimal diagnosis, the following rules must be evaluated for all
the possible faults (except OK) in the same sequential order as they appear in



Table 4. The signature matrix of the polybox example

CARC OK F1 F2 F3 F4 F5 F12 F13 F14 F15 F23 F24 F25 F34 F35 F45 Fxxx

1 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1
2 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1
3 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1
4 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1
5 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
6 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1

Fxxx ⊂ {F123, F124, F134, F135, F145, F234, F235, F245}

OK F1 F2 F3 F4 F5 F12 F13 F14 F15 F23 F24 F25 F34 F35 F45 Fxxx

VC 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0
MD 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
VC and MD values for the observation signature OS = [0, 0, 1, 1, 1, 1]T

Table 5. A subset of the rules for the polybox example

MDOK = CS(OS,OKS) MDF1 ⇒ VCF14 = false MDF13 ⇒ VCF123 = false

VCF1 = ¬ MDOK ... MDF13 ⇒ VCF134 = false

... MDF1 ⇒ VCF15 = false MDF13 ⇒ VCF135 = false

VCF5 = ¬ MDOK MDF2 = VCF2 ∧ CS(OS,FS2) MDF14 = VCF14 ∧ CS(OS,FS14)

MDF1 = VCF1 ∧ CS(OS,FS1) ... ...

MDF1 ⇒ VCF12 = false MDF13 = VCF13 ∧ CS(OS,FS13) MDF245 = VCF245 ∧ CS(OS,FS245)

the signature matrix. These rules guarantee the correct detection of the minimal
diagnoses for an observational model:

– For each fault Fj with the signature FSj , the equality MDFj = VCFj ∧
CS(OS,FSj) must be satisfied.

– For each fault Fk which involves n + 1 nodes, where n ≥ 0, and which can
be obtained using the fault Fj(that involves n nodes) and a simple fault
Fs(which is not involved in Fj) then MDFj ⇒ VCFk = false.

Example: Table 5 shows a subset of the rules for the polybox example. The gen-
eration of the rules for the verification of whether a fault is a minimal diagnosis
can be done off-line, because these rules are the same for all the observational
models. The bottom of Table 4 shows the VC and MD evaluation results for
the observation signature OS = [0, 0, 1, 1, 1, 1]T . Only the evaluation of the
rules must be done on-line. This part of the process is a simple propagation of
Boolean values.

The evaluation of the signature matrix is very similar to the FDI methodol-
ogy. However in our approach, the faults involve nodes instead of components.
Hence, the last step is the substitution of each node with one of its components.
In the polybox example, fault F3 is equivalent to the faults in {{M1}, {M7},



{A1}, {A5}}; fault F12 is equivalent to faults {{M6M5}, {M8M5}, {A4M5},
{A6M5}}; and so on.

The information of all the possible minimal diagnoses is stored in a matrix
and as a set of rules. Therefore, it is only necessary to calculate this matrix
and rules once. As happens in FDI methodology, this work can be done off-line,
only the evaluation of the signature matrix and rules is on-line. Our approach
provide always the minimal diagnoses set of the system by using an observational
model. The minimality issue was not guaranteed in the original FDI approach
since only the signature matrix is used, but it is guaranteed in our approach
since the compilation rules are added to the diagnosis process.

7 Conclusions and Future Work

This paper proposes a new approach to automation of and improvement in the
determination of minimal diagnosis. The approach is based on FDI and DX
theories. The structural pre-treatment in the first phase and the reduction of the
model in the second phase enable improvement in the computational complexity.
All the possible minimal diagnoses are represented as a signature matrix and as
a set of rules. It is only necessary to calculate this matrix and rules once. The
minimal diagnosis is obtained by using an observational model, the signature
matrix and a set of compilation rules. Only the evaluation of the compilation
rules and signature matrix is on-line, the rest of the process can be done off-line.

The methodology was applied to an standard example, and the results were
very promising. As future work we suggest extending the methodology to include
dynamic systems and to include more complex and real problems, where the
application of the methodology could be more complicated.
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