
A Topological-Based Method for Allocating

Sensors by Using CSP Techniques

R. Ceballos, V. Cejudo, R. M. Gasca, and C. Del Valle

Departamento de Lenguajes y Sistemas Informáticos,
Universidad de Sevilla (Spain)

{ceballos, cejudo, gasca, carmelo}@lsi.us.es

Abstract. Model-based diagnosis enables isolation of faults of a system.
The diagnosis process uses a set of sensors (observations) and a model
of the system in order to explain a wrong behaviour. In this work, a
new approach is proposed with the aim of improving the computational
complexity for isolating faults in a system. The key idea is the addition of
a set of new sensors which allows the improvement of the diagnosability
of the system. The methodology is based on constraint programming
and a greedy method for improving the computational complexity of the
CSP resolution. Our approach maintains the requirements of the user
(detectability, diagnosability,. . .).

1 Introduction

Model-based diagnosis (MBD)[1][2] allows to determine why a correctly designed
system does not work as expected. In MBD, the behaviour of components is sim-
ulated by using constraints. Inputs and outputs of components are represented
as variables of constraints. These variables can be observable and non-observable
depending on the sensors allocation. The objective of the diagnosis process is to
detect and identify the reason for any unexpected behaviour, and to isolate the
parts which fail in a system.

The diagnosability of systems is a very active research area in the diagnosis
community. A toolbox integrating model-based diagnosability analysis and au-
tomated generation of diagnostics is proposed in [3]. The proposed toolbox sup-
ports the automated selection of sensors based on the analysis of detectability
and discriminability of faults. In this line, a methodology to obtain the diagnos-
ability analysis using the analytical redundancy relations (ARR) was proposed
in [4]. This approach is based on an exhaustive analysis of the structural informa-
tion. The objective is the addition of new sensors to increase the diagnosability.
In a previous work [5] a methodology to analyze the diagnosability of a system
based in a process algebras was proposed. A framework for testing the diagnos-
ability of a system is defined by using the available sensors, a model abstraction,
and some snapshots of sensor readings.

In this work, a new approach is proposed in order to improve the computa-
tional complexity for isolating faults in a system. Our approach is based on the
addition of new sensors. A constraint satisfaction problem (CSP) is obtained in

order to select the necessary sensors to guarantee the problem specification. We
propose an algorithm for determining the bottleneck sensors of the system in or-
der to improve the computational complexity of the CSP. A CSP is a framework
for modeling and solving real problems as a set of constraints among variables. A
CSP is defined by a set of variables X={X1, X2,..., Xn} associated with a set of
discrete-valued, D={D1, D2,..., Dn} (where every element of Di is represented
by set of vi), and a set of constraints C={C1, C2,..., Cm}. Each constraint Ci

is a pair (Wi, Ri), where Ri is a relation Ri ⊆ Di1·...·Dik defined in a subset of
variables Wi⊆X.

The remainder of the paper is organized as follows. Section 2 provides the
definitions and notation in order to clarify MBD concepts. Section 3 introduces
the basis of our approach. Section 4 describes the CSP generation. Sections 5
shows the greedy method for improving the CSP resolution. Finally, conclusions
are drawn and future work is outlined.

2 Notation and Definitions

In order to explain our methodology, it is necessary to establish some concepts
and definitions from the model-based diagnosis theories.

Definition 1. A System Model is a finite set of equality constraints which de-
termine the system behaviour. This is done by means of the relations between
the non-observable and observable variables (sensors) of the system.

Definition 2. A Diagnosis is a particular hypothesis that shows the system
differs from its model. Any component could be working or faulty, thus the
diagnosis space for the system initially consists of 2nComp - 1 diagnoses [2],
where nComp is the number of components of the system. The goal of diagnosis
is to identify and refine the set of diagnoses.

Definition 3. The Discriminability Analysis [3] determines whether and under
which circumstances the considered (classes of) faults can be distinguished.

Definition 4. The Diagnosability level is the quotient of the number of the
(classes of) faults which can be distinguished each other, and the number of all
the possible faults. The size of the possible faults is initially 2comp - 1.

Definition 5. A set of components T is a Cluster of components [6], (i) if it
does not exist a common non-observable variable of any component of the cluster
with any component outside the cluster, and (ii) if for all Q ⊂ T then Q is not
a cluster of components.

All common non-observable variables between components of the same cluster be-
long to the cluster, therefore, all the connections with components which are out-
side the cluster are monitored. A cluster of components is completely monitored,
and for this reason the detection of faults inside the cluster is possible without any

information from other components which do not belong to the cluster. A more
detailed explanation and the cluster detection algorithm appears in [6].

3 The Basis of the Algorithm

Our approach is based on the generation of new clusters of components by al-
locating sensors in some of the non-observable variables. These new clusters
reduce the computational complexity of the diagnosis process since it enables
the generation of the diagnosis of the whole system based on the diagnosis of
the subsystems. Let C be a set of n components of a system, and C1 and C2 be
clusters of n - m and m components such as C1 ∪ C2 = C ; then the computa-
tional complexity for detecting conflicts in C1 and C2 separately is lower than in
the whole system C, since the number of possible diagnoses of the two clusters
is (2n-m) + (2m) - 2 ≤ 2n-m · 2m - 2 which is less than 2n-1.

The clustering process enables isolating the faults of the original system, since
the multiple faults which include components of different clusters are eliminated.
These kind of faults are transformed into single or multiple faults which belong
to only one cluster. The computational complexity for detecting conflicts and
discriminating faults in a system is always higher than for an equivalent system
divided into clusters.

4 The CSP Problem Specification

The objective is to obtain the best allocation of sensors in order to generate new
clusters. The allocation of the sensors will be formulated as a Constraint Satis-
faction Problem (CSP). A CSP is a way of modeling and solving real problems
as a set of constraints among variables.

The methodology was applied to the 74181 4-Bit ALU. It is one of the ISCAS-
85 benchmarks [7]. It includes 61 components, 14 inputs and 8 outputs. Table 1
shows the set of variables and constraints for determining the number and loca-
tion of sensors for this example. The following variables are included:

– nNonObsVar : This constant-variable holds the number of non-observable
variables.

Table 1. CSP for the 74181 ALU sensors allocation

Variable (= initial value) Domain
(1) nSensors = {free} D={1, . . . , nNonObsVar}
(2) clusterOfCompi = {free} D={1, . . . , nComp}
(3) clusterDistt = {free} D={1, . . . , nComp}
(4) sensork = {free} D={true, false}
Constraints
(5) if (sensorE01 = false) ⇒ clusterOfCompM11 = clusterOfCompM32

(6) if (sensorE02 = false) ⇒ clusterOfCompM19 = clusterOfCompM32

...

Fig. 1. 74181 ALU

– nSensors : This variable holds the number of new sensors. It must be smaller
than the number of non-observable variables.

– sensork: This set of variables represents the possible new sensors of the
system. They hold a boolean value in the interval {true, false}, where true
implies that there must be a sensor, and false the opposite.

– clusterOfCompi: This set of variables represents the cluster associated to
each component i.

– clusterDist t: This set of variables holds the number of components included
in each cluster t.

For each common non-observable variable between two components a con-
straint is generated which guaranties that if there is not a sensor, the two com-
ponents must belong to the same cluster. Table 1 shows the constraints (5),(6),...
that hold this kind of information, and it is based on Figure 1. The final sensors
allocation is stored in sensork, and the distribution of the clusters is stored in
clusterDisti. The optimization problem can have different objectives, depending
on the user and the problem requirements. Two typical goals can be:

– To minimize the number of sensors (if the number of clusters is fixed).
– To minimize the maximal number of components in each cluster (if the

maximal number of sensors is fixed).

It is possible to add other constraints in order to guarantee some properties
of the solution. For example, in order to guarantee prices, to respect require-
ments of the customers, to store incompatibilities, to specify problems, ... We

have applied the limited discrepancy search (LDS) [8] algorithm in order to
search the solution. This algorithm is based on the limitation of the number of
discrepancies.

5 Improving the Algorithm: A Greedy Method

The computational complexity of a CSP is exponential in general. We propose a
method to obtain the most important allocation of the new sensors in order to
generate more clusters; that is, the bottlenecks of the system. Our method has
two phases:

1. The calculation of the minimal paths: A graph where the nodes represent the
components of the system, and the edges represent the connections between
each two components (non-observable variables). Each edge has a weight
calculated as the number of common non-observable variables between two
components. By applying the Floyd’s algorithm (dynamic programming), all
the shortest paths between all pairs of nodes is stored.

2. In order to determine which are bottlenecks of the system, each minimal path
will vote which sensors are more important. Figure 2 shows this algorithm.

sensorsOrder(P)

componentVotes[nComp][nNonObsVar]

sensorVotes[nNonObsVar]

// All the components (1..nComp) votes the variables (sensors)

// associated to the minimal paths

forEach j between 1 to nComp

forEach Pk from component i to component j

forEach q between 1 to length(Pk)

� = (voteValue / (length(Pk,i,j) · length(Pk))

forEach v includes in path[q]

componentVotes[i][Pk,i,j,q] += �
endForEach

endForEach

endForEach

endForEach

// Recounting of votes for each sensor

forEach sensorj between 1 to nSensors

sensorVotes[j] = 0

forEach i between 1 to nComp

sensorVotes[j] += componentVotes[i][j] / (� · nComp)

endForEach

endForEach

return sort(sensorVotes)

Fig. 2. Algorithm for obtaining the bottleneck sensors of the system (O(n2 · m2),
where n is the number of components and m is the number of non observable variables)

Each minimal path will vote for the included non-observable variables of
the minimal path. The number of votes are scaled in order to guarantee that
each component generates the same total number of votes. These votes allow
to generate a sorted list of non-observable variables. This list is composed of
the most relevant sensors with the aim of generating new clusters.

The bottlenecks of the system represent the best sensors in order to isolate
components and faults. The sorted list of sensors enables creating a CSP with
less variables to find the solution of the problem in a limited time. Only the so-
lutions included in the combinations of the m bottleneck sensors will be tested,
and therefore, the number of possible solutions will be lower than 2m. The opti-
mal solution is not guaranteed, but the reduction of computational complexity
enables finding a solution in a limited time.

Example: In the Alu74181 example the most important sensors are (based
on the number of votes): E02(930), E03(878), X28(773), E01(737), E00(583),
D00(514), D01(463), D02(326), D03(301),... The other sensors have less than 166
votes. The first 9 sensors are represented by shaded circles in Figure 1. The pos-
sible diagnoses in the system are 261 - 1. By using the first 9 selected sensors,
the number of clusters is 17 (all with less than 6 components) and the compu-
tational complexity is reduced because of the reduction of possible diagnosis to
less than 29.

6 Conclusions and Future Work

The objective of our approach is the allocation of a set of new sensors in or-
der to improve the computational complexity and diagnosability of a system.
The methodology was applied to an standard example, and the results are very
promising. It is based only on topological properties. This enables applying this
approach to different kinds of systems. As a future work, we are working on new
greedy methods to improve the votes counting.

Acknowledgements

This work has been funded by the Spanish Ministry of Science and Technology
(DPI2003-07146-C02-01) and the European Regional Development Fund.

References

1. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32 1
(1987) 57–96

2. de Kleer, J., Mackworth, A., Reiter, R.: Characterizing diagnoses and systems.
Artificial Intelligence 2-3(56) (1992) 197–222

3. Dressler, O., Struss, P.: A toolbox integrating model-based diagnosability analysis
and automated generation of diagnostics. In: DX03, 14th International Workshop
on Principles of Diagnosis, Washington, D.C., USA (2003) 99–104

4. Travé-Massuyés, L., Escobet, T., Spanache, S.: Diagnosability analysis based on
component supported analytical redundancy relations. In: 5th IFAC Symposium on
Fault Detection, EEUU (2003)

5. Console, L., Picardi, C., Ribaudo, M.: Diagnosis and diagnosability analysis using
PEPA. In: ECAI 2000, Proceedings of the 14th European Conference on Artificial
Intelligence, Berlin, Germany, IOS Press (2000) 20–25

6. Ceballos, R., Gómez-López, M.T., Gasca, R., Pozo, S.: Determination of Possible
Minimal Conflict Sets using Components Clusters and Grobner Bases. In: DX04,
15th International Workshop on Principles of Diagnosis, Carcassonne, France (2004)
21–26

7. Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 Benchmarks: A Case
Study in Reverse Engineering. IEEE Design and Test of Computers 16(3) (1999)
72–80

8. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Fourteenth IJCAI,
Montreal, Canada, IOS Press (1995)

	Introduction
	Notation and Definitions
	The Basis of the Algorithm
	The CSP Problem Specification
	Improving the Algorithm: A Greedy Method
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

