
Architecture, design and source code comparison of ns-2 and ns-3 network
simulators

Juan Luis Font, Pablo Iñigo, Manuel Domı́nguez, José Luis Sevillano, Claudio Amaya
Department of Computer Technology and Architecture

University of Seville
Seville, Spain

Email: {juanlu,pabloinigo,mdominguez,sevi,camaya}@atc.us.es

Keywords: Discrete-event simulation, design, ns-2, ns-3,
software metrics

Abstract
Ns-2 and its successor ns-3 are discrete-event simulators. Ns-
3 is still under development, but offers some interesting char-
acteristics for developers while ns-2 still has a big user base.
This paper remarks current differences between both tools
from developers point of view. Leaving performance and re-
sources consumption aside, technical issues described in the
present paper might help to choose one or another alternative
depending of simulation and project management require-
ments.

1. INTRODUCTION
Simulation is a key tool in networking research due to its

inherent advantages over testing with real hardware. Mat-
ters as budget and cost of time make simulation attractive
for research, although flexibility, scalability and almost non-
cost expansion are also valuable advantages over other testing
methods. Network simulators allow to implement and study
different network entities in a simulated environment, giving
a high degree of flexibility to test new protocols, technolo-
gies, physic models and topologies.

Ns-2, a discrete-event network simulator, has been the de
facto standard for the last decade, being widely used in aca-
demic research. Ns-3 [3] [?] has been conceived as ns-2 suc-
cessor, its developers have tried to solve or mitigate many
of the ns-2 well-known drawbacks as well as to apply new
concepts, such as validation and software engineering tech-
niques, in order to produce a more reliable simulation tool to
support academic and industrial research [5].

Other technical papers have already addressed ns-2 and ns-
3 comparison [6], among other network simulators, evaluat-
ing their core performance and scheduling capabilities and
avoiding to focus on any specific simulator feature in order
to make a comparison of very different pieces of software as
fair as possible. This paper aims to make a technical compari-
son between ns-2 and ns-3, emphasizing on their architecture,
design, advantages and drawbacks from the point of view of
developers interested in network simulation. Due the influ-

ence of ns-2 over ns-3 design and development, it is possible
to elaborate a thorough analysis focused on technical and de-
sign characteristics that would not be possible to carry on with
other simulators quite different in nature and aims.

Subject such as host operating system integration, source
code hierarchy, generation of binaries, portability or structur-
ing and documenting policies are discussed on the present
paper, remarking pros and cons of both simulators in devel-
opment, code maintenance and quality terms. Some software
metrics has been included in order to show both projects evo-
lutions in terms of size, documentation and source code cou-
pling.

2. SYSTEM INTEGRATION
Ns simulators family has its roots in Unix-like environ-

ments, being developed using typical Unix languages and
tools. Nowadays, GNU/Linux is one of the main development
platforms for both ns-2 and ns-3 [7]. Although they have been
ported to other operating systems such as Windows/Cygwin
[8], *BSD or Mac OSX [9], working with GNU/Linux makes
easier to install, update and maintain instances of both simu-
lators.

2.1. Distribution
Both ns-2 and ns-3 are mainly conceived to be distributed

in source code form. Since users have access to source code,
they can modify and extend their features and optimize their
binaries as needed. Source code can be fetched from their
respective project repositories. Ns-2 relies on CVS [11], a
classical revision control system, to manage its source code,
while ns-3 uses Mercurial[10], an emerging distributed revi-
sion control tool, to manage its.

Ns-2 has several software dependences, some of them
can be obtained through the software repositories of main
GNU/Linux distributions, but others have to be fetched and
installed manually due to their absence in mainstream soft-
ware repositories [12]. Depending on very specific, and some-
times, obsolete library versions becomes an important draw-
back when installing ns-2. This problem is mitigate by the
project maintainers through packaging the whole dependen-
cies in a single installation package, aka all-in-one. This

package contains both ns-2 and libraries source code, config-
uration files and tools needed to compile the whole project.
This installation alternative is better than manually fetching
source code from ns-2 CVS repository and trying to solve
problems with library paths and compilation errors by hand.

As well as ns-2, ns-3 offers an all-in-one installation pack-
age [13] which only contains ns-3 source code. Thanks to the
easy to install its software dependencies, fetching and a ns-
3 from its Mercurial repository is a good and easy way for
developers to stay synchronized with the main ns-3 develop-
ment branch.

2.2. Specific software dependencies
GNU toolchain is the first requirement for building ns-2

or ns-3. Currently there are no reported issues related with
recent gcc versions. Apart from the toolchain, ns-2 and ns-3
have several library dependences. Main ns-2 required depen-
dencies include:

• Tcl/Tk: Tcl scripting language and Tk, a Tcl extension
that provides graphical user interface library. The current
Tcl stable version is 8.5.8 (2009-11-16) [14], although
ns-2 developers state that the simulator has only been
tested against 8.4.14.

• OTcl: a Tcl object-oriented extension [15], it is used as
ns-2 scripting language for writing simulations. The last
release dates from 2007-03-10 and for the last five years
their developers have only released minor versions (1.8
- 1.13). It is not found as a standard software package in
most GNU/Linux software repositories due to its little
diffusion and use.

• TclCL: is Tcl/C++ interface that allows the creation
of OTcl wrappers for C++ code. The development of
TclCL is tightly related with OTcl. As well as OTcl,
TclCL is not a widespread tool and it cannot be found
in most software repositories of the main GNU/Linux
distributions.

Ns-3 requires external libraries too, but they are quite stan-
dard pieces of software and are usually available as part of the
main GNU/Linux distributions. Only development libraries
such as libxml and python are mandatory. The rest of the
dependencies will be installed optionally in order to enable
some specific features. Software such as valgrind, sqlite or
GNU Scientific Library are examples of these optional de-
pendencies. All of them are easy to find in the repositories
of mainstream distributions like Debian, Ubuntu or Fedora
[7]. Packaging tools make software installation much easy
and neat by automatically resolving dependencies and con-
figuring library paths. In addition, there are no major issues
related with using too new library versions, which are soon
tested against current ns-3 code.

In conclusion, ns-3 has a better system integration with
its host operating systems, especially GNU/Linux. There is
low coupling between ns-3 itself and its needed libraries and
tools, so users have a higher grade of flexibility to solve soft-
ware dependencies independently of their specific host oper-
ating system. This advantage is almost mandatory for a soft-
ware that is still under active development that is distributed
all over the world. By contrast, Ns-2 shows signs of aging and
its development seems to be stuck, the project itself cannot
spend too much resources on testing and updating external
software dependencies so ns-2 finally relies on mostly obso-
lete versions which means a major drawback for installation
and maintenance process.

2.3. Building the source code
Ns-2 uses a classic Unix configuration and building pro-

cess based on the make building tool. In order to add new
modules to ns-2 or to change current configuration, the user
can edit himself the main Makefile of the project [16] or de-
fine his own makefile in order to compile and generate the
associated libraries. The core and modules building process
can generate a monolithic executable called ns which con-
tains the simulator functionalities as well as all the current
models distributed with ns-2. In order to avoid this situation,
the developer can define his own building rules and generate
a ns-2 standard core and independent libraries with the new
models. Simulations are just OTcl scripts, but depends on ns
binary to run. Scripts are passed as parameters to ns, which
act as as an script interpreter. On the other hand, if a separated
makefile is written, independent binary code from ns-2 core
will be obtained.

Ns-3 supports Python scripting, although writing simula-
tions in this language is not mandatory and Python support
and its wrappers can be optionally disabled. Ns-3 also re-
lies on Python for configuring and compiling its own source
code [17]. Instead of using make tool as ns-2 does, ns-3
has adopted waf as a build automation tool [18], which has
Python as single external dependence. As well as Python
language itself, waf is portable. It allows to compile only
modified source code files, ignoring the untouched ones. Re-
building a relatively simple class takes only between 1 and 2
seconds when using the same AMD Quad Core, 4GB RAM
based machine running Debian and gcc 4.3.4. After compil-
ing the whole project, the user gets a monolithic shared li-
brary called libns3.so and a single executable for each
simulation written in C++ language. These binaries have to
be dynamically linked with libns3.so at runtime. There-
fore, the ns-3 binary core is rather a shared library than a tra-
ditional executable as ns-2 one is. Libns3.so contains the
simulation routines as well as all the ns-3 standard modules.

3. PROJECT DESIGN AND SOURCE CODE
PROPERTIES

In this section it is discussed both project general architec-
ture, source code structuring as well as other auxiliary aspects
for developers such as documentation and portability. These
issues are approached qualitatively, being quantitative metrics
left for the next section.

3.1. Dual-language architecture
The wide use of Tcl and its language extensions in ns-2 re-

sponds to a past context in which compiled languages such as
C++ where relatively high time-consuming for the hardware
of the time, so ns-2 developers chose a dual-language archi-
tecture. They used C++ for core elements and models, which
were supposed to be more stable and static pieces of soft-
ware, compiled once and run many times. They also chose a
scripting language such as Tcl and its object-oriented exten-
sion, OTcl, for writing simulations that would run over ns-2.
Using non-compiled language allowed users to write and run
simulations without suffering from long compilation times.

The dual-language design defines the way ns-2 users and
developers code. Simulation routines and models are imple-
mented in C++, a compiled language, in order to benefit from
optimization and speed up. Simulations themselves are only
OTcl scripts that invokes the functionalities coded in C++
thanks to software wrappers [15]. Despite of reducing compi-
lation times, the dual-language nature adds extra complexity
to ns-2 use and development. It can be difficult to new de-
velopers to identify which parts have to be coded in C++ and
which ones in OTcl language when a coding a new model.

Nowadays, current hardware is powerful enough to han-
dle with compiled languages like C++, consuming negligible
compilation times in most cases, so the advantages derived
from using a scripting languages like OTcl have partially van-
ished.

Ns-3 has simplified its design choosing C++ as single de-
velopment language for its models, simulations can be coded
in C++ too. Ns-3 has not totally dropped the use of script-
ing languages for coding simulations, but has changed the
way they are used into the project [19]. Compilation times
are no more an issue due to the power of current hardware, so
advantages from using scripting languages derive from other
technical reasons such as portability, productivity or an eas-
ier syntax. Ns-3 users can optionally choose Python as the
language for writing simulations thanks to Python bindings.
Shifting from OTcl to Python provides a scripting language
with a larger user base, more active development and more
friendly syntax.

3.2. Architecture and code organization
Ns-2 defines a very basic architecture, making only distinc-

tion between the core of the simulator and network models.

This fact has become a drawback as ns-2 has evolved and
new modules and features have been added. Nowadays some
modules show a high degree of coupling and dependences are
difficult to follow easily [20].

Ns-2 differentiates between the network topology and
the agents that run over it and generate or consume data
traffic[21]. The topology is formed by generic nodes and the
links between them. Also, these links can have special objects
associated that define the link behavior [22], channel charac-
teristics and other parameters. Agents are the network appli-
cations themselves that run over the nodes and transmit or
receive data information through the network. The model de-
veloper is responsible for assuring the agent layer will be able
to exchange data packets with the network topology layer, so
he has to design his own data packets if necessary and register
them as new types so that ns-2 would be able to handle them.
Packets registration requires the user to change some source
code files of ns-2 core and to rebuild the whole simulator [23],
which is a quite invasive process.

Apart from the differentiation between topology and
agents, ns-2 programmers have a high degree of freedom to
define and code their models, so, depending on the desired
abstraction level, they can write from very simple and ab-
stract models to relatively complex and accuracy ones. Thus,
simulation results must be analyzed carefully, depending on
the level of abstraction applied, some simulation results can
considerably diverge from real-world ones [5].The ns-2 re-
laxed hierarchical organization is reflected on its source code
structuring Early releases did not make any distinction at all
between modules, and all the source code files were placed
at the same level on a common folder. From 2.26 releases,
maintainers have made efforts in order to maintain a proper
source code structure [24].

Ns-3 emphasizes source code hierarchical structuring by
defining several basic network entities present in every single
simulation. Specific models are a refinement of these generic
entities [31].

• Node: represents the basic computing device. It gathers
the network functionality and interacts with other nodes
by the communication channel. Nodes require net de-
vices in order to be able to use the physical channel.

• Application: sets up on top of the nodes, playing the role
of packet consumer or packet generator.

• Channel: provides the media to interconnect nodes and
to allow data traffic.

• Net Device: abstracts the network hardware that makes
communication possible through the channel.

• Topology Helper: auxiliary class that makes the gener-
ation of complex topologies easier by automating the

network elements creation, configuration and intercon-
nection.

Ns-3 gathers all source code files of both simulator core
and models in the src folder, separating them from the
rest of auxiliary tools, building scripts, documentation and
examples. The src folder is also subdivided, attending to
the above classification of abstract entities. Thus, all the
models related with network devices can be found into
src/devices. This hierarchical organizations allows de-
velopers to easily navigate through the simulator code. Fol-
lowing the above scheme, a ns-3 programmer is encouraged
to define several entities in his abstract model in order to fit
his code in the global simulator structure, assuring a common
model skeleton that makes the overall code more flexible and
adaptable, being easy to refine and reuse it in the future. Due
to the src folder has been conceived just for containing the
standard ns-3 modules, which are maintained, supported and
documented by ns-3 project itself, new third-party modules
should be created and built into the ns-3 home/scratch.
The waf tool scans the scratch folder and generates an
executable for each defined simulation.

Comparing both ns-2 and ns-3 partial class hierarchy, it can
be noted the more intuitive structure shown by ns-3 source
code.

Figure 1. Partial ns-2 Class Hierarchy

Figure 2. Partial ns-3 Class Hierarchy

Due to space restrictions, partial graphs have been at-
tached. For a more complete ns-2 and ns-3 class hierarchy
models, visit [30] and [29].

3.3. Simulation portability
Ns-2 simulations are initially portable due the fact they are

simple OTcl scripts. There is no problem to launch a ns-2

simulation in a different ns-2 instance, independently of the
target architecture of the ns binary that will run the script.
This is always true whenever the ns-2 script only uses ns-2
standard features included in the official source code release.
If the script uses custom models developed by third-parties
that are not official part of ns-2 project and the building pro-
cess is modified in order to include these new models into the
core itself, as an unique monolithic entity; it will need a cus-
tom ns executable, generated from the standard ns-2 source
code plus the new model code. Thus, the ns-2 design may
attach a simulation that uses custom models to the specific
ns-2 instance that contains them, losing any kind of advan-
tage related with portability due to the need of a custom ns
interpreter. This situation can be avoided if the developer de-
fines and generates his independent external libraries, keep-
ing a standard ns-2 core. In this case, his simulations must be
accompanied by their complementary external libraries.

Ns-3 design overcomes the above possible drawback by
providing a common libns3.so library that must be the
same for all the ns-3 instances belonging to the same release.
If developers use the scratch folder to place new models
and simulations, they will obtain standard binaries that need
libns3.so shared library in order to use ns-3 standard fea-
tures, and they will include the custom models as part as their
own binary code. These executables are only constrained by
their target processor architecture (i386, amd64, ppc, etc.).

3.4. Source code documentation
Ns-2 does not establish any criterion related with documen-

tation. The project maintains a web page with its main doc-
umentation dispersed in several sections, mixing legacy doc-
uments, tutorials and third-party manuals. This model may
suffer from problems such as obsolescence and lack of main-
tenance. Due to documenting ns-2 can be a double and non-
automated task, recording information on source code files
and on the web, some source files may lack proper docu-
mentation that can only be found on the project web, and
vice versa[1]. Synchronization between code under devel-
opment and its associated code is in most cases a manual
process. A first look at the ns-2 official web site shows its
documentation structure, divided into: core documentation,
it includes several FAQs[25], third-party tutorials and an ex-
tensive reference[26]; development help, which gathers mes-
sages from several mailing lists[27] as well as the change his-
tory from the CVS repository[28]. A C++ class hierarchy is
present too[29].

Ns-3 integrates documentation in source code files by us-
ing Doxygen [32], an open-source multi-language documen-
tation generator, which parses and extract ns-3 documentation
directly from source code. It allows to define some format
aspects of the documentation such as defining parameters,
return values, links to others pieces of documentation, etc.

Besides, documentation can be generated in several different
formats such as pdf, HTML, latex or XML. Thus, generating
ns-3 documentation is as simple as compiling its source code
and at the same time, it removes the need to maintain two dif-
ferent documentation sources. Starting from the bare source
code and the comments formatted in the Doxygen way, all
the documentation related content can be extracted in order to
generate a complete user manual. This is the way the original
handbook for developers from the ns-3 project is generated
and kept to date [2]. This manual is an extensive and exhaus-
tive enumeration of code elements that includes detailed de-
scription of C++ class hierarchy, programming interfaces and
module contents.

Stats show ns-2 has a higher ratio of lines of code per com-
ment line. Documentation policies have provided a more ex-
haustive and up-to-date documentation to ns-3 project, which
is better qualitatively and quantitatively documented.

4. QUANTITATIVE ANALYSIS OF
SOURCE CODE

C++ source code files from several ns-2 and ns-3 previous
and current releases have been analyzed in order to extract
basic software metrics (ns-2: from 2.0 to 2.34, 12 years, ns-
3: from 3.0 to 3.6, 3 years) [24] [33]. In one hand, ns-3 is
shorter lived than ns-2, but it has benefit from ns-2 ideas and
experience, so it cannot be considered a totally from scratch
development. In the other and, ns-2 has experimented differ-
ent stages along its long existence and nowadays it can be
considered at the end of its life cycle.

4.1. Roadmap and releases
Several ns-3 and ns-2 releases have been analyzed in order

to evaluate their respective evolution by extracting some ba-
sic software metrics. Both current and previous releases has
been fetched from their official source code repositories and
archives respectively.

Ns-2 started as variant of the REAL network simulator
in 1989. Today, its changelogs reflects bug fixes and gen-
eral code maintenance, without an official roadmap. Releases
2.31, 2.32 and 2.33 were not available on the ns-2 archive.

Ns-3 project started in 2006 and was projected to take four
years. Nowadays is still under active development, having
several full-time hired maintainers [35]. Due it depends on
contributed modules, it is difficult to define an exact project
roadmap [36].

4.2. Software metrics
The cccc tool, C and C++ Code Counter [38], is an open-

source software metrics tool that has been chosen to perform
the code analysis. It can only parses C++ files (*.cc and
*.h), so code related with Tcl/OTcl, Python and other script

Table 1. Ns-2 versions by release date [34]

Version Release date
1 ns-2.0 July 25, 1997
2 ns-2.1b July 3, 2002
3 ns-2.26 February 26, 2003
4 ns-2.27 January 18, 2004
5 ns-2.28 February 3, 2005
6 ns-2.29 October 19, 2005
7 ns-2.30 September 26, 2006
8 ns-2.34 June 17, 2008

Table 2. Ns-3 versions by release date [37]

Version Release date
1 ns-3.0.1 March 31, 2007
2 ns-3.0.13 June 6, 2008
3 ns-3.1 Jul 1, 2008
4 ns-3.2 September 25, 2008
5 ns-3.3 December 28, 2008
6 ns-3.4 April 6, 2009
7 ns-3.5.1 September 23, 2009
8 ns-3.6 October 21, 2009

languages has been ignored. The next stats belong to the sim-
ulator core and default models of both ns-2 and ns-3.

Although it is not possible to directly compare the overall
results due the different amount of features that ns-2 and ns-3
implement, it is useful to analyze and compare averages in
order to make a more realistic and fair code comparison. The
following procedural software metrics have been extracted
from their respective releases:

• NOM: Number of modules. Number of non-trivial mod-
ules identified by the analyzer.

• LOC: Lines of Code. Number of non-blank, non-
comment lines of source code.

• COM: Lines of Comments. Number of lines of comment
identified by the analyzer

• MVG: McCabe’s Cyclomatic Complexity. A measure of
the decision complexity of the functions which make up
the program. The strict definition of this measure is that
it is the number of linearly independent routes through a
directed acyclic graph which maps the flow of control of
a subprogram.

• L C: Lines of code per line of comment. Indicates den-
sity of comments with respect to textual size of program

• IF4v: Information Flow measure. Measure of informa-
tion flow between modules suggested by Henry and
Kafura. The analyzer makes an approximate count of
this by counting inter-module couplings identified in the
module interfaces. IF4v is calculated using only rela-
tionships in the visible part of the module interface.

Figure 3. Total number of modules

Figure 4. Lines of code per module

Apart from the above metrics, a more detailed analysis of
the last ns-2 and ns-3 releases has been made (ns-2.34 and
ns-3.6 respectively). The following Object Oriented Design
metrics have been used:

• WMC: Weighted methods per class. The sum of a
weighting function over the functions of the module.
Two different weighting functions are applied: WMC1
uses the nominal weight of 1 for each function, and
hence measures the number of functions, WMCv uses
a weighting function which is 1 for functions accessible
to other modules, 0 for private functions.

Figure 5. Number of lines of code per comment line

Figure 6. McCabe’s Cyclomatic Complexity per Module

• DIT: Depth of inheritance tree. The length of the longest
path of inheritance ending at the current module. The
deeper the inheritance tree for a module, the harder it
may be to predict its behavior. On the other hand, in-
creasing depth gives the potential of greater reuse by the
current module of behavior defined for ancestor classes.

• NOC: Number of children. The number of modules
which inherit directly from the current module. Moder-
ate values of this measure indicate scope for reuse, how-
ever high values may indicate an inappropriate abstrac-
tion in the design.

• CBO: Coupling between objects. The number of other
modules which are coupled to the current module ei-
ther as a client or a supplier. Excessive coupling indi-
cates weakness of module encapsulation and may inhibit
reuse.

Paying attention only to the raw results, ns-3 shows a

Figure 7. IF4v per Module

Table 3. Ns-2.34 Object Oriented Design stats

WMC1 WMCv DIT NOC CBO
Mean 6,76 6,07 1,74 0,68 5,56
Deviation 17,58 12,34 1,65 4,45 13,9
Min 0 0 0 0 0
Max 465 300 7 97 255
Mode 2 2 0 0 4
Median 3 3 2 0 4

higher CBO value that could be interpreted as a sign of exces-
sive coupling between its modules, which would be against
ns-3 emphasis on code correction.

This specific fact does not really mean a true high degree of
coupling. A closer study of the statics shows that the standard
deviation for CBO is higher than ns-2 as well as ns-3 mode
is significantly lower. Ns-3 has a few C++ modules that are
the most referenced by others. These highly referenced ones
correspond with the main ns-3 abstract entities that articulate
its architecture, such as device, node or channel class . Most
elements and models inherit from them, which increases the
overall CBO value. If these highly referenced classes would
be ignored during the analysis, the rest of the ns-3 classes
showed a very low CBO value, which it is consistent with the
wide use of templates, software patterns and C++ idioms that
aim to improve the overall code quality. This second CBO
value, ignoring singularities and extreme values, should be
considered in order to obtain a more realistic metric about
coupling in the context of ns-3 project.

5. CONCLUSION
Ns-2 its a quite mature project that has already matched

its aims. Nowadays its development is stuck and only minor
maintenance versions are released, as well as it has as soft-

Table 4. Ns-3.6 Object Oriented Design stats

WMC1 WMCv DIT NOC CBO
Mean 10,07 5,21 1,13 0,48 6,83
Deviation 20,44 7,63 1,34 2,71 15,2
Min 0 0 0 0 0
Max 447 73 4 54 222
Mode 0 0 0 0 1
Median 6 3 0 0 4

ware dependencies some obsolete or not too widespread li-
braries and tools. Due to its design, ns-2 gives a high degree
of freedom to code new models, so quality of new third-party
ones depends on their own developers, who are responsible
of most of the quality aspects of their code and their cor-
responding documentation. Ns-3 tries to save some of ns-2
limitations, for example, dropping ns-2 dual language design,
and it emphasizes both code and model structuring as well
as encourages software engineering practices in order to im-
prove code and documentation maintenance. Installation and
dependencies are well integrated into most commons host op-
erating systems as well as source code building process is neat
and well automated. Ns-3 design tries to keep its core and
users simulations and code separated, giving proper building
automation tools and trying to guarantee a minimum quality
standards for all third-party developers who follow their rec-
ommendations. By comparing some software metrics, it can
be realized ns-3 has experimented a fast paced development,
being close to be a fully viable ns-2 successor in the very near
future. Most of it modules show a balanced level of complex-
ity and coupling. In conclusion, ns-3 can provide new and in-
teresting advantages over ns-2 for developers seeking to cre-
ate new network models, and it is ready to evolve and grow
in a sustainable way as a collaborative project.

6. ACKNOWLEDGEMENTS
This work was supported by contracts

TIN2006.15617.C03.03, AmbienNet: Ambient Intelli-
gence Supporting Navigation for People with Disabilities;
and P06-TIC-2298, SemiWheelNav: External sensing based
semiautonomous wheelchair navigation.

REFERENCES
[1] Ns-2 documentation. http://www.isi.edu/nsnam/ns/

[2] Ns-3 Doxygen documentation.
http://www.nsnam.org/doxygen-release/index.html

[3] Educational use of ns-2.
http://www.isi.edu/nsnam/ns/edu/index.html

[4] Ns-2 module contributions.
http://www.isi.edu/nsnam/ns/ns-contributed.html

[5] Ns-3 overview.
http://www.nsnam.org/docs/ns-3-overview.pdf

[6] E. Weingärtner, H.Lehn, K.Wehrle. A performance
comparison of recent network simulators. IEEE
International Conference on Communications, 2009.
ICC ’09. 14-18 June 2009 Page(s):1 - 5.

[7] Ns-3 supported OS.
http://www.nsnam.org/getting started.html

[8] Ns-3 tutorials: Development environment.
http://www.nsnam.org/docs/tutorial/tutorial 9.html

[9] Ns-3 wiki: installing ns-3 on Mac OSX.
http://www.nsnam.org/wiki/index.php/HOWTO get ns-
3 running on Mac OS X (10.5.2 Intel)

[10] Mercurial project. http://mercurial.selenic.com/

[11] CVS project.http://www.cvshome.org/

[12] The Network Simulator: building Ns.
http://www.isi.edu/nsnam/ns/ns-build.html

[13] Ns-3 tutorials: Getting started.
http://www.nsnam.org/docs/release/tutorial.html#Getting-
Started

[14] Tcl Developer Site. http://www.tcl.tk

[15] OTcl site. http://otcl-tclcl.sourceforge.net/otcl/

[16] J. Chung,M. Claypool. NS by example: Extending NS.
http://nile.wpi.edu/NS/

[17] Ns-3 User FAQ: WAF (build process)
http://www.nsnam.org/wiki/index.php/User FAQ#WAF

[18] Waf project. http://code.google.com/p/waf/

[19] Ns-3 User FAQ: Python bindings.
http://www.nsnam.org/wiki/index.php/User FAQ#Python

[20] M. Lacage, T.Henderson. Yet another network
simulator. WNS2 ’06: Proceeding from the 2006
workshop on ns-2: the IP network simulator, 2006.

[21] The ns manual: 5.1 Node basics.
http://www.isi.edu/nsnam/ns/doc/node40.html

[22] The ns manual: 6.1 Simple links.
http://www.isi.edu/nsnam/ns/doc/node57.html

[23] The ns manual: 12.1 A Protocol-Specific Packet
Header.
http://www.isi.edu/nsnam/ns/doc/node128.html

[24] Ns-2 release archive. http://www.isi.edu/nsnam/dist/

[25] Ns-2 FAQs. http://www.isi.edu/nsnam/ns/ns-faq.html

[26] Ns Manual, formerly called n̈s Notes and
Documentation.̈
http://www.isi.edu/nsnam/ns/ns-documentation.html

[27] Ns related mailing
lists.http://www.isi.edu/nsnam/ns/ns-lists.html

[28] Ns-2 CVS History.
http://cvs.sourceforge.net/viewcvs.py/nsnam/

[29] Ns-2 C++ Class Hierarchy.
http://nile.wpi.edu/NS/components.html

[30] Ns-3 C++ Class Hierarchy.
http://www.nsnam.org/doxygen-release/inherits.html

[31] Ns-3 Manual: 4.1 Object Model.
http://www.nsnam.org/docs/release/manual.html#Object-
model

[32] Doxygen Source code documentation generator tool.
http://www.stack.nl/ dimitri/doxygen/.

[33] Ns3 release archive. http://www.nsnam.org/releases/

[34] Ns-2.34 Changelog.
http://www.isi.edu/nsnam/ns/CHANGES.html

[35] Ns-3 project maintainers.
http://www.nsnam.org/maintainers.html

[36] Ns-3 Current Development.
http://www.nsnam.org/wiki/index.php/Current Development

[37] Ns-3 official blog. http://nsnam.blogspot.com

[38] CCCC: C and C++ Code Counter.
http://cccc.sourceforge.net/

[39] T. Littlefair. An investigation into the role of Software
Metrics in software quality improvement. PhD research
project, Edith Cowan University, Australia, 1999.

