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Abstract. One of the main problems of the existing methods for the
segmentation of cerebral vasculature is the appearance in the segmen-
tation result of wrong topological artefacts such as the kissing vessels.
In this paper, a new approach for the detection and correction of such
errors is presented. The proposed technique combines robust topological
information given by Persistent Homology with complementary geomet-
rical information of the vascular tree. The method was evaluated on 20
images depicting cerebral arteries. Detection and correction success rates
were 81.80% and 68.77%, respectively.

1 Introduction

Accurate segmentation of the cerebral vasculature is important as part of sev-
eral advanced radiological and interventional procedures; e.g. in making more
objective detection of vascular pathologies (carotid stenosis, cerebral aneurysm,
malformations), quantification (of stenosis grading, aneurysm measurements),
personalised hemodynamic modelling, and interventional planning of endovas-
cular procedures. Automated analysis of the cerebral vessels, however, remains
challenging as it has to be robust to limited image resolution, artefacts in image
acquisition, image noise, complex vascular morphologies even in healthy condi-
tions as well as morphological alterations due to pathological conditions.

Several methods have been proposed in the literature for the segmentation of
cerebral vasculature [9]. One of the main problems of the existing methods is
that they are not robust to recover and preserve the topology of the underlying
vascular tree. This is particularly problematic when trying to recover the full
or large portions of the cerebral vasculature. Missing (e.g. due to poor image
resolution or artefacts) or kissing vessels (i.e. when two distinct but parallel run-
ning vessels cannot be distinguished) can easily mislead vascular segmentation
algorithms so that the final result contains missing or fused vascular segments.

In particular, due to their large presence in cerebral vasculature segmenta-
tion results, several segmentation methods address the kissing vessel problem
by using shape priors that aim to prevent their formation [11,8,13]. However,
these methods either require a trade-off between geometrical accuracy and topo-
logical correctness, or cannot guarantee topological correctness nor the absence



of kissing vessels. Due to the fact that the vast majority of kissing vessels in-
troduce topological alterations in the resulting vascular network, more general
methods incorporating topological restrictions in the segmentation process could
be considered a solution to the problem. Chen and Freedman [6] proposed an
approach that enforces specific topological constrains within the level-set seg-
mentation framework (called C&F method in the sequel). This method is a
general approach that allows topological control within a level set evolution by
using Persistent Homology [7], which is a concept borrowed from algebraic topol-
ogy. Given a known initial topology of the object to be segmented, the method
is able to correct every topological error within a given segmentation. To the
best of our knowledge the C&F method has never been tested to quantitatively
demonstrate its effectiveness on any clinical application. From our experience,
the main drawback of this method is that the manipulations required for cor-
recting the topology of the object may alter its geometry in an undesired manner
leading to incorrect segmentations.

Our work builds upon the C&F method, which is extended to enable auto-
matic detection and semi-automatic correction of kissing vessels in cerebrovas-
cular image segmentations. We believe that this is the first method specifically
dealing with the detection and correction of such artefacts. This is particularly
relevant in view of population imaging efforts where one is interested in ex-
tracting quantitative image information from large image databases, and where
manual detection and correction have a huge impact in terms of reproducibility
and processing time.

2 Persistent Homology for Segmentation Errors
Correction

Given a segmentation result, the C&F method makes use of the concepts of ho-
mology groups and persistent homology to detect and eliminate incorrect topo-
logical features that are present in the initial segmentation. This approach is
based in geometric active contours (GAC) [5] that is an image-based object
modelling approach based on the theory of curve/surface evolution and level set
frameworks. In GAC, contours are represented implicitly using the zero-level set
of a higher-dimension function called the level set function. Given a known initial
topology of the object to be segmented, the C&F method automatically drives
the evolving contour within the GAC framework towards the correct object’s
topology. Let us introduce some of the concepts, coming from homology theory,
that are used in this method.

Homology groups are efficiently computable topological invariants that have
already proved their usefulness in different applications and their potential in
multidimensional digital image analysis [7]. The homology groups H(O) of an
n–dimensional digital object O provide information on the number of connected
components and holes of various dimensions. For instance, in a 3D image, 0–holes
can be seen as connected components, 1–holes as handles, and 2–holes as voids in
the image. These topological features of the image are algebraically represented



by the so-called homology classes. Intuitively, if we focus on a canonical basis
of the vector space formed by the group of homology classes, we could think
of having one homology class for each topological feature in the image. For
example, if we think on the vessels in Fig. 1 (a) as solid tubes, there is one
connected component and two handles, that is one 0–dimensional homology
class and two 1–dimensional homology classes (algebraically independent). The
C&F method makes use of these concepts to remove the topological errors of
a given segmentation. That is, knowing the correct topology of the object to
be segmented, the method assures the elimination of the undesired homology
classes. This elimination is performed by an automatic evolution of the object’s
contour that is based on its homological information. The contour of the object
is implicitly represented as the zero level set φ : Ω → R where Ω is the domain
of interest and φ is the signed distance function. The method uses Persistent
Homology for the homology computation of the domain Ω. Persistent homology
is a technique for computing topological features of a given topological space,
which at the same time provides meaningful measurements of its topological
properties. Given a domain Ω and a function φ : Ω → R for each t ∈ R,
the persistent homology algorithm grows the sublevel set φ−1(−∞, t] from the
empty set to the entire domain. Throughout this process, the algorithm detects
the points (called critical points) in which homology changes (the number of p–
dimensional algebraically independent homology classes increases or decreases).

Once the critical points are computed, and supposing that the contour we are
segmenting is homeomorphic to a d–sphere, the C&F method makes use of the
concept of robustness [3]. Roughly speaking, given a homology class α ∈ H(O) of
an object O, its robustness ρφ(α) is a measure of how much φ needs to be mod-
ified to get rid of the topological feature represented by α. Formally, the robust-
ness ρφ(α) is the minimal r such that there exists an r–perturbation of φ on which
α disappears in the perturbed object h−1(∞, 0]. An r–perturbation, h of φ, is the
real-valued function h such that ‖h− φ‖∞ = maxx∈Ω|h(x)− φ(x)| ≤ r. The to-
tal robustness is defined as: Robk(O) =

∑n
α∈H(O) ρφ(α)

k − (maxα∈H(O)ρφ(α))
k,

where n is the number of homology classes in O. The evolution of a flow that
drives the contour C and its signed distance function φ towards the minimum to-
tal robustness allows the elimination of its homology classes. The final evolution
equation (considering for instance degree k = 3 robustness) is the following:

∂E
∂φ = 3

(∑
α∈H(O),cα �=cmin

δ(x− cα)
)
sign(φ(x))φ2(x) (1)

where δ is a Dirac delta function, cα is the critical point associated to a homology
class α ∈ H(O), and cmin is the critical point associated with the most robust
homology class (the only homology class we want to keep that is representing the
connected component of the object). In practice, δ is implemented as a Gaussian
with variance σ2. The effect of this evolution is the modification of the contour
within a small neighbourhood (defined by the Gaussian) of each critical point.
This modification leads to the elimination of the topological feature associated
to the corresponding critical point.



3 Methodology

By analysing segmentation results of the cerebral vasculature, one can realize
that most of the topological errors are due to kissing vessels that emerge from
poor or limited image resolution. The automatic detection of these errors is not
trivial, and to the best of our knowledge no effective solution is currently available
for their correction. Other topological errors such as disconnected components
or voids are easier to detect and correct using connected component algorithms.

Taking into consideration that the method described in Section 2 is designed
for the correction of topological errors, we could contemplate its application to
the automatic detection and correction of the kissing vessels in cerebral vascu-
lature segmentations. One example of the application of the C&F method can
be seen in Fig. 1 (b)-(d) where two kissing vessels are correctly removed after
applying C&F (critical points are represented as black dots). However, even if
the C&F method assures a correct topology of the result, the algorithm provides
a solution that is in many occasions far from the desired one. There are two main
reasons for that: First, the location of critical points does not correspond in gen-
eral with the location of the kissing vessel. Second, the evolution of the contour
within a predefined neighbourhood (determined by the variance of the Gauss
function that approximates the Dirac function in (1)) does not respect the cor-
rect geometry of the vascular tree (see Fig. 1 (c)-(e)). In Section 3.1 we propose
a new method in which, by including geometrical information of the vascular
tree within the C&F method, the localization of kissing vessels is drastically im-
proved. In Section 3.2, a correction framework that avoids the incorrect results
of the type of those shown in Fig. 1 (e) is proposed. The algorithm described in
[4] has been used for the initial segmentations.

(a) (b) (c) (d) (e)

Fig. 1. (a) Part of the cerebral vasculature. (b) - (c) Initial segmentations. (d) Correct
result and (e) incorrect result after applying the C&F method.

3.1 Detection Method

Simplicial Complexes and Filtrations. A topological space for which we
want to compute Persistent Homology can be represented using different struc-
tures. Simplicial complexes are convenient representations of topological spaces,
specially for computer implementations, consisting of a collection of simplices
that are glued together in a structured manner. A q–simplex in R

k is defined to
be a set of the form: {∑q

j=0 ajvj : 0 ≤ aj ≤ 1 for j = 0, . . . , q and
∑q

j=0 aj = 1}



where vj are affinely independent points. For example, a 0–simplex is a vertex, a
1–simplex and edge, a 2–simplex a triangle, and a 3–simplex a tetrahedron. Let
K be a simplicial complex. A filtration is a nested sequence of subcomplexes:
∅ = K0 ⊂ · · · ⊂ Kn = K. We may think of a filtration as a description of how
to construct K by adding blocks at a time. We can now focus in the topological
evolution of a filtration of complexes by the corresponding sequence of homology
groups. SinceKi−1 ⊂ Ki, the inclusion map defined by f(x) = x induces a homo-
morphism between the homology groups f∗ : Hp(Ki−1) → Hp(Ki). The nested
sequence of complexes corresponds to sequences of homology groups connected
by homomorphisms, 0 = Hp(K0) → Hp(K1) → · · · → Hp(Kn) = Hp(K), one for
each dimension p. Given a filtration, the persistent homology algorithm consid-
ers this last sequence and detects when a new homology class is born and when
an existing class dies as we proceed forward through the filtration [7]. Therefore,
the definition of the filter function φ : K → R, is crucial within this method. If
there are two simplexes whose inclusion creates a new homology class, the one
that is first introduced in the filtration will be selected as critical point. In the
C&F method, the filter function is defined by the signed distance function. The
main idea of the work presented here consists of obtaining additional geometri-
cal information that could guide the definition of a more appropriate filtration
scheme. Using this information, we create a geometry-driven filtration that gives
priority to points that belong to kissing vessels to be selected as critical points.

Geometrical Properties of Kissing Vessels. The first step for incorporating
geometrical information is to compute the skeleton of the segmented vasculature.
We use the algorithm presented in [2] for this purpose. The skeleton of a vascular
tree can be seen as a graph where the centerlines are edges and their intersections
are the vertices of the graph. The geometrical properties of the kissing vessels
are based on the following observations (see Fig. 2 (a)-(d)): (1) They correspond
with short centerlines in the vasculature skeleton, (2) its corresponding centerline
are often perpendicular to its neighbouring centerlines and (3) they often cause
drastic changes in the vessel radius with respect to its neighbouring centerlines.
Taking into account these observations, we define a kissingness measure for each
centerline c of the skeleton: KS(c) = (π(c) + α(c))/l(c), where: (1) π(c) =
1
n

∑n
i=1 (rc − ri)

2 depends on the radius of c and its neighbouring centerlines. rc
is the normalized radius of c and ri the normalized radius of its n neighbouring
centerlines, for i ∈ {1 . . . n}, (2) α(c) = 1

n

∑n
i=1 sin(θ(i, c)) depends on the angle

of c with its neighbouring centerlines, where i ∈ {1 . . . n} are the neighbouring
centerlines of c and θ(i, c) is the minimum angle between the centerlines i and
c, and (3) l(c) is the normalized length of c. The set of edges with maximal
kissingness value is defined as the suspicious kissing set.

Geometry-Driven Filtration. As mentioned before, our aim is to give prior-
ity in the filtration process to the points that are close to the edges that belong
to kissing vessels. Using the set of suspicious kissing edges, the idea consists in
decreasing the values of the signed distance function around them, and then use
this modified signed distance function as the filter function for the persistent



homology algorithm. Having smaller filter values around the suspicious kissing
edges, makes the points around them more probable to be selected as critical
points (because they will be considered earlier in the persistent homology al-
gorithm). For each suspicious kissing edge, we define a spring force [12] that
acts to pull the contour toward the kissing edge middle point. Then the level
set function of the initial segmentation is evolved under the influence of these
forces (Fig. 2 (c)-(e)). This evolution is performed using the topological con-
trol evolution presented in [10], which guarantees the preservation of the initial
contour’s topology. Once this modification is done, the persistent homology of
the domain delineated by the resulting contour can be computed following the
filtration defined by the modified signed distance function. The set of critical
points obtained after this computation are the points detected as kissing vessels.

Algorithm 1: Kissing points detection method
Require: Signed distance function φ, suspicious edges set S, spring forces Fs(x) = 0

for each edge ej ∈ S do
xc ←MiddlePoint(ek)
for each point xd ∈ ek do

Fs(xd) = Fs(xd) + d(xc, xd) � Spring forces Fs, Euclidean distance d

while No topological change occurs do � Contour evolution

Evolve φ following ∂φ
∂t (x, t) = Fs(x)

return CriticalPoints← PH(φ) � Persistent Homology PH

3.2 Correction Framework

Once the kissing vessels are detected, we could correct the topological errors in
the mesh by minimizing the energy term in Equation (1). However, the correction
result depends on the width of the approximation of the Dirac delta function,
that is the neighbourhood of the critical point on which the evolution will have
effect. Due to the wide variety of kissing vessel’s shapes and locations, their
automatic correction leads to geometrically incorrect results (Fig. 2 (f)-(h)).
We propose here a semi-automatic correction framework in which the user can
iteratively modify the segmentation results via a simple, easy-to-use graphical
interface. Once the critical points have been automatically detected, instead of
using a predefined neighbourhood (as in C&F), we use adjustable ellipsoids to
define the neighbourhood for Equation (1). For each critical point, we create an
ellipsoid centred at it. The framework allows the user to modify its axes, position
and inclination. After the user has finished adjusting it to the concrete kissing
vessel, the method automatically eliminates the kissing vessel applying Equation
(1) within the neighbourhood defined by the ellipsoid (Fig. 2 (i)-(j)).

4 Results

The proposed method was compared with the C&F method using twenty pa-
tients scanned with 3D rotational X-ray angiography. Diagnostic images were
acquired as part of the @neurIST project [1]. The persistent homology algo-
rithm that is core to the C&F method requires O(m3) operations in the worst



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. (a) Initial segmentation and (b) its skeleton. (c) Kissing vessel (d) its skeleton
(the red centerline is suspicious) and (e) the signed distance function after the spring
forces evolution. (f) The influence of the Gaussian for σ2 = 0.4. (g) Segmentation result
and (h) correction result for σ2 = 0.1. (i) Ellipsoidal neighbourhood. (j) Correction
result. (k) Points detected with the C&F method and (l) with the proposed method.

Fig. 3. Segmentation results. Detection, correction rates and number of initial kissings.

case, where m is the number of simplices. The inclusion of the geometrical fil-
tration takes O(m) and hence introduces negligible extra computational cost.
The initial segmentations and the percentage of correctly located kissing ves-
sels for both methods are shown in Fig. 3. The rate increases from 42.92% with
the C&F method to 81.80% with our approach. An example is shown in Fig. 2
(k)-(l), where our method allowed a correct location of every kissing vessel and
using the C&F method only two out of four were correctly located. With respect
to the correction method, we run the C&F algorithm for three different values



of σ = 0.1, 0.5, 0.9. Best results were obtained for σ = 0.5 with only 6.7% of
the kissing vessels appropriately removed. We increased the correction rate to
68.77%. The average number of kissing vessels per image is 21.8. This number
gives an idea of how tedious manual correction of such artefacts could be in
contrast with the proposed automatic detection and semi-automatic correction.

5 Conclusions

We propose a new approach, combining topological and geometrical information
of the vascular tree, which is able to detect in a high percentage of cases the
kissing vessel errors. The proposed approach outperforms the state-of-the-art
methods dealing with topological noise removal. A semi-automatic framework
for the correction of such errors is also introduced, significantly reducing the
user interaction time with respect to manual correction.
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