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Abstract. In this paper we design a new family of relations between
(co)homology classes, working with coefficients in a field and starting
from an AT-model (Algebraic Topological Model) AT(C) of a finite cell
complex C' These relations are induced by elementary relations of type
“to be in the (co)boundary of” between cells. This high-order connec-
tivity information is embedded into a graph-based representation model,
called Second Order AT-Region-Incidence Graph (or AT-RIG) of C. This
graph, having as nodes the different homology classes of C, is in turn,
computed from two generalized abstract cell complexes, called primal
and dual AT-segmentations of C. The respective cells of these two com-
plexes are connected regions (set of cells) of the original cell complex C,
which are specified by the integral operator of AT(C). In this work in
progress, we successfully use this model (a) in experiments for discrimi-
nating topologically different 3D digital objects, having the same Euler
characteristic and (b) in designing a parallel algorithm for computing
potentially significant (co)homological information of 3D digital objects.
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1 Introduction

(Co)homology (see for instance [33]) provides valuable information about topo-
logical spaces, by observing sets that intuitively have no (co)boundary, but are
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on the (co)boundary of other sets. These sets are representative (co)cycles of
a (co)homology hole, seen as an equivalence class. Algebraic (co)homological
information with coefficients in a field could be defined as the set of processed
and structured linear algebraic data describing in some sense its (co)homology
classes and the relations between them. We talk about homology and coho-
mology information as a whole due to the fact that homology and cohomology
classes are measured using different strategies (delineating or cutting holes) for
detecting homological holes over the initial topological data. A simple example
of (co)homology information is provided by the numerical topological invariants
called Betti numbers. For instance, if X is a cell complex embedded in R?, Betti
numbers [y, 51 and (2 respectively measure the number of different connected
components, tunnels and cavities of X.

Roughly speaking, (co)homotopy holes of objects (those related to delin-
eating or cutting generalized “parametrized and oriented closed curves”) are
theoretically attainable from homology’s ones [23], but these methods have an
enormous complexity in time and space [4]. An easier relation between homology
and homotopy is given by the Euler characteristic (see [1]), defined in local terms
as the alternate sum of the number of cells in each dimension. This number is
the most simple example of homotopy invariant, that can also be obtained from
the global homological information provided by the Betti numbers.

Now, (co)homology information of X is not reduced in general to that pro-
vided by Betti numbers. For example, a torus 7" and a three-dimensional sphere
with two handles S have the same Betti numbers (and, consequently the same
Euler characteristic) but they are not (co)homologically equivalents. The two
tunnels of T are related to its cavity in a much more “stronger” way that the
tunnels of S are with regards to the corresponding cavity.

We progress here in discovering the homotopy nature of homology, by cre-
ating two (non-unique) abstract cell complexes, called primal and dual AT-
segmentations, both with significantly smaller number of cells than the original
geometric cell complex C' and from which it is possible to detect topological
relationships between (co)homology classes of C' with coefficient in a field F.
We construct the primal and dual segmentation with the help of an algebraic-
topological model AT(C) of C (or AT-model for short) [17,18,34,35]. Using the
bounding functions of a primal and dual AT-segmentations and the relationship
between cells “to be in the boundary of”, we are finally able to compute a graph-
based model P(AT(C)), called AT-model Region-Incidence-Graph (or, AT-RIG,
for short), whose nodes are the different homology classes of C.

We successfully use this technique in a set of experiments for discriminating
topologically different 3D digital objects with the same Euler characteristic. We
also use this modus operandi in designing a parallel algorithm for computing
potential high-order homology statistics for a 3D digital objects. In a near future,
we intend to study the corresponding degrees of independence with regards the
AT-model chosen and of homology and homotopy invariances of an AT-RIG.



1.1 Related Works

Focusing on homotopy representation models of digital objects and images, there
are numerous works that arise from sources of digital topology [2,21,25], contin-
uous or cellular topology [9,20,26] and nD shape search with three clearly differ-
entiated notions: Reeb graphs [5,13], skeletons [6,36,41] and boundary represen-
tations [3,16,28]. Relative to the intermediary step of homological computation
of cell complexes, there is plenty of literature based on a pure algebraic perspec-
tive devoted to this issue. The classical method is based on the diagonalization
of cell-incidence matrices to Smith normal form (SNF) [33]. Some advances in
the computation of the SNF have been achieved [10], but the most successful
approaches consist of reducing the number of cells in the complex using discrete-
vector-field dynamics (Discrete Morse theory [12]) before computing the SNF
for the small resulting cell complex (see, for instance, [7,14,19,22,32,35,39,40]).
This paper goes beyond homological computation and designs (sequential and
parallel) algorithms for computing a new graph-based representation that allows
to discriminate homologically different geometric objects embedded in R™ hav-
ing the same Betti numbers. In this sense, AT-segmentation theory extend and
greatly improve both the algebraic model called Algebraic-Topological model
[17,18,34,35,37] and the combinatorial model called Homological Spanning For-
est (HSF, for short) [8,30,31,38] in this search of topological representations
within digital image context.

2 Cell Complexes and Algebraic-Topological Models

We work in this paper with cell complex representations (composed of cells and
bounding relations between them), that allow to model, for example, not only
an n-dimensional digital object at sub-n-xel level but also significant algebraic
(co)homological information (with coefficient in a field F).
First at all, we provide a slightly modified version of the classical abstract
cell complex notion (see [24] for a survey).
We say that C = (C, B, dms) is an abstract cell complex (or ACC, for short)
if:
— C = {Cy}qenuqoy is a finite set with a gradation dms : C — N{J{0} defined
by dms(c) = ¢ for ¢ € Cy;
- B:(C xC — NU{0} is a map such that satisfies the following condition:
B(e, ') # 0 implies ¢ € Cy_q, ¢ € Cy.

We refer to the elements of C' as cells and to B(c, ¢’) as the bounding function
of the ACC C applied to the couple (¢, ). If we extend the bounding function
of the ACC in an antisymmetric and transitively way, we recover the classical
notion of ACC.

The connectivity-graph G(C, B,dms) = (V, E) of an abstract cell complex
(C, B,dms) is the graph whose set of nodes is C' and an edge {c,c'} € E if
B(e, ) or B(c, ¢) is different from zero.

Now, let us define the (algebraic) notion of geometric cell complex. We say
that C = (C, k,dms) is a Lefschetz complex [27] if:



— C = {Cy}qenuqoy is a finite set with a gradation dms : C' — N{J{0} defined
by dms(c) = ¢ for c € C;

— £ :C x C — Fis a map such that x(c, ¢’) # 0 implies ¢ € Cy_1, ¢’ € Cy. For
any c,c” € C we have ), k(c,c)r(c, ") = 0.

We refer to the elements of C' as cells and to x(z,y) as the incidence coefficient
of z, y.

In fact, an equivalent definition of a Lefschetz complex is that of a free chain
complex (F[C],d¢) with boundary O¢c : F[C] — F[C] defined on generators by
do(c) = Y pec kld c)d. Tts coboundary dc : F[C] — F[C] is defined on gener-
ators by dc(c) = > co ke, /). The Lefschetz homology (resp. cohomology)
of (C, k,dms), denoted H(C,d¢) (resp. H(C,d¢)) is the homology of the chain
complex (F[C],0) (resp. (F[C],d)). We are interested here in Lefschetz com-
plexes satisfying that for any ¢, ¢’ € C the incidence coefficient k(c, ¢’) is either
zero or +1 of F. These structures are simply called here geometric cell com-
plexzes. The identity function 1¢ : C — C is defined by 1l¢(c) = ¢, Ve € C.
Associated to a geometric cell complex (C, k, dms), there is a bounding function
B:C x C — NU{0} defined by B(e,c) =1 if (e, ') # 0 and B(e,¢’) =0 in
the rest of cases. If ¢ € C and R is a set of cells of (C,,dms), we define the
bounding function B(c,R) = ..y Blc, ') (resp. B(R,c) =) . B(c, ).

From now on, we use the triplet (C, 9, dms) for denoting a geometric cell
complex. We use the notation ¢’ € f, being f € F[C], for indicating that the cell
¢’ is involved as a non-null summand in this linear combination.

It is straightforward to specify geometric cell complexes structures modeling
n-dimensional digital images at sub-n-xel level. In fact, we are mainly inter-
ested in running the designed algorithms for “cellularizations” of digital objects
and images, in order to progress in topological acuity and representation within
digital image context.

Now, we are able to define an algebraic-topological model (or AT-model, for
short) (C, 9, ¢, dms) of a geometric cell complex (C, 9, dms) (see [17]). The homo-
morphism ¢ : F[C,] — F[Cy11], called integral operator, satisfies the following
three conditions: (a) ¢p¢ = 0; (b) 90 = 9; (c) pO¢ = ¢. From this data, we can
construct an explicit homology equivalence between the chain complex (F[C], 9)
and a free chain complex with null differential (which, obviously, is isomorphic
to the homology H(C,0)). The germ idea of the AT-model comes back to the
original notion of chain contraction exhaustively used by Samuel Eilenberg and
Saunder Mac Lane in their works of homological computation (see, for example,
[11]) in the fifties of the twentieth century.

3 AT-Segmentations

In this section and with the help of an AT-model (C, 9, ¢,dms), we construct
two special partitions of C' into connected regions from which it is possible to
compute “strong” topological relations between homology classes, derived from
the elementary relation “to be in the boundary of”. From now on, we work
with F = Zs, in order to avoid the use of signs in the AT-model construction.



Let us emphasize that all the study done here can be correctly developed for
any ground field.

Some terminology relative to primal regions of the primal AT-segmentation
we want to construct is necessary. The dimension of a primal region R composed
by cells of C' of dimension ¢ (0 <t < n — 1) and, possibly, of dimension ¢ + 1
is dimP"(R) = (t,t + 1). Its criticality number crt(R) is given by the difference
between the number of t-cells and (¢ + 1)-cells. All the regions of a primal AT-
segmentation have criticality number greater or equal to zero. A primal region
R with crt(R) > 0 is called homologically essential. If crt(R) = 0 is called
homologically inessential.

Algorithm 1 uses as input a filtration of the geometric cell complex C. It is
possible to design an algorithm for computing a primal AT-segmentation inde-
pendent of this restriction. Such algorithm is based on the construction of hier-
archical “spanning forests” within the global connectivity graph of C as ACC.
There is no space here to address this question in detail. The reference [37] can
be of help in the planning of such algorithm.

Figure 1 shows a primal AT-segmentation over an ACC version Cell(O) of a
2D digital object.
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Fig. 1. (Left) ROI consisting of the set of black pixels. The implicit cellularization of
the ROI -using 8-adjacency and being the 0-cells the square physical pixels- is superim-
posed. (Center) Vectors of cracks involved in the AT-model construction of Algorithm 1
are highlighted. (Right) The associated AT-segmentation of the ROI. There are three
regions. Region A is drawn in red and is composed by all the 24 (Ng') 0-cells and 23
(N{*) 1-cells (a subdivision of the spanning tree of the 0-cells). Region B is drawn in
yellow and is composed by 18 (N{) 1-cells and 16 (NZ) 2-cells. Region C is drawn in
green and its tree has one 1-cell and one 2-cell (thus, it is inessential). Regions A and
B are homologically essential, due to the fact that crt(R) = Nff — N&, =1 > 0, for
(R,7) = {(4,0),(B,1)}. In fact, A detects one 0-dimensional homology class and B
two 1-dimensional holes. (Color figure online)

Let us note that the connectivity graph of regions of the primal AT-segmenta-
tion HSP"(C) is not necessarily a tree. For each critical cell e;i , (1 <qg<m)
its corresponding primal segmentation region S T(eq ) of dimension (dg,dq + 1)

has a criticality number crt(S)" (eg )) greater than zero. The rest of the primal
segmentation regions have a criticality number equal to zero.



Algorithm 1. [primal AT-segmentation]

Input: A geometric cell complex C := {C,8,dms}. C is a list with all the cells of C ordered
by increasing dimension c?, .. 0217 ci, e c%27 R AN c?n. Here, dms(c?) = k, Vk,j7 and
Z1gq§n£q = {. Let us also use the cell ordering ci‘ = Y ck by The boundary operator

a‘F[q,---,ci] is denoted by 9;.

1:
2:

13:

14:
15:
16:

17:

19:
20:
21:
22:

23:
24:
25:
26:
27:
28:

29:
30:
31:

32:

HY — 0; K — 0; T& — 0; SE™ — 0;
for £k =0 ton do
for j =1 to ¢; do
i—J+ Eq<k éq§
¢i—1(ci) «— 0;
Ri «— {ci}s
8P — SPT U{R;}. Let us denote by SP"(cq) the region of S’" containing the cell ¢,
(1 < ¢ <4). In this way, S{" is handled as the union U, ., <;{S]"(cq)}-

Bnd; <+ {e € 9;(ci)}; > Boundary of the current cell
Ci — ¢i + ¢i—10i(ci); > Potential cycle associated to ¢;
Bnd; — {e € 9;(¢;)}; > Algebraic boundary of ¢;

B;;ii —{e € (1c + 0ipi—1)(c), for some ¢ € Bnd;}; > Combinatorial boundary of ¢;
Ni — {e € Bnd;: dimP"(S7"(e)) = (dms(ci) — 1,dms(ci)) A crt(S¥"(e)) = 0};
> Homologically inessential regions in the boundary of ¢;

H? — H? | U{E); ICZ’ — ICZLI U{e:i }; ‘_’7;’ — ._’71‘111 U{e:i }s > Homology generators,
combinatorial kernel, critical cells
if 9;(¢;) == 0 then > Equivalent to Bnd; ==

for r =1 to i do
diler) — di—1(cr);
else > In case in which ¢; does not generate a cycle
Ji < Bnd; N ..7i¢
Ji «— BndiN jf
8P (i) — 8P (cq) Ueejiu/\fi SP"(e); > Updating the primal partition
for e € J; UN; do
S (e) — 8P (ei)s
Choose one of the cells e € J; > Updating AT-model
(;S(e) — ¢4
é(c) « 0 for each ¢ € IC?LI \ {e};
e — e+ ¢i—10i(e);
for g =1toi—1do
¢i(cq) « (¢i—1 + (idc; — ¢i718i—1)d~3(idci —0i—1¢i-1))(cq), Yeq € C;

'H? — H? \{e,a}; > Updating homology generators
IC;? — IC?’ \ {e}; > Updating combinatorial homology kernel
ji‘f’ — jid’ \ {e,ci}; > Updating set of critical cells

BPT[CI(R,R') — #{c' € R':dms(c') =t A B(R,¢') = X cpBle, ) # 0}
VR, R’ € 8", with dimP"(R) = (t — 1,t) and dimP"(R') = (t,t +1) (1 <t < mn).
> Specifying primal AT-segmentation bounding function

Output:

- An AT-model (C, 9, ¢¢,dms) and a combinatorial basis (set of critical cells) specified by
Jf and ordered by increasing dimension {e(lil yoo,edmY (with dms(egq) =dg, 1< qg<m)
for the homology H(C, ¢) given by 'HZ’.

- An abstract cell complex HSP"(C), called primal AT-segmentation of C, whose set of cells
is the partition in regions S} of C and its bounding function is BP"[C].




From this output, it is possible to define a dual AT-segmentation HS%(C)
in this simple manner:

oy oy . c e L. —=dl
— [Initial dual AT-partition]. We consider as initial dual AT-partition S, a
refinement of the primal segmentation partition S;", in which each critical cell
(as sets formed by one element) is considered as a new region of the partition.

Let us note that all the regions of 32” have now zero as criticality number,
excepting the sets formed by one critical cell, which have one as criticality
number.

— [Updating initial dual AT-partition]. For each critical cell e;lq € HY

(1 < ¢ <m), let us construct the region of the dual segmentation SZ”(e;lQ) =
{eg"} Ucea(ezq) S} (¢) of dimension dim® (82”(63“)) = (dy — 1,d,). After
updating the regions of the partition corresponding to the critical cells, the
rest of regions of g‘zl remain unaltered. The resulting partition describes at
set level the desired dual AT-segmentation and it is denoted by SE”~ Let us
emphasize that the ranks (that is, the difference between the number of cells
of C and the number of regions of the partition) of the primal and dual AT-
partitions can be different. This is mainly due to the fact that, in general,
there is no one-to-one relation between critical cells and regions of the primal
or dual AT-segmentations.

— [Dimension and Bounding Function]. The dimension of a region R € S,
having t-cells and, possibly ¢ — 1 cells is dim®(R) = (t,t — 1). Its bounding
function is defined by B¥[C|(R,R') = #{c€ R: dms(c)=t A B(c,R) =
Ywem Ble,d) #0} VR, R € 8, with dim®(R) = (t,t — 1) and dim¥
(RYy=(@t+1,t) (1 <t<n).

At the end of this process, we get a dual AT-segmentation HS%(C) =
(S, BYC], dim™).

Let us note that the connectivity graph of regions of H.S%(C) is not neces-
sarily a tree.

We are now ready to build a second order AT-RIG associated with the primal
and dual AT-segmentations. AT-RIGs measure all the relationships between two
homology classes of dimension ¢ and t+1, V0 < t < n. Let us write in pseudocode
the construction of the second order primal AT-RIG (see Algorithm2). The
construction of the dual one is completely analogous.

Finally, the second order AT-RIG G1(AT(C)) is the graph whose nodes are
the different homology classes (represented by their corresponding critical cell)
and whose edges are those belonging to both primal and dual AT-RIGs.

4 Operations with AT-Segmentations

Given a primal (or dual) AT-segmentation, it is possible to create a new one
changing only the participation of two cells. This operation is called crack trans-
port and is exhaustively used in the parallel methods for computing homology
information designed in [38].



Algorithm 2. [Second order Primal AT-RIG]

Input:
— an AT-model (C, 0y, ¢¢, dms) and a combinatorial basis (set of critical cells) ordered
by increasing dimension {e{!,..., elm} (with dms(egq) =dg, 1 < g < m) for the

homology H(C, ¢).
— a primal AT-segmentation HS?"(C) = (S]", BP"[C], dim®")

1: fori=1tom do

2: v; — eli; > the nodes of the RIG are the critical cells

3: N(v;) <0 > The set of all the neighbors of the region of the primal
AT-segmentation containing v;

4: Ng(vi) — 0 > the set of neighbors of v; in the second order AT-RIG

5: for j=1to¢ do

6: if BP"[C](S)" (vs),S)" (vi)) # 0 then

7: N(v;) «— N(v;) U{v;};

8: if BP"[C](S?" (v), SV (vi)) = #{d; — cells € 8" (v;)} then

9: Ns(v;) < Ns(vi) U{v;};

10: B [Cl(vy,v:) « 1;

11: else

12: Bffg[C](’Uj, ’Ui) —0
Output: The region-incidence-graph GY"(AT(C)) associated to the abstract cell
complex ({ef*,... edm}, BY;,[Cl, dms).

Algorithm 3 shows the admissible Crack Transport Algorithm. Crack trans-
ports can be used for AT-segmentation parallel computation.

Algorithm 3. [Admissible Crack Transport Algorithm)].

Let HS(C) be a primal AT-segmentation of a geometric cell complex C. Let Ry
and R2 be two regions of dimension (k — 1, k) and (k, k + 1) respectively, and ¢ € R4
and ¢’ € Ra be two k-cells. Let us denote by HS(C) the segmentation HS \ {c,c’}.
The new segmentation [c < ¢/|HS(C) resulting from the initial one, assigning c to
Rz and ¢’ to Ry is a new primal AT-segmentation if (a) c is incident to Ra, c is
incident to R1;(b) there is at least a pair (S1,.52) of regions of HS(C) with S C Ry
(dimP"(S1) = (k —1,k)) and Sz C R (dimP"(S —2) = (k, k + 1)), satisfying that:

— #(S1Ndc) =1 and #(S; Ndc') = 1;
— #(S2N6c) =1 and #(S2 Ndc’) = 1;
- B[C](S1, 52) > 1.

In Fig.2, an internal (within the ROI) crack transport defined as an
admissible interchange of cells between “connected” homological regions of the
AT-segmentation of Fig. 1 is shown.

Another example of application of crack transport is shown in Fig. 3.
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Fig. 2. (Left) AT-segmentation of Fig. 1. 1-cells involved in the internal crack transport
are surrounded by black closed curves; (Right) Result of the crack transport. There
are now three 1-2 regions B, B’, C being the first two ones homologically essentials
(B8 =1=p5" l). Both AT-segmentations present the same second order AT-RIG: a
tree with three hole-nodes (ao, 81, 'yl), connecting a® with 4! and ~'.

Fig. 3. A ROI composed of three segments parallel to the axis (a total of 5 black
voxels). Points represent 0-cells (voxels), triangles 1-cells, squares 2-cells and stars 3-
cells. Two AT-segmentations of the whole image that embeds the ROI are drawn. The
AT-segmentation on the right is the result of several crack transport operations on the
AT-segmentation on the left. Obviously, both have the same trivial AT-RIG: a trivial
tree composed by one node (0-dimensional homology class of the image)

5 AT-RIG: Homological Tool or Topological Invariant?

The proof of homology and homotopy invariance of the AT-RIG is an issue
out of the scope of this paper. The first part of this section is employed in
supporting the thesis that the AT-RIG notion allows us to discriminate two
non homologically equivalent objects having the same Betti numbers. Different
instances (configurations spheres with handles, Menger sponges, torus, double
torus, etc) are successfully examined with specific AT-segmentations. We only
show here the example of AT-segmentations of simple cellular versions of the
torus and the sphere with two handles.



On the other hand, we have only implemented software that calculates AT-
segmentations (based on AT-models) but not AT-RIGs. Due to this reason, we
expand the second part of this section to evaluate AT-segmentations of digital
objects with known homology.

Given a torus (see Fig.4), Fig.5(a) shows a primal AT-segmentation,
Fig.5(b) an associated dual AT-segmentation, Fig. 6(a) its primal AT-RIG and
Fig.6(b) its dual AT-RIG.

(a) Primal segmentation (b) Dual segmentation

Fig. 5. Torus primal and dual segmentations

In Fig. 7, given a cell model of a sphere with two handles, we provide a primal
AT-segmentation Fig.7(a), an associated dual AT-segmentation Fig.7(b), its
primal AT-RIG Fig. 8(a) and its dual AT-RIG Fig. 8(b).

Figure9 shows an example of partition of a primal AT-segmentation of the
Menger Sponge of recursion depth 2 [29], computed from an AT-model. The left
side shows a Menger sponge with 400 0-cells, 1224 1-cells, 1056 2-cells and 312
3-cells. On the right side, a primal AT-partition is shown. The segmentation
region of dimension (0,1) is shown in red. The regions of dimension (1,2) and
(2, 3) are shown in yellow and blue respectively. The second order primal AT-RIG
is a star-type tree having as center the 0-dimensional homology generator (red
region) and as leafs the 1-dimensional 81 homology classes (yellow regions R with
crt(R) > 0). The blue regions do not appear in the second order primal AT-RIG
due to the fact that their criticality number is zero. A similar example is shown
in the lower part of Fig. 9 with a double torus. This example is composed by 714
0-cells, 1728 1-cells, 1280 2-cells and 268 3-cells. The second order primal AT-RIG
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(a) Primal AT-RIG (b) Dual AT-RIG

Fig. 6. AT-RIGs for a torus

(a) Primal segmentation (b) Dual segmentation

Fig. 7. AT-segmentations for a sphere with two handles

(a) Primal AT-RIG (b) Dual AT-RIG

Fig. 8. AT-RIGs for a sphere with two handles

for this example has a 0-dimensional homology generator (red region) connected
to 4 1-dimensional homology classes (yellow regions R with crt(R) > 0) and
all of them connected to a single 2-dimensional homology class representing the
cavities (blue region R with crt(R) > 0).



Fig. 9. (Left) A Menger Sponge of recursion depth 2 and a double torus (Right) Result
of their respective primal AT-partitions, where the region of dimension (0, 1) is colored
in red, (1,2)-regions in yellow and (2, 3) regions in blue. (Color figure online)

6 Conclusions

In this paper, a new topological tool, called second order AT-RIG, for distin-
guishing cell complexes beyond Betti numbers or Euler characteristic is algorith-
mically designed. This tool allows to discover relationships between homology
classes of dimension differing in one. The concise experimentation carried out
supports the hypothesis that the AT-RIG is a well-defined notion and that these
relations are “up to homology”. To theoretically prove these results would sup-
pose a true revolution in the field of the topological representation. Anyway,
negative answers would still mean a step forward because we have a useful topo-
logical tool properly working within an AT-model context.
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