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Abstract

The Modularity Theorem states that all rational elliptic curve arise from
modular forms. In 1995, Andrew Wiles proved a special case of this theorem
(then known as the Taniyama–Shimura conjecture) for semistable elliptic
curves, completing the proof of Fermat’s Last Theorem after some 350 years.
Later, Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor
extended Wiles’s techniques to prove completely the Modularity Theorem.
In this work we explain a complex analytic version of this notable theorem.

Translation to Spanish

El Teorema de Modularidad afirma que todas las curvas eĺıpticas racionales
surgen de formas modulares. En 1995, Andrew Wiles probó un caso especial
de este teorema (entonces conocido como la conjetura de Taniyama–Shimura)
para curvas eĺıpticas semiestables, completando aśı la prueba del Último
Teorema de Fermat después de unos 350 años. Más tarde, Christophe Breuil,
Brian Conrad, Fred Diamond and Richard Taylor extendieron las técnicas
de Wiles para probar completamente el Teorema de Modularidad. En este
trabajo nosotros explicamos una versión anaĺıtica compleja de este notable
teorema.
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Symbols

Z set of integer numbers

Z+ set of positive integer numbers

Q set of rational numbers

R set of real numbers

C set of complex numbers

C∗ set of nonzero complex numbers

Ĉ Riemann sphere

H upper half plane

D unit disc

Re z real part of a complex number z

Im z imaginary part of a complex number z

|z| absolute value of a complex number z

D(z, ε) {w ∈ C | |w − z| < ε}
Ḋ(z, ε) {w ∈ C | 0 < |w − z| < ε}
D(z, ε) {w ∈ C | |w − z| ≤ ε}
∅ empty set

int(A) interior of a subset A

A′ derived of a subset A

A clousure of a subset A

Y (Γ) noncompact modular curve Γ\H
X(Γ) compact modular curve Γ\H∗ (H∗ = H ∪Q ∪ {∞})
Ak(Γ) set of automorphic forms of weight k with respect to Γ

Mk(Γ) set of modular forms of weight k with respect to Γ

Sk(Γ) set of cusp forms of weight k with respect to Γ

OX(U) set of holomorphic functions on U

MX(U) set of meromorphic functions on U

M(n)(X) set of meromorphic differentials on X of degree n

Div(X) set of divisors on X

ix



x Symbols

For a commutative ring R with unity we write

M2(R) = set of square matrices of degree 2 with coefficients in R,

GL2(R) = {α ∈ M2(R) | det(α) ∈ R∗},
SL2(R) = {α ∈ M2(R) | det(α) = 1},

where R∗ is the group of invertible elements in R.



Introduction

Cubum autem in duos cubos, aut quadratoquadratum in
duos quadratoquadratos, et generaliter nullam in infinitum
ultra quadratum potestatum in duos ejusdem nominis fas est
dividere: cujes rei demonstrationem mirabilem sane detexi.
Hanc marginis exiguitas non caperet.

Pierre de Fermat, 1637

The French mathematician Pierre de Fermat (17 August 1601, Beaumont-
de-Lomagne, France − 12 January 1665, Castres, France) wrote this note in
the margin of his copy of Diophantus’s Arithmetica stating that the equation

xn + yn = zn, n ∈ Z+, (1)

has no solutions in positive integers if n is greater than 2. He also claimed
to have a marvelous proof of this statement, but this was never published
(the previous note was published in 1670 by his older son after his death).
This statement became known over time as Fermat’s Last Theorem (FLT),
since it was the last of Fermat’s asserted theorems to remain unproved.

Figure 1: Pierre de Fermat

11



12 Modular forms

Let (FLT)n denote the following statement:

The equation (1) has no solutions in positive integers.

It is easy to prove that (FLT)n implies (FLT)kn for any positive integer k,
so it suffices to prove

(FLT)4 and (FLT)` for any prime ` > 2,

to conclude that Fermat’s Last Theorem is true. Fermat proved (FLT)4

by showing that the equation

x4 + y4 = z2

has no solutions in positive integers. Its proof can be consulted in [vdP96, p.3].
As a consequence, (FLT) reduced to the following question:

Is (FLT)` true for any prime ` > 2 ?

History of Fermat’s Last Theorem

During the next three centuries (18-20th), giving an answer to this question
would become one of the most difficult mathematical problems to resolve.
The first complete proof of the case (FLT)3 was given by Gauss [IR90, p.284]
(Euler gave a proof of (FLT)3 in 1753, but this contains an alleged error).
Gauss’s proof leads to a strategy that succeeds for other values of ` as well.
Peter Dirichlet and Adrien Legendre proved independently (FLT)5 in 1825,
and Gabriel Lamé settled (FLT)7 in 1839.

The work of Sophie Germain

In 1823, Sophie Germain proved that if q = 2` + 1 is also prime number,
then the equation

x` + y` = z` (2)

has no solutions in positive integers with ` - xyz. Germain’s theorem was
the first really general result on Fermat’s Last Theorem, since the previous
results only considered Fermat’s equation for a specific exponent.

At this point, the study of Fermat’s Last Theorem was divided into two
cases,

- the first case involved showing that the equation (2) has no solutions
in positive integers with ` - xyz, and

- the second case involved showing that the equation (2) has no solutions
in positive integers with ` |xyz.



Introduction 13

The proposed proof of Gabriel Lamé

On 1 March, 1847, Lamé informed the Parisian Académie des Sciences that
he had resolved the general case. The basic idea of his proof consisted in
working with cyclotomic integers,

Z[ζ`] = {a0 + a1ζ` + · · ·+ a`−2ζ
`−2
` | ai ∈ Z}, where ζ` = e2πi/`.

Using these numbers, we can write

x` + y` = (x+ y)(x+ ζ`y)(x+ ζ2
` y) · · · (x+ ζ`−1

` y),

and therefore, Fermat’s equation assumes the form

(x+ y)(x+ ζ`y)(x+ ζ2
` y) · · · (x+ ζ`−1

` y) = zn.

As this product of numbers without common factors (assume gcd(x, y) = 1)
is an `-th power, Lamé thought that each number would be an `-th power
(he implicitly assumed that unique factorization into products of primes also
held for cyclomotic integers, but Z[ζ`] is a UFD if and only if ` < 23) and
proceeded with an argument showing necessarily one of x or y to be zero.

The work of Ernst Kummer

The mathematician Ernst Kummer formalized this argument of Lamé.
He began studying the ideal class group of Q(ζ`), which is a finite group
that measures how far Z[ζ`] is from being a unique factorization domain
(for example, Z[ζ`] is a UFD if and only if h` = 1, where h` denotes the
order of the ideal class group of Q(ζ`)). Between 1847 and 1853, he published
some masterful papers. In these papers he defined regular prime numbers
(a prime number ` is called regular if ` - h` ; otherwise, ` is called irregular)
and proved the following theorem:

Theorem 0.1 (Kummer). Let ` be a odd prime number. Then

1. (FLT)` is true if ` is regular,

2. ` is regular if and only if ` does not divide the numerator of Bi for any
even 2 ≤ i ≤ (`− 3)/2, where Bi are the Bernoulli numbers,

z

ez − 1
=
∞∑
n=0

(Bn/n!)zn.

The unique inconvenient of this result is that there exist infinitely many
irregular primes (and therefore, Fermat’s Last Theorem was not proved).
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Computational studies

In 1954, Harry Vandiver used a SWAC computer to prove

(FLT)` for all primes ` up to 2521.

By 1978, Samuel Wagstaff had extended this to all primes ` less than 125.000.
Before Wiles, (FLT)` had been proved for all primes ` less than four million.

Taniyama–Shimura conjecture

On the other hand, in the middle of the 20th century, the Japanese mathe-
maticians Yutaka Taniyama and Goro Shimura observed a possible relation
between two apparently distinct branches of mathematics, elliptic curves
and modular forms. This possible relation was formalized later by Shimura,
giving rise to what we know now as Modularity Theorem (then known as
Taniyama-Shimura conjecture):

All rational elliptic curves arise from modular forms.

Ribet’s theorem for Frey curves

In 1985, Gerhard Frey observed a link between Fermat’s equation and
the modularity theorem (then still a conjecture). If there exist positive
integers a, b, c such that

a` + b` = c`,

then the semistable elliptic curve (it has square-free conductor)

y2 = x(x− a`)(x+ b`) [Frey curve]

would have such unusual properties that it was unlikely to be modular.
A year later, Kenneth Ribet proved that this curve is definitely not modular.
His strategy consisted in showing that if the Frey curve is associated to
a modular form, then it must be associated to one of weight 2 and level 2.
No cuspidal eigenforms of this kind exist, giving the desired contradiction.

Wiles’s proof of Fermat’s Last Theorem

The British mathematician Andrew Wiles published in 1995 a proof of the
Modularity Theorem (then still known as the Taniyama–Shimura conjecture)
for semistable elliptic curves [Wil95, TW95]. Due to the previous works
of Frey and Ribet, the Modularity Theorem for semistable elliptic curves
implied Fermat’s Last Theorem, since if there exist positive integers a, b, c
such that a` + b` = c`, then the semistable elliptic curve

y2 = x(x− a`)(x+ b`)
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would not be modular, contradicting the Modularity Theorem for semistable
elliptic curves proved by Andrew Wiles.

Note. A nice historical overview of Fermat’s Last Theorem, together with
notes and remarks is given in [vdP96].

The Modularity Theorem

An elliptic curve over Q is a nonsingular cubic equation of the form

E : y2 = 4x3 − c2x− c3, c2, c3 ∈ Q (c3
2 − 27c2

3 6= 0).

A modular form is simply a holomorphic function on the complex upper half
plane that satisfies “certain” transformation and holomorphy conditions.
The original version of the Modularity Theorem that was proved by Andrew
Wiles, Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor
is the following:

Each Galois representation ρE,` associated to an elliptic
curve E over Q arises from a Galois representation ρf,`
associated to a modular form f ,

ρE,` ∼ ρf,`

In this work we explain an (equivalent) version the Modularity Theorem
that relates rational elliptic curves and modular curves as Riemann surfaces.

Theorem 0.2 (Modularity Theorem, Complex analytic version).
Let E be a complex elliptic curve with j(E) ∈ Q. Then for some positive
integer N there exists a surjective morphism of Riemann surfaces from the
modular curve X0(N) to the elliptic curve E,

X0(N) −→ E.

To understand this affordable version of the theorem we have to introduce:

Riemann surfaces
(Appendix A)

����
Modular curves

(Chapter 1)
//

,,

Automorphic forms
(Chapter 2)

Elliptic curves
(Appendix B)

rr

oo

Moduli spaces
(Chapter 3)
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Outline of the work

In Chapter 1 we introduce the modular group, its congruence subgroups
and the modular curves, which are quotient spaces of the upper half plane
by the action of a congruence subgroup of the modular group. Furthermore,
we show these curves are Riemann surfaces that can be compactified.

In Chapter 2 we introduce the automorphic, modular and cusp forms.
They are (meromorphic) holomorphic functions on the upper half plane that
satisfy certain transformation and (meromorphy) holomorphy conditions.
We comment on the dimension formulas of the vector spaces of modular
and cusp forms, and we conclude with two interesting applications.

In Chapter 3 we introduce moduli spaces (isomorphism classes of complex
elliptic curves enhanced by associated torsion data) for some modular curves
and we explain the complex analytic version of the Modularity Theorem
we have mentioned above.

In Appendix A we recall all the theory of Riemann surfaces that we need
in this work: Holomorphic maps, meromorphic differentials, divisors and
the Riemann-Roch Theorem.

In Appendix B we explain the principal results over compact Riemann
surfaces of genus equal to 1. These Riemann surfaces are called complex
elliptic curves for reasons to be explained in this chapter.

Comments on Bibliography

Most of the content of this work has been extracted from the book [DS05].
This book explains (equivalent) distinct versions of the Modularity Theorem.
Other books about this topic we have used are [Apo90, Miy06, Ser73, Shi71].

A good reference book about Riemann surfaces we have used in Appendix
is [Mir95]. Also, we have used this magnificent book [Sil09] about elliptic
curves in Appendix B.

The results of complex analysis we utilize in this work are really basic.
The reader can consult them in any of these two books [Ahl78, SS03].



Chapter 1

Modular curves

In this first chapter we introduce the modular curves which are quotient
spaces of the upper half plane by the action of a congruence subgroup Γ
of SL2(Z). We show these curves are Riemann surfaces (see Appendix A)
that can be compactified. The theory of compact Riemann surfaces allows us
to calculate the topological genus of these compactified curves.

1.1 The modular group

The modular group is

SL2(Z) =

{[
a b
c d

]
∈ M2(Z) | ad− bc = 1

}
.

Lemma 1.1. The modular group SL2(Z) is generated by the two matrices

T =

[
1 1
0 1

]
and S =

[
0 −1
1 0

]
.

Proof: Let Γ be the subgroup of SL2(Z) generated by these matrices
and α =

[ a b
c d

]
∈ SL2(Z). Below, we describe an algorithm to compute γ ∈ Γ

such that αγ ∈ Γ (and therefore we will be able to conclude that α ∈ Γ).

First observe that we can suppose without loss of generality that c 6= 0,
since otherwise α =

[±1 b
0 ±1

]
∈ Γ. Indeed,

Tn =

[
1 n
0 1

]
and S2Tn = −Tn = −

[
1 n
0 1

]
, ∀n ∈ Z.

The identity

αTn =

[
a b
c d

] [
1 n
0 1

]
=

[
a′ b′

c nc+ d

]
, n ∈ Z,

17



18 Modular forms

shows that there exists a matrix γ1 ∈ Γ such that αγ1 has bottom row

(c′, d′) = (c, nc+ d), with |d′| ≤ |c′|/2.

On the other hand, the identity

αγ1S =

[
a′ b′

c′ d′

] [
0 −1
1 0

]
=

[
b′ −a′
d′ −c′

]
, n ∈ Z,

shows that this process can be iterated (a finite number of times) to find a
matrix γ ∈ Γ such that αγ has bottom row (0,±1), and therefore αγ ∈ Γ.

Each element of the modular group induces naturally an automorphism of
the Riemann sphere, the fractional linear transformation

α(z) =
az + b

cz + d
, ∀ z ∈ Ĉ, for α =

[
a b
c d

]
∈ SL2(Z).

The identity matrix I and its negative −I both induce the identity map.
It is not difficult to prove that two matrices α, α′ ∈ SL2(Z) induce the same
transformation if and only if α′ = ±α. Furthermore, note that

(αα′)(τ) = α(α′(τ)), ∀ z ∈ Ĉ, ∀α, α′ ∈ SL2(Z).

Therefore, the modular group acts on the Riemann sphere. The subgroup
of transformations defined by the modular group is generated by the two
maps induced by the two matrix generators,

T (τ) = τ + 1 and S(τ) = −1/τ.

The upper half plane is

H = {τ ∈ C | Im (τ) > 0}.

The formula

Im (α(τ)) =
Im (τ)

|cτ + d|2
, ∀ τ ∈ H, ∀α =

[
a b
c d

]
∈ SL2(Z) (1.1)

shows that each element of the modular group maps the upper half plane
back to itself. Hence the modular group acts also on the upper half plane.

Definition 1.2. A matrix α =
[ a b
c d

]
∈ SL2(Z), α 6= ±I, is called elliptic,

parabolic, or hyperbolic if the absolute value of its trace, |a+d|, is less than 2,
equal to 2, or greater than 2, respectively.
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To see the geometrical meaning of this classification, we have to study the
fixed points of the induced transformation on the Riemann sphere.

If c = 0, then α is of the form

±
[

1 m
0 1

]
, for some m ∈ Z \ {0},

so α is parabolic and its unique fixed point is ∞ ∈ Ĉ. If c 6= 0, then ∞ ∈ Ĉ
can not be a fixed point of α, since α(∞) = a/c. In this case, observe that
the fixed points of α satisfy the quadratic equation cz2 + (d − a)z − b = 0.
As the discriminant of this equation is

(d− a)2 + 4cb = (d+ a)2 − 4,

the fixed points of α are two conjugate complex numbers, a real number, or
two distinct real numbers if α is elliptic, parabolic or hyperbolic, respectively.

Theorem 1.3. A matrix α =
[ a b
c d

]
∈ SL2(Z), α 6= ±I, is characterized by

its fixed points in Ĉ as follows:

. α is elliptic if and only if α has two fixed points τ and τ , with τ ∈ H.

. α is parabolic if and only if α has only one fixed point in R ∪ {∞}.

. α is hyperbolic if and only if α has two distinct fixed points in R.

1.2 Congruence subgroups

The principal congruence subgroups are

Γ(N) =

{[
a b
c d

]
∈ SL2(Z) |

[
a b
c d

]
≡
[

1 0
0 1

]
(mod N)

}
, N ∈ Z+.

The matrix congruence is interpreted by entries, i.e.,

a ≡ 1 (mod N), b ≡ 0 (mod N),

c ≡ 0 (mod N), d ≡ 1 (mod N).

Let us consider the canonical homomorphism from SL2(Z) to SL2(Z/NZ),[
a b
c d

]
∈ SL2(Z) 7→

[
a b

c d

]
∈ SL2(Z/NZ).

By definition, its kernel is Γ(N). So Γ(N) is a normal subgroup of SL2(Z).

Let

[
a b

c d

]
be a matrix of SL2(Z/NZ). As

ad− bc ≡ 1 (mod N),
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we deduce that gcd(c, d,N) = 1. Using the Chinese remainder theorem it is
possible to prove that there exist integers c1 and d1 such that

c1 ≡ c (mod N), d1 ≡ d (mod N) and gcd(c1, d1) = 1.

Let g = gcd(c, d). If c 6= 0, consider the system{
t ≡ 1 (mod p), with p prime, p|g,
t ≡ 0 (mod p), with p prime, p|c, p - g,

and define c1 = c and d1 = d + tN . If c = 0, then necessarily d 6= 0
(unless N = 1, but this case is trivial). Therefore, consider the system{

s ≡ 1 (mod p), with p prime, p|g,
s ≡ 0 (mod p), with p prime, p|d, p - g,

and define c1 = c+ sN and d = d1. These two cases prove the statement.

Let k be the unique integer such that

ad1 − bc1 = 1 + kN.

As gcd(c1, d1) = 1, there exist integers a1 and b1 such that a1d1−b1c1 = −k.
Letting

a2 = a+ a1N, b2 = b+ b1N,

c2 = c1, d2 = d1,

we obtain that[
a2 b2
c2 d2

]
∈ SL2(Z) and

[
a2 b2
c2 d2

]
≡
[
a b
c d

]
(mod N).

Thus we can conclude that this homomorphism is surjective. Therefore,
it induces an isomorphism

SL2(Z)/Γ(N)
∼−→ SL2(Z/NZ).

As a consequence, note that Γ(N) has finite index in SL2(Z). In fact, it is
possible to compute that

[SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)
,

where the product is taken over all prime divisors of N [Miy06, p.105].

Definition 1.4. A subgroup Γ of SL2(Z) is a congruence subgroup if there
exists N ∈ Z+ such that Γ(N) ⊂ Γ, in which case Γ is called congruence
subgroup of level N .
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Remarks 1.5.

. Each congruence subgroup Γ has finite index in SL2(Z), since

Γ(N) ⊂ Γ, for some N ∈ Z+.

. Each congruence subgroup Γ contains a translation matrix of the form[
1 h
0 1

]
: τ → τ + h, h ∈ Z+.

Let

hΓ = min{h ∈ Z+ |
[

1 h
0 1

]
∈ Γ}

and let us fix a positive integer N such that Γ(N) ⊂ Γ. As[
1 N
0 1

]
=

[
1 hΓ

0 1

]q [
1 r
0 1

]
, whenever N = qhΓ + r, q, r ∈ Z,

we deduce that hΓ necessarily divides N .

The reason why these subgroups are called congruence subgroups is justified
in the following lemma which describes the congruence subgroups of level N .

Lemma 1.6. Let Γ be a subgroup of SL2(Z) and N ∈ Z+. The following
conditions are equivalent:

1. Γ is a congruence subgroup of level N .

2. There exist γ1, . . . , γd ∈ SL2(Z) such that Γ =
⋃d
j=1 Γ(N)γj, i.e.,

Γ =
d⋃
j=1

{γ ∈ SL2(Z) | γ ≡ γj (modN)}.

Proof: If Γ(N) ⊂ Γ, then Γ(N) has finite index in Γ. Reciprocally,
if there exist γ1, . . . , γd ∈ SL2(Z) such that Γ =

⋃d
j=1 Γ(N)γj , then

I ≡ γj (mod N), for some j = 1, . . . , d,

where I is the identity matrix. So Γ(N) = Γ(N)γj ⊂ Γ.

An immediate consequence of the fact that Γ(N) is normal in SL2(Z)
is that any conjugated subgroup of a congruence subgroup of level N is also
a congruence subgroup of level N .
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Lemma 1.7. Let Γ be a congruence subgroup of SL2(Z), N ∈ Z+ and
α ∈ SL2(Z). If Γ is a congruence subgroup of level N , then

α−1Γα = {α−1γα | γ ∈ Γ}

is also a congruence subgroup of level N .

Proof: As Γ(N) ⊆ Γ, we deduce that

Γ(N) = α−1Γ(N)α ⊆ α−1Γα,

since Γ(N) is a normal subgroup of SL2(Z).

In addition to the principal congruence subgroups, the most important
congruence subgroups are

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) |

[
a b
c d

]
≡
[
∗ ∗
0 ∗

]
(mod N)

}
, N ∈ Z+,

and

Γ1(N) =

{[
a b
c d

]
∈ SL2(Z) |

[
a b
c d

]
≡
[

1 ∗
0 1

]
(mod N)

}
, N ∈ Z+,

where ∗ means “unspecified”. Note that

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z), ∀N ∈ Z+.

In the special case N = 1,

Γ(1) = Γ1(1) = Γ0(1) = SL2(Z).

The map Γ1(N)→ Z/NZ,[
a b
c d

]
∈ Γ1(N) 7→ b ∈ Z/NZ,

is surjective, since [
1 k
0 1

]
∈ Γ1(N), ∀ k ∈ Z.

Its kernel is Γ(N). Therefore, Γ(N) is also a normal subgroup of Γ1(N) and

Γ1(N)/Γ(N) ∼= Z/NZ, with [Γ1(N) : Γ(N)] = N.

Analogously, the map Γ0(N)→ (Z/NZ)∗,[
a b
c d

]
∈ Γ0(N) 7→ d ∈ (Z/NZ)∗.
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is surjective as well, since for each d ∈ (Z/NZ)∗ there exist integers ed and kd
such that

edd = 1 + kdN.

Therefore [
ed kd
N d

]
∈ Γ0(N), ∀ d ∈ (Z/NZ)∗.

Further, its kernel is Γ1(N). So Γ1(N) is a normal subgroup of Γ0(N) and

Γ0(N)/Γ1(N) ∼= (Z/NZ)∗, with [Γ0(N) : Γ1(N)] = φ(N),

where φ is the Euler’s totient function from number theory,

φ(N) = |(Z/NZ)∗| = N
∏
p|N

(
1− 1

p

)
.

Finally, taking into account all the above, we can deduce that

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
,

where the product is taken over all prime divisors of N .

1.3 The Riemann surfaces Y (Γ) = Γ\H

Let Γ be a congruence subgroup of SL2(Z) acting on the upper half plane.
The modular curve Y (Γ) is defined as the quotient space of orbits under Γ,

Y (Γ) = Γ\H = {Γτ | τ ∈ H}.

The topology of this space is induced by the natural projection π : H→ Y (Γ),

π(τ) = Γτ, ∀ τ ∈ H,

that is, a subset of Y (Γ) is open if its inverse image under π is open in H.
This makes π an open map, since

π−1(π(U)) =
⋃
γ∈Γ

γ(U), ∀U ⊂ H.

Observe that π is also a continuous map by definition. As a consequence,
the modular curve Y (Γ) is a connected topological space, since π(H) = Y (Γ).

The modular curves for Γ(N), Γ0(N) and Γ1(N) are denoted

Y (N) = Γ(N)\H, Y0(N) = Γ0(N)\H and Y1(N) = Γ1(N)\H.
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In this section we show that Y (Γ) can be made into a Riemann surface.
The reader can consult the theory of Riemann surfaces in Appendix A.
One of the main results we need to carry out this task is that the action
of the modular group on the upper half plane is properly discontinuous, i.e.,
any two points in H have neighbourhoods small enough so that each trans-
formation of the modular group taking one point away from the other also
takes its neighbourhood away from the other’s.

Proposition 1.8. Let τ1, τ2 ∈ H. Then there exist open neighbourhoods
U1 of τ1 and U2 of τ2 in H, with the following property:

For all α ∈ SL2(Z), if α(U1) ∩ U2 6= ∅, then α(τ1) = τ2.

Proof: Let U ′1 and U ′2 be any open neighbourhoods of τ1 and τ2, respectively,
with compact closure in H. Consider the intersection

α(U ′1) ∩ U ′2, α ∈ SL2(Z).

We claim that this intersection is empty for all but finitely many α ∈ SL2(Z).

Note that for all but finitely many pairs (c, d) ∈ Z2, with gcd(c, d) = 1,

sup{Im (α(τ)) |α =

[
∗ ∗
c d

]
∈ SL2(Z), τ ∈ U ′1} < inf{Im (τ) | τ ∈ U ′2}

holds (making the intersection empty), since

Im (τ)

|cτ + d|2
≤ min{ 1

c2y1
,

Y1

(cRe (τ) + d)2
}, ∀ τ ∈ U ′1, ∀α =

[
a b
c d

]
∈ SL2(Z),

where

y1 = inf{Im (τ) | τ ∈ U ′1} and Y1 = sup{Im (τ) | τ ∈ U ′1}.

Furthermore, for each pair (c, d) ∈ Z2, with gcd(c, d) = 1, the matrices
α ∈ SL2(Z) with bottom row (c, d) are[

1 k
0 1

] [
a b
c d

]
, k ∈ Z,

where (a, b) ∈ Z2 is any particular pair such that ad− bc = 1. As

α(U ′1) ∩ U ′2 =

([
a b
c d

]
(U ′1) + k

)
∩ U ′2,

we deduce that the intersection is empty for all but finitely many α ∈ SL2(Z)
with bottom row (c, d). Therefore, combining these two remarks we can
conclude that there are only finitely many α ∈ SL2(Z) such that

α(U ′1) ∩ U ′2 6= ∅,
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as claimed.

Finally, let F be the finite set {α ∈ SL2(Z) |α(U ′1) ∩ U ′2 6= ∅, α(τ1) 6= τ2}.
For each α ∈ F there exist disjoint open neighbourhoods U1,α of α(τ1) and
U2,α of τ2 in H, since α(τ1) 6= τ2. Define

U1 = U ′1 ∩

(⋂
α∈F

α−1(U1,α)

)
, an open neighbourhood of τ1 in H,

and

U2 = U ′2 ∩

(⋂
α∈F

U2,α

)
, an open neighbourhood of τ2 in H.

Observe that these open neighbourhoods satisfy the desired property, i.e.,
if there exists α ∈ SL2(Z) such that α(U1)∩U2 6= ∅, then necessarily α /∈ F ,
since otherwise

α(U1) ∩ U2 ⊆ U1,α ∩ U2,α = ∅.

The first immediate consequence of this result is the following corollary.

Corollary 1.9. The modular curve Y (Γ) is a Hausdorff topological space.

Proof: Let π(τ1), π(τ2) be distinct points in Y (Γ). By Proposition 1.8
there exist open neighbourhoods U1 of τ1 and U2 of τ2 in H such that

γ(U1) ∩ U2 = ∅, ∀ γ ∈ Γ.

As a consequence,
π(U1) and π(U2)

are disjoint open subsets of Y (Γ) containing π(τ1) and π(τ2), respectively.

1.3.1 Elliptic points

To define charts on the curve Y (Γ) we have to prove that the isotropy
subgroups of Γ are finite cyclic. This requirement will bee more clearly seen
in the next subsection where we study the action of an isotropy subgroup
of Γ on the upper half plane.

Definition 1.10. Let Γτ denote the isotropy subgroup of a point τ ∈ H,
i.e., the τ -fixing subgroup of Γ,

Γτ = {γ ∈ Γ | γ(τ) = τ}.

The point τ is an elliptic point of Γ if there exists γ ∈ Γτ such that γ 6= ±I,
i.e., if Γτ defines a nontrivial subgroup of transformations.
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Remarks 1.11.

. Let τ ∈ H. Note that τ is an elliptic point of Γ if and only if the
containment of matrix groups

{±I} ⊂ {±I}Γτ

is proper.

. Let τ, τ ′ ∈ H be Γ-equivalent points, τ ′ = γ(τ) for some γ ∈ Γ. Then
their isotropic subgroups are conjugated subgroups, since

Γτ ′ = γΓτγ
−1

Therefore, if τ is an elliptic point of Γ, then so is τ ′, and as a consequence
it makes sense to say that the corresponding point π(τ) ∈ Y (Γ) is elliptic.

Definition 1.12. A connected subset F of H is a fundamental domain for Γ
if it satisfies the following three conditions:

. H =
⋃
γ∈Γ γ(F )

. F = G, where G = int(F )

. γ(G) ∩G = ∅ for all γ ∈ Γ, γ 6= ±I.

Let F be the connected subset of H

{τ ∈ H | |Re (τ)| ≤ 1/2, |τ | ≥ 1}.

We represent it in Figure 1.1. The points i, ρ = e2πi/3 and ρ+ 1 are special.
The following two results prove that F is a fundamental domain for SL2(Z).
In general, it is possible to prove that there exists a fundamental domain
for any congruence subgroup Γ of SL2(Z) [Miy06, p.22].

Lemma 1.13. Let π be the natural projection from H to Y (1) = SL2(Z)\H,

π(τ) = SL2(Z)τ, ∀ τ ∈ H.

Each point τ ∈ H is SL2(Z)-equivalent to some point in F , i.e., π(F )=Y (1).

Proof: Let us describe an algorithm to compute some τ ′ ∈ F such that

SL2(Z)τ = SL2(Z)τ ′.

First apply repeatedly one of the matrices[
1 ±1
0 1

]
: τ 7→ τ ± 1
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F

−1 1

i

− 1
2

1
2

ρ+ 1ρ

Figure 1.1: The fundamental domain for SL2(Z)

to translate τ into the vertical trip {z ∈ C | |Re (z)| ≤ 1/2} and replace τ by
this transform. Now, if τ /∈ F , then necessarily |τ | < 1. So

Im (−1/τ) = Im (−τ̄ /|τ |2) = Im (τ/|τ |2) > Im (τ).

Then replace τ by
[ 0−1

1 0

]
(τ) = −1/τ and repeat the same process again.

The formula (1.1) shows that this algorithm finalizes with some τ ∈ F
because there are only finitely many pairs (c, d) ∈ Z2 such that |cτ + d| < 1.

Note that the projection π : F → Y (1) is not injective. The translation[ 1 1
0 1

]
: τ 7→ τ + 1 identifies the two boundary rays and the inversion

[ 0−1
1 0

]
:

τ 7→ −1/τ identifies the two halves of the boundary circular arc. But these
boundary identifications are the only ones that exist in F .

Theorem 1.14. Let τ1 and τ2 be points in F such that

τ2 = α(τ1), for some α =

[
a b
c d

]
∈ SL2(Z).

If τ1 and τ2 are distinct points, then either

. Re (τ1) = ±1/2 and τ2 = τ1 ∓ 1 or

. |τ1| = 1 and τ2 = −1/τ1.

Otherwise, τ1 and τ2 must be both equal to i, ρ, or ρ+ 1, unless α = ±I.

Proof: By symmetry, we can suppose without loss of generality that

Im (τ1) ≤ Im (τ2),

or equivalently, |cτ1 + d|2 ≤ 1. Further, as τ1 ∈ F , Im (τ1) ≥
√

3/2. So

|c|
√

3/2 ≤ |c|Im (τ1) = |Im (cτ1 + d)| ≤ |cτ1 + d| ≤ 1,
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As a consequence of this inequality, we can deduce that necessarily |c| ≤ 1.

If c = 0, then α =
[±1 b

0 ±1

]
. Since −1/2 ≤ Re (τ1),Re (τ2) ≤ 1/2, this

implies either b = 0 and α = ±I or |b| = 1 and τ2 = τ1 ± b, in which case
one of the numbers Re (τ1) and Re (τ2) must be equal to −1/2 and the other
to 1/2.

If c 6= 0, then we can suppose that c = 1, since τ2 = α(τ1) = (−α)(τ1).
The condition |cτ1 + d|2 ≤ 1 is equivalent to

(Re (τ1) + d)2 + (Im (τ1))2 ≤ 1.

So
(Re (τ1) + d)2 ≤ 1− (Im (τ1))2 ≤ 1− 3/4 = 1/4,

implying |Re (τ1) + d| ≤ 1/2. Note that this inequality forces that |d| ≤ 1.

If c = 1 and |d| = 1, then |Re (τ1) + d| = 1/2. So the preceding inequality
implies that |cτ1 + d| = 1 and Im (τ1) = Im (τ2) =

√
3/2 (i.e., τ1, τ2 ∈

{ρ, ρ+1}). The case d = 1 forces that α =
[ a a− 1

1 1

]
and τ2 = −1/(τ1+1)+a,

so either a = 0 and τ2 = τ1 = ρ or a = 1, τ1 = ρ and τ2 = ρ + 1 (a = −1

is not possible). And the case d = −1 forces that α =
[
a −(a+ 1)
1 −1

]
and

τ2 = 1/(τ1 − 1) + a, so either a = 0 and τ2 = τ1 = ρ + 1 or a = −1, τ2 = ρ
and τ1 = ρ+ 1 (a = 1 is not possible).

If c = 1 and d = 0, then α =
[ a−1

1 0

]
and the condition |cτ1 + d| ≤ 1

becomes |τ1| ≤ 1, so in fact |τ1| = 1 (since |τ1| ≥ 1) and Im (τ1) = Im (τ2).
This implies either a = 0 and τ2 = −1/τ1 or |a| = 1 and τ2 = −1/τ1 + a,
in which case τ1 and τ2 must be both equal to ρ or ρ+ 1.

We deduce from this theorem that the only elliptic points of SL2(Z) in F
are i, ρ and ρ+ 1 with isotropy subgroups

- SL2(Z)i =

〈[
0 −1
1 0

]〉
, a cyclic subgroup of order 4,

- SL2(Z)ρ =

〈[
0 −1
1 1

]〉
, a cyclic subgroup of order 6,

- SL2(Z)ρ+1 =

〈[
1 −1
1 0

]〉
, a cyclic subgroup of order 6.

Corollary 1.15. The modular curve SL2(Z)\H has two elliptic points,

SL2(Z)i and SL2(Z)ρ.

Therefore, for each τ ∈ H its isotropy subgroup SL2(Z)τ is finite cyclic.

Proof: Let τ ∈ H be an elliptic point of SL2(Z). By Lemma 1.13 there
exists α ∈ SL2(Z) such that α(τ) ∈ F and by Theorem 1.14 α(τ) must be
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equal to i, ρ or ρ+ 1, since α(τ) is also an elliptic point of SL2(Z).

Corollary 1.16. The modular curve Y (Γ) has only finitely many elliptic
points. Furthermore, for each τ ∈ H its isotropy subgroup Γτ is finite cyclic.

Proof: Let SL2(Z) =
⋃d
j=1 Γαj . As Γτ is a subgroup of SL2(Z)τ , ∀ τ ∈ H,

the elliptic points of Y (Γ) are a subset of EΓ = {Γαj(i),Γαj(ρ) : 1 ≤ j ≤ d}.
For the second statement, recall that a subgroup of a cyclic group is cyclic.

Corollary 1.17. Let α ∈ SL2(Z), α 6= ±I. If α is a elliptic matrix, i.e.,
α(τ) = τ , with τ ∈ H, then α is conjugate to some of the following matrices:[

0 1
−1 −1

]±1

,

[
0 −1
1 0

]±1

,

[
0 −1
1 1

]±1

.

As a consequence, observe that the matrix α must have order 3, 4 or 6.

Proof: By Corollary 1.15 there exists β ∈ SL2(Z) such that β(τ) is equal
to i or ρ, since τ is an elliptic point of SL2(Z). Therefore,

SL2(Z)τ = β−1SL2(Z)iβ or SL2(Z)τ = β−1SL2(Z)ρβ.

Corollary 1.18. The modular curves Y (N), with N > 1, do not have
elliptic points.

Proof: Let us suppose that there exists γ ∈ Γ(N), γ 6= ±I, such that
γ(τ) = τ for some τ ∈ H. Then γ must be conjugate to some of the six
matrices α1, . . . , α6 of Corollary 1.17, i.e.,

γ = βαjβ
−1, for some β ∈ SL2(Z).

As Γ(N) is a normal subgroup of SL2(Z), we deduce that

αj = β−1γβ ∈ β−1Γ(N)β = Γ(N),

which is evidently a contradiction, since αj /∈ Γ(N), ∀ j = 1, . . . , 6 (N > 1).
Hence, the modular curves Y (N), with N > 1, do not have elliptic points.

1.3.2 Complex charts

Each point τ ∈ H has an associated positive integer,

hτ = hτ,Γ = |{±I}Γτ/{±I}| =
{
|Γτ |/2 if −I ∈ Γτ ,
|Γτ | if −I /∈ Γτ .
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This hτ is called the period of τ with respect to Γ for reasons to be explained.
Its definition counts correctly the τ -fixing transformations induced by Γ.
As a consequence, observe that

hτ > 1 if and only if τ is an elliptic point of Γ.

Let α ∈ SL2(Z). Then the isotropy subgroups Γτ and (αΓα−1)α(τ) are
conjugated subgroups, since

(αΓα−1)α(τ) = αΓτα
−1.

Hence the period of α(τ) under αΓα−1 is equal to the period of τ under Γ.
This proves in particular that the period of π(τ) ∈ Y (Γ) is also well defined.

Examples 1.19.

1. The period of a point τ ∈ H with respect to Γ(N), N > 1, is hτ = 1.

2. The periods of the points i, ρ ∈ H with respect to SL2(Z) are

hi = 2 and hρ = 3.

The following corollary which will be necessary to define charts on Y (Γ)
is another immediate consequence of Proposition 1.8.

Corollary 1.20. Each point τ ∈ H has an open neighbourhood U in H,
with the following property:

For all γ ∈ Γ, if γ(U) ∩ U 6= ∅, then γ ∈ Γτ .

Such an open neighbourhood has no elliptic points of Γ except possibly τ .

Proof: Let τi = τ , i = 1, 2. By Proposition 1.8, there exist open neigh-
bourhoods U1 of τ1 and U2 of τ2 in H such that

for all α ∈ SL2(Z), if α(U1) ∩ U2 6= ∅, then α(τ1) = τ2.

Define U = U1 ∩ U2. Note that

for all γ ∈ Γ, if γ(U) ∩ U 6= ∅, then γ ∈ Γτ .

Let us now suppose that there exists γ ∈ Γ, γ 6= ±I, such that γ(τ ′) = τ ′,
for some τ ′ ∈ U . Then γ(U) ∩ U 6= ∅, implying γ ∈ Γτ . But γ has only one
fixed point in H (elliptic transformation), so necessarily τ = τ ′.

Let τ ∈ H. Define the matrix δτ =
[ 1−τ

1−τ̄
]
∈ GL2(C) and observe that the

induced transformation on the Riemann sphere

δτ (z) =
z − τ
z − τ̄

, ∀ z ∈ Ĉ,
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satisfies

δτ (τ) = 0, δτ (τ̄) =∞ and δτ (R̂) = ∂D, where R̂ = R ∪ {∞}.

As a consequence, it follows that δτ induces an isomorphism from H to D.

Let Γδτ denote the matrix subgroup

δτΓτδ
−1
τ = (δτΓδ−1

τ )0 ⊂ SL2(C).

The action of this subgroup on D is equivalent to the action of Γτ on H,

τ1, τ2 ∈ H are Γτ -equivalent ⇔ τ2 ∈ Γττ1

⇔ δτ (τ2) ∈ (δτΓτδ
−1
τ )(δτ (τ1))

⇔ δτ (τ1), δτ (τ2) ∈ D are Γδτ -equivalent.

Let us consider the subgroup of transformations defined by Γδτ ,

δτ{±I}Γτδ−1
τ /{±I},

which must be finite cyclic of order hτ by Proposition 1.16. As this subgroup
of transformations fixes 0 and ∞, it consists of maps of the form

z 7→ az, a ∈ C,

and since the subgroup is finite cyclic of order hτ , these must be rotations
through angular multiples of 2π/hτ about the origin,

z 7→ e2πik/hτ z, k ∈ Z.

Taking into account this, we can easily describe the action of Γδτ on D,

z1, z2 ∈ D are Γδτ -equivalent ⇔ z2 = e2πik/hτ z1, for some k ∈ Z.

Observe that each circular sector of angle 2π/hτ in which has been divided
the unit disc corresponds in the upper half plane with a “triangle” formed by
two circular arcs (including lines) orthogonal to the real line and a segment
of real line (possibly unbounded). It is for this reason that we say that
δτ is straightening neighbourhoods of τ to neighbourhoods of the origin.
The figure 1.2 illustrates representative two cases, Γ = SL2(Z) and τ = i, ρ.

The previous description of the action of Γδτ on D suggests to consider
the wrapping map λτ : D→ D,

λτ (z) = zhτ , ∀ z ∈ D.

Observe that this map allow us to write that

τ1, τ2 ∈ H are Γτ -equivalent ⇔ λτ (δτ (τ1)) = λτ (δτ (τ2)).

Let us construct a chart on Y (Γ) about the point π(τ). By Corollary 1.20
there exists an open neighbourhood U of τ in H with the following properties:
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ρ

− 1
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δρ 0

δρ(−2)

δρ(1)

Figure 1.2: Γ = SL2(Z) and τ = i, ρ

- For all γ ∈ Γ, if γ(U) ∩ U 6= ∅, then γ ∈ Γτ .

- U has no elliptic points of Γ except possibly τ .

Define ψτ : U → C as

ψτ (τ ′) = λτ (δτ (τ ′)), ∀ τ ′ ∈ U,

and let V = ψτ (U). Then for any points τ1, τ2 ∈ U ,

π(τ1) = π(τ2) ⇔ τ1 ∈ Γτ2 ⇔ τ1 ∈ Γττ2 ⇔ ψτ (τ1) = ψτ (τ2),

i.e., the projection π and the wrapping ψτ identify the same points of U .
As a consequence, there exists a bijection φτ : π(U)→V making the diagram

U

π

}}

ψτ

��
π(U)

φτ // V

commutative. Further, as π and ψτ are both continuous and open maps,
we deduce that this bijection φτ : π(U)→ V is in fact a homeomorphism.

Caution: This complex chart depend on the open neighbourhood U of τ .

Below, we show that all these charts determine an atlas on the curve Y (Γ).
Let φ1 : π(U1)→ V1 and φ2 : π(U2)→ V2 be two charts such that

φ1 = φτ1 , φ2 = φτ2 and π(U1) ∩ π(U2) 6= ∅.
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Consider the commutative diagram

π(U1) ∩ π(U2)
φ2

&&
V1,2

φ−1
1

88

φ2,1 // V2,1

where φ2,1 = φ2◦φ−1
1 , V1,2 = φ1(π(U1)∩π(U2)) and V2,1 = φ2(π(U1)∩π(U2)).

We have to prove that φ2,1 is holomorphic at φ1(x) for all x ∈ π(U1) ∩ π(U2).
Put x = π(τ̃1) = π(τ̃2) with τ̃1 ∈ U1, τ̃2 ∈ U2 and τ̃2 = γτ̃1 for some γ ∈ Γ.
Let U1,2 = U1∩γ−1(U2), an open neighbourhood of τ̃1 in H. Since π is open,
its projection π(U1,2) is an open neighbourhood of x in π(U1) ∩ π(U2).

An input point q = φ1(x′) to φ2,1 in φ1(π(U1,2)) is of the form

q = φ1(π(τ ′)) = ψ1(τ ′) = (δ1(τ ′))h1 , for some τ ′ ∈ U1,2,

where δ1 = δτ1 and h1 is the period of τ1. So the corresponding output is

φ2(x′) = φ2(π(γ(τ ′))) = ψ2(γ(τ ′)) (since γ(τ ′) ∈ U2)

= (δ2(γ(τ ′)))h2 = ((δ2γδ
−1
1 )(δ1(τ ′)))h2 ,

where δ2 = δτ2 and h2 is the period of τ2.

This calculation shows that the only case possible where the transition
function might not be holomorphic at φ1(x) is when δ1(τ̃1) = 0 and h1 > 1,
i.e., when τ1 = τ̃1 and τ1 is an elliptic point of Γ. In this case, τ̃2 = γ(τ1)
would also be an elliptic point of Γ with the same period, implying τ2 = τ̃2

(recall that U2 has no elliptic points except possibly τ2 by construction).
Therefore,

δ2γδ
−1
1 =

[
α 0
0 β

]
, for some α, β ∈ C∗,

since

0
δ−1
17−→ τ1

γ7−→ τ2
δ27−→ 0 and ∞

δ−1
17−→ τ1

γ7−→ τ2
δ27−→ ∞.

As a consequence, the formula for φ2,1 becomes

φ2,1(q) =

([
α 0
0 β

]
(q1/h1)

)h1

= (α/β)h1q, ∀ q ∈ φ1(π(U1,2)),

Observe that this proves that transition function is holomorphic at φ1(x) = 0.

The modular curve Y (Γ) is now a (noncompact) Riemann surface.

1.4 The Riemann surfaces X(Γ) = Γ\H∗

In this last section of the chapter we show that the Riemann surface Y (Γ)
can be compactified. The resulting compact Riemann surface is denotedX(Γ).
The Riemann-Hurwitz formula A.28 will allow us to calculate its genus.
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1.4.1 Cusps

To compactify the modular curve Y (Γ) = Γ\H, define

H∗ = H ∪ Q̂, where Q̂ = Q ∪ {∞},

and consider the following topology on H∗:

- A fundamental system of neighbourhoods at τ ∈H is formed by the usual
open neighbourhoods of τ in H.

- A fundamental system of neighbourhoods at s∈Q̂ is formed by the subsets

α(NM ∪ {∞}) : M > 0, α ∈ SL2(Z), α(∞) = s,

whereNM = {τ ∈ H | Im (τ) > M} for any real numberM > 0 (N := N1).

As fractional linear transformations are conformal and take circles to circles,
if α(∞) ∈ Q, then α(NM ∪ {∞}) is a disc tangent to the real line at α(∞).
The formula (1.1) allow us to compute that the radius of this disc is 1/2c2M ,
where c is the lower left entry of the matrix α. Therefore,

α(NM ∪ {∞}) ∩ (N ∪ {∞}) = ∅, ∀M ≥ 1.

If α(∞) =∞, then α is a translation matrix and α(NM ∪ {∞})=NM ∪ {∞},
since the isotropy subgroup of ∞ in SL2(Z) is

SL2(Z)∞ =

{
±
[

1 m
0 1

]
|m ∈ Z

}
.

Lemma 1.21. Let α ∈ SL2(Z). Then the following conditions are equivalent:

1. α ∈ SL2(Z)∞

2. α(NM ) = NM , for any M > 0.

3. α(NM ) ∩NM 6= ∅, for some M ≥ 1.

As a consequence, observe that N does not contains elliptic points of SL2(Z).

The proof of this lemma is easy and is left as an exercise to the reader.
Below, the Figure 1.3 shows N ∪ {∞} and some of its SL2(Z)-translates.

Note that H∗ is a Hausdorff topological space with respect to this topology.
The modular group acts on this space via fractional linear transformations.

Let Γ be a congruence subgroup of SL2(Z) acting on H∗. The compact
modular curve X(Γ) is defined as the quotient space of orbits under Γ,

X(Γ) = Γ\H∗ = Y (Γ) ∪ Γ\Q̂.
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Figure 1.3: Neighbourhoods of ∞ and of some rational points

As in Section 1.3, the topology of this quotient space is induced by the
natural projection π : H∗ → X(Γ) which is an open continuous map.
The Γ-equivalence classes of points in Q̂ are also called the cusps of X(Γ).

The (compact) modular curves for Γ(N), Γ0(N) and Γ1(N) are denoted

X(N) = Γ(N)\H, X0(N) = Γ0(N)\H and X1(N) = Γ1(N)\H.

Lemma 1.22. The modular curve SL2(Z)\H∗ has only one cusp, SL2(Z)∞.

Proof: Let s = a/c be a rational number in reduced form, gcd(a, c) = 1.
By the Bézout’s identity, there exist integers b and d such that ad− bc = 1.
Then [

a b
c d

]
∈ SL2(Z) and

[
a b
c d

]
(∞) = s.

Corollary 1.23. The modular curve X(Γ) has only finitely many cusps.

Proof: Let SL2(Z) =
⋃d
j=1 Γαj . For each s ∈ Q̂ there exists α ∈ SL2(Z)

such that α(∞) = s. So s is Γ-equivalent to αj(∞), for some j = 1, . . . , d.

Theorem 1.24. The modular curve X(Γ) is Hausdorff, connected and com-
pact.

Proof: Let x1, x2 ∈ X(Γ) be distinct points. To prove that X(Γ) is
Hausdorff, we have to find disjoint open neighbourhoods of these two points.
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Note that the case x1 = Γτ1, x2 = Γτ2, with τ1, τ2 ∈ H, was already proved
in Corollary 1.9, since the natural inclusion Y (Γ) ↪→ X(Γ) is an open map.

Suppose that x1 = Γs1, x2 = Γτ2, with s1 ∈ Q ∪ {∞} and τ2 ∈ H. Then
s1 = α1(∞) for some α1 ∈ SL2(Z). Let U2 be any open neighbourhood of τ2

with compact closure in H. The inequality

Im (α(τ)) ≤ max{Im (τ), 1/Im (τ)}, ∀ τ ∈ H, ∀α ∈ SL2(Z),

shows that there exists M > 0 such that α(U2) ∩ NM = ∅, ∀α ∈ SL2(Z).
Let U1 = α1(NM ∪ {∞}). Then

π(U1) and π(U2)

are disjoint open subsets of the curveX(Γ) containing x1 and x2, respectively.

Suppose now that x1 = Γs1, x2 = Γs2, with s1, s2 ∈ Q ∪ {∞}. Then
s1 = α1(∞), s2 = α2(∞) for some α1, α2 ∈ SL2(Z). Let

U1 = α1(N ∪ {∞}) and U2 = α2(N ∪ {∞}).

Then π(U1) and π(U2) be must disjoint open subsets ofX(Γ), since otherwise
there exists γ ∈ Γ such that α−1

2 γα1(N ∪ {∞}) ∩ (N ∪ {∞}) 6= ∅, i.e.,
α−1

2 γα1 ∈ SL2(Z)∞, but this is not possible since the points x1 and x2

are distinct. These three cases prove that the curve X(Γ) is Hausdorff.

Let H∗ = G1 ∪G2 be a disjoint union of two open subsets. Then

H = (G1 ∩H) ∪ (G2 ∩H).

But H is a connected subset and the subsets G1 ∩H and G2 ∩H are open,
so this implies that either H ⊂ G1 and G2 = ∅ or G1 = ∅ and H ⊂ G2.
Thus we conclude that H∗ is connected and therefore so is the curve X(Γ).

For compactness, let SL2(Z) =
⋃d
j=1 Γαj . As F ∗ = F ∪ {∞} is compact

subset of H∗ and

H∗ = SL2(Z)F ∗ =
d⋃
j=1

Γαj(F
∗),

we deduce that the curve modular X(Γ) is a finite union of compact subsets,

X(Γ) =

d⋃
j=1

π(γj(F
∗)).
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1.4.2 Complex charts

Each point s ∈ Q̂ has an associated positive integer

hs = hs,Γ = |SL2(Z)∞/(δs{±I}Γδ−1
s )∞|,

where δs ∈ SL2(Z) takes s to∞. This hs is called the width of s with respect
to Γ for reasons to be explained. As the subgroup SL2(Z)∞ = {±I}

〈[ 1 1
0 1

]〉
is infinite cyclic as a group of transformations, the width of s is characterized
by the conditions

{±I}(δsΓδ−1
s )∞ = {±I}

〈[
1 h
0 1

]〉
, with h > 0.

Observe that the width of s is independent of the matrix δs taking s to∞,
since

hs = |SL2(Z)s/{±I}Γs|.

Let α ∈ SL2(Z). Then the isotropy subgroups SL2(Z)s and SL2(Z)α(s)

are conjugated subgroups, SL2(Z)α(s) = αSL2(Z)sα
−1. Further,

{±I}(αΓα−1)α(s) = α{±I}Γsα−1.

Hence the width of α(s) under αΓα−1 is equal to the width of s under Γ.
This proves in particular that the width of π(s) ∈ X(Γ) is also well defined.

Examples 1.25.

1. The width of a point s ∈ Q̂ with respect to SL2(Z) is hs = 1.

2. More generally, the width of a point s ∈ Q̂ with respect to Γ(N) is hs = N .

Let us construct a chart on X(Γ) about the point π(s). Define

U = δ−1
s (N ∪ {∞}).

Note that this open neighbourhood of s in H∗ has the following property:

For all γ ∈ Γ, if γ(U) ∩ U 6= ∅, then γ ∈ Γs.

As a consequence,

z1, z2 ∈ U are Γ-equivalent ⇔ z1, z2 ∈ U are Γs-equivalent.

Consider the subgroup

{±I}(δsΓsδ−1
s ) = {±I}(δsΓδ−1

s )∞ = {±I}
〈[

1 hs
0 1

]〉
.
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Figure 1.4: Γ = SL2(Z), s = 0 and δs =
[ 0−1

1 0

]

Then for any points τ1, τ2 ∈ U ,

π(τ1) = π(τ2) ⇔ τ1 ∈ Γsτ2

⇔ δs(τ1) ∈ δsΓsδ−1
s (δs(τ2))

⇔ δs(τ1) = δs(τ2) +mhs, for some m ∈ Z.

This shows that the width of a cusp is the number of unit vertical strips in N
that are distinct under isotropy. The Figure 1.4 illustrates the situation.
Observe that each unit vertical strip in N corresponds in U with a “triangle”
formed by three circular arcs (including lines). Hence the width of a cusp
is also the number of such triangles that are not identified under isotropy.
This time δs is straightening neighbourhoods of s to neighbourhoods of ∞.

Define ψs : U → C as

ψs(τ) = λs(δs(τ)), ∀ τ ∈ U,

where λs is the hs-periodic wrapping map λs(z) = e2πiz/hs (λs(∞) := 0).
Taking into account the above, it is immediate to check that this map and
the projection π identify the same points of U . Let V = ψs(U) (=(e−2π/hs)D).
Then there exists a bijection φs : π(U)→ V making the following diagram

U

π

}}

ψs

��
π(U)

φs // V

commutative. Further, as π and ψs are both continuous and open maps,
we deduce that this bijection φs : π(U)→ V is in fact a homeomorphism.

Caution: This chart complex depend on the matrix δs taking s to ∞.

Below, we show that all these complex charts together with the ones
constructed in the previous section determine an atlas on the curve X(Γ).
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Let φ1 : π(U1)→ V1 and φ2 : π(U2)→ V2 be two charts such that

π(U1) ∩ π(U2) 6= ∅.

Consider the commutative diagram

π(U1) ∩ π(U2)
φ2

&&
V1,2

φ−1
1

88

φ2,1 // V2,1

where φ2,1 = φ2◦φ−1
1 , V1,2 = φ1(π(U1)∩π(U2)) and V2,1 = φ2(π(U1)∩π(U2)).

We have to prove that φ2,1 is holomorphic at φ1(x) for all x ∈ π(U1) ∩ π(U2).
Put x = π(τ̃1) = π(τ̃2) with τ̃1 ∈ U1, τ̃2 ∈ U2 and τ̃2 = γτ̃1 for some γ ∈ Γ.
Let U1,2 = U1∩γ−1(U2), an open neighbourhood of τ̃1 in H∗. Since π is open,
its projection π(U1,2) is an open neighbourhood of x in π(U1) ∩ π(U2).
Note that the case φ1 = φτ1 and φ2 = φτ2 , with τ1, τ2 ∈ H, was already
proved in the previous section.

Suppose that φ1 = φτ1 , with τ1 ∈ H, and φ2 = φs2 , with s2 ∈ Q ∪ {∞}.
As before, an input point q = φ1(x′) to φ2,1 in φ1(π(U1,2)) is of the form

q = φ1(π(τ ′)) = ψ1(τ ′) = (δ1(τ ′))h1 , for some τ ′ ∈ U1,2,

where δ1 = δτ1 and h1 is the period of τ1. So the corresponding output is

φ2(x′) = φ2(π(γ(τ ′))) = ψ2(γ(τ ′)) (since γ(τ ′) ∈ U2)

= exp(2πiδ2(γ(τ ′))/h2) = exp(2πiδ2γδ
−1
1 (δ1(τ ′))/h2),

where δ2 : s2 7→ ∞ is the straightening map of φ2 and h2 is the width of s2.
As a consequence, observe that the only case possible where the transition
function might not be holomorphic at φ1(x) is when δ1(τ̃1) = 0 and h1 > 0,
i.e., τ1 = τ̃1 and τ1 is an elliptic point of Γ. But this case is not possible,
since otherwise δ2(γ(τ1)) ∈ N would also be an elliptic point of Γ, which is
an contradiction.

This argument also covers the case φ1 = φs1 , with s1 ∈ Q ∪ {∞}, and
φ2 = φτ2 , with τ2 ∈ H, since the inverse of a holomorphic biyection is also
holomorphic.

Suppose now that φ1 = φs1 and φ2 = φs2 , with s1, s2 ∈ Q ∪ {∞}.
Let δ1 : s1 7→ ∞ and δ2 : s2 7→ ∞ be the corresponding straightening maps.
As π(U1) ∩ π(U2) 6= ∅, there exists γ ∈ Γ such that δ2γδ

−1
1 is a translation,

δ2γδ
−1
1 = ±

[
1 m
0 1

]
, for some m ∈ Z.

As a consequence,

γ(s1) = γδ−1
1 (∞) = ±δ−1

2

[
1 m
0 1

]
(∞) = s2.
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In this case, an input point q = φ1(x′) to φ2,1 in φ1(π(U1,2)) is of the form

q = φ1(π(τ ′)) = ψ1(τ ′) = exp(2πiδ1(τ)/h1), for some τ ′ ∈ U1,2,

where h1 is the width of s1. So the corresponding output is

φ2(x′) = φ2(π(γ(τ ′))) = ψ2(γ(τ ′)) (since γ(τ ′) ∈ U2)

= exp(2πiδ2γδ
−1
1 (δ1(τ ′))/h1)

= exp(2πi(δ1(τ ′) +m)/h1) = exp(2πim/h1)q

Observe that this proves that transition function is holomorphic at φ1(x).

The modular curve X(Γ) is now a compact Riemann surface. Figure 1.5
summarizes the complex charts of X(Γ) for future references.

π : H∗ → X(Γ) is the natural projection.

U ⊂ H∗ is a neighbourhood containing at most one elliptic point or cusp.

The complex chart φ : π(U)→ V satisfies φ ◦ π = ψ,

where ψ : U → V is a composition ψ = λ ◦ δ.

About τ ∈ H: About s ∈ Q ∪ {∞}:

The straightening map is z = δ(τ ′), The straightening map is z = δ(τ ′),

where δ =

[
1 −τ
1 −τ̄

]
, δ(τ) = 0. where δ ∈ SL2(Z), δ(s) =∞.

δ(U) is a neighbourhood of 0. δ(U) is a neighbourhood of ∞.

The wrapping map is q = λ(z) The wrapping map is q = λ(z)

where λ(z) = zh, λ(0) = 0, where λ(z) = e2πiz/h, λ(∞) = 0,

with period h = |{±I}Γτ/{±I}|. with width h = |SL2(Z)s/{±I}Γs|.
V = λ(δ(U)) is a neighbourhood of 0. V = λ(δ(U)) is a neighbourhood of 0.

Figure 1.5: Complex charts on X(Γ)

1.4.3 Genus

Let Γ1,Γ2 be congruence subgroups of SL2(Z) such that Γ1 ⊂ Γ2.

Theorem 1.26. The natural projection of the corresponding modular curves

F : X(Γ1)→ X(Γ2), Γ1τ 7→ Γ2τ,

is a surjective morphism of Riemann surfaces. Its degree is

deg(F ) = |{±I}Γ2 : {±I}Γ1| =
{

[Γ2 : Γ1]/2 if −I ∈ Γ2 and −I /∈ Γ1,
[Γ2 : Γ1] otherwise.
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Proof: Consider the commutative diagram

U

δ

zz
π1

��

id // U

π2

��

δ

$$
δ(U)

λ1 ##

π1(U)

φ1

��

F // π2(U)

φ2

��

δ(U)

λ2{{
V1

Flocal // V2

where φj : πj(U)→ Vj is a chart on X(Γj), for j = 1, 2. Observe that

Flocal ◦ ψ1 = ψ2, where ψj = λj ◦ δ.

Let δ = δτ , with τ ∈ H. Then λ1(z) = zh1 , λ2(z) = zh2 and the local map is

q ∈ V1 7→ qh2/h1 ∈ V2,

where hj = |{±I}Γj,τ |/2, for j = 1, 2. Further, as hj∈{1, 2, 3} and h2/h1∈ Z,
we deduce that the ramification index of F at π1(τ) is

eπ1(τ)(F ) = h2/h1 =

{
h2 if τ is an elliptic point of Γ2 and not of Γ1,
1 otherwise,

= |{±I}Γ2,τ : {±I}Γ1,τ |.

Let δ : s 7→ ∞, with s ∈ Q̂. Then λ1(z) = e2πiz/h1 , λ2(z) = e2πiz/h2 and
the local map is

q ∈ V1 7→ qh1/h2 ∈ V2,

where hj = [SL2(Z) : {±I}Γj,s], for j = 1, 2. Further, as h1/h2 ∈ Z,
we deduce that the ramification index of F at π1(s) is

eπ1(s)(F ) = h1/h2 = |{±I}Γ2,s : {±I}Γ1,s|.

As a consequence, π1(s) is a ramification point of F if and only if h1 > h2.

This proves that the natural projection is a morphism of Riemann surfaces.
To compute its degree, let {±I}Γ2 =

⋃d
j=1{±I}Γ1γj , where γj are coset

representatives. Then the inverse image of a nonelliptic point π2(τ)∈X(Γ2) is

F−1(π2(τ)) = {π1(γ1(τ)), . . . , π1(γd(τ))}.

This shows that
deg(F ) = |{±I}Γ2 : {±I}Γ1|,

since
deg(F ) =

∑
x∈F−1(y)

ex(F ), ∀ y ∈ X(Γ2).

To calculate the genus of X(Γ), specialize to Γ1 = Γ and Γ2 = SL2(Z).
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Theorem 1.27. Let Γ be a congruence subgroup of SL2(Z), F :X(Γ)→ X(1)
the natural projection and d = deg(F ). Let e2 and e3 denote the number of
elliptic points of period 2 and 3 of X(Γ), and e∞ the number of cusps of X(Γ).
Then

2g − 2 =
d

6
− ε2

2
− 2ε3

3
− ε∞.

where g is the genus of X(Γ). As a consequence,

g = 1 +
d

12
− ε2

4
− ε3

3
− ε∞

2
.

Proof: Let y2 = SL2(Z)i, y3 = SL2(Z)ρ and y∞ = SL2(Z)∞ be the
elliptic point of period 2, the elliptic point of period 3 and the cusp of X(1).
Since the elliptic points of period h of X(Γ) are in F−1(yh), for h = 2, 3,

d =
∑

x∈F−1(yh)

ex(F ) = h ·
(
|f−1(yh)| − εh

)
+ 1 · εh.

Using these equalities twice we obtain that∑
x∈F−1(yh)

(ex(F )− 1) = (h− 1) ·
(
|f−1(yh)| − εh

)
=
h− 1

h
(d− εh).

Also, ∑
x∈F−1(y∞)

(ex(F )− 1) = d− ε∞.

Therefore, the Riemann-Hurwitz formula A.28 shows that

2g − 2 = −2d+
1

2
(d− ε2) +

2

3
(d− ε3) + (d− ε∞)

=
d

6
− ε2

2
− 2ε3

3
− ε∞, since the genus of X(1) is equal to 0.



Chapter 2

Automorphic, modular and
cusp forms

In this second chapter we introduce the C-vector spaces of automorphic,
modular and cusp forms. As mentioned at the introduction, modular forms
play a special role in the proof of Fermat’s Last Theorem. They are holo-
morphic functions on the upper half plane that satisfy certain transformation
and holomorphy conditions. We comment on the dimension formulas of the
spaces of modular and cusp forms, and we conclude with two interesting
applications:

- Transformation law of the Dedekind eta function

- Four squares problem

2.1 Basic definitions

Let f : H→ C be a function which is SL2(Z)-invariant, i.e.,

f(τ) = f(α(τ)), ∀ τ ∈ H, ∀α ∈ SL2(Z).

If f is holomorphic, then its derivative satisfies the functional equation

f ′(τ) =
1

(cτ + d)2
f ′(α(τ)), ∀ τ ∈ H, ∀α =

[
a b
c d

]
∈ SL2(Z).

Raising both sides of this functional equation to a positive integer k, we have

(f ′(τ))k =
1

(cτ + d)2k
(f ′(α(τ)))k, ∀ τ ∈ H, ∀α =

[
a b
c d

]
∈ SL2(Z).

Thus we conclude that (f ′)k is also SL2(Z)-invariant up to a factor that
depends on the variable τ ∈ H and on the matrix α ∈ SL2(Z), 1/(cτ + d)2k.

43
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Taking into account this argument, the definitions that we introduce below
are logic and natural.

The factor of automorphy j(α, ·) : H→ C associated to α =

[
a b
c d

]
∈ SL2(Z),

is defined as

j(α, τ) = cτ + d, ∀ τ ∈ H.

The following lemma states the basic properties of the factor of automorphy.
Its proof is really easy and is left as an exercise to the reader.

Lemma 2.1. Let α, α′ ∈ SL2(Z) and τ ∈ H. Then:

1. (αα′)(τ) = α(α′(τ))

2. j(αα′, τ) = j(α, α′(τ))j(α′, τ)

3. Im (α(τ)) = Im (τ)/|j(α, τ)|2

4. dα(τ)/dτ = 1/j(α, τ)2

Let k ∈ Z. The weight-k operator associated to α =

[
a b
c d

]
∈ SL2(Z),

[α]k :M(H)→M(H),

is defined as

(f [α]k)(τ) = j(α, τ)−kf(α(τ)), ∀ τ ∈ H, ∀ f ∈M(H).

As f(α(·)) is a meromorphic function and j(α, ·) is a holomorphic function
without zeros, we deduce that the weight-k operator is well-defined, i.e.,

j(α, ·)−kf(α(·))

is also a meromorphic function. Further, note that [α]k is a linear operator,

(λf + βg)[α]k = λ(f [α]k) + β(g[α]k), ∀ f, g ∈M(H), ∀λ, β ∈ C.

The chosen notation to denote the image of f under [α]k is not usual,
the maps are normally written on the left of the argument in mathematics.
The reason why we write the weight-k operator on the right of the argument
is justified in the following lemma.

Lemma 2.2. Let α, α′ ∈ SL2(Z) and k ∈ Z. Then

[αα′]k = [α]k[α
′]k (equality of operators).
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Proof: Let f ∈M(H). Then

(f [αα′]k)(τ) = j(αα′, τ)f((αα′)(τ))

= j(α′, τ)−kj(α, α′(τ))−kf(α(α′(τ)))

= j(α′, τ)−k(f [α]k)(α
′(τ)) = ((f [α]k)[α

′]k)(τ), ∀ τ ∈ H.

Definition 2.3. Let Γ be a congruence subgroup of SL2(Z) and k ∈ Z.
A meromorphic function f : H→ Ĉ is weight-k invariant under Γ if

f [γ]k = f, ∀ γ ∈ Γ.

Remarks 2.4.

. If f is weight-k invariant under Γ, then f is hZ-periodic, i.e.,

f(τ) = f(τ +mh), ∀ τ ∈ H, ∀m ∈ Z,

where

h = hΓ = min{h ∈ Z+ |
[

1 h
0 1

]
∈ Γ}.

. If f is weight-k invariant under Γ, then its zeros and poles are Γ-invariants,
since the factor of automorphy is a holomorphic function without zeros.

. If f is weight-k invariant under a generating set S of Γ,

f [γ]k = f, ∀ γ ∈ S,

then f is also weight-k invariant under Γ. This is because

1 = j(α, α−1(τ))j(α−1, τ), ∀τ ∈ H, ∀α ∈ SL2(Z),

and

[α1 · · ·αn]k = [α1]k · · · [αn]k, ∀α1, . . . , αn ∈ SL2(Z).

. The functions that are weight-k invariant under Γ form a C-vector space.
If f, g are weight-k invariant under Γ and λ, β ∈ C, then

λf + βg is weight-k invariant under Γ.

. If f is weight-k invariant under Γ and g is weight-l invariant under Γ,
then

- fg is weight-(k + l) invariant under Γ, and

- f/g (g 6= 0) is weight-(k − l) invariant under Γ.
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. If f is weight-k invariant under Γ, −I ∈ Γ and k is odd, then f is the zero
function, since

f(τ) = (−1)kf(τ), ∀ τ ∈ H.

. Let α ∈ SL2(Z). By Lemma 1.7 α−1Γα is also a congruence subgroup.
If f is weight-k invariant under Γ, then the meromorphic function

(f [α]k)(τ) = j(α, τ)−kf(α(τ)), ∀ τ ∈ H,

is weight-k invariant under α−1Γα. Indeed,

f [α]k[α
−1γα]k = f [α]k[α

−1]k[γ]k[α]k

= f [α−1α]k[γ]k[α]k = f [γ]k[α]k = f [α]k, ∀ γ ∈ Γ.

Let us now develop in detail the definition of automorphic form, modular
form and cusp form of weight k ∈ Z with respect to a congruence subgroup Γ.
Let f : H → Ĉ be a meromorphic function which is weight-k invariant
under Γ, h = hΓ and Ḋ the punctured unit disc,

Ḋ = {z ∈ C | 0 < |z| < 1}.

As f is hZ-periodic, the function g : Ḋ→ Ĉ,

g(e2πiτ/h) = f(τ), ∀ τ ∈ H

is well-defined. Then:

We say that the function f is meromorphic (resp. holomorphic) at∞ if
the function g associated to f is meromorphic (resp. holomorphic) at 0.

Note that if f is meromorphic at ∞, then g has a Laurent series,

g(qh) =
∑
n∈Z

anq
n
h , where qh = e2πiτ/h,

which has finitely many nonzero negative terms. We refer to this series as
the Fourier series of f . The order of f at ∞ is defined as

ν∞(f) = min{n ∈ Z | an 6= 0},

except when f = 0, in which case ν∞(f) = +∞.

Let α ∈ SL2(Z). Then α−1Γα is also a congruence subgroup and the
meromorphic function

(f [α]k)(τ) = j(α, τ)−kf(α(τ)), ∀ τ ∈ H,

is weight-k invariant under α−1Γα. Therefore, it makes sense to ask yourself
if f [α]k is meromorphic (resp. holomorphic) at ∞.
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Definition 2.5. Let Γ be a congruence subgroup of SL2(Z) and k ∈ Z.
A meromorphic function f : H→ Ĉ is an automorphic form of weight k with
respect to Γ if

. f is weight-k invariant under Γ, and

. f [α]k is meromorphic at ∞, for all α ∈ SL2(Z).

The zero function is evidently an automorphic form of any weight k ∈ Z
with respect to SL2(Z). The constant functions are also automorphic forms
of weight 0 with respect to SL2(Z). In subsection 2.1.1 we present some
nontrivial examples of automorphic forms.

The set of automorphic forms of weight k with respect to Γ is denoted Ak(Γ).
It is a C-vector space, since if f, g∈Ak(Γ) and λ, β∈C, then αf + βg ∈ Ak(Γ).

The second condition of the definition, f [α]k is meromorphic at ∞, must
be interpreted as a condition of meromorphy at the cusps s = α(∞) of Γ.
Note that it only needs to be checked for finitely many coset representatives αj
in any decomposition SL2(Z) =

⋃d
j=1 Γαj , since

α−1
j Γαj = (γαj)

−1Γ(γαj)

and
f [γαj ]k = f [γ]k[αj ]k = f [αj ]k, ∀ γ ∈ Γ.

Let f : H → Ĉ be an automorphic form of weight k with respect to Γ.
The order of f at a cusp s ∈ Q̂ = Q ∪ {∞} is defined as

νs(f) = ν∞(f [α]k), where α ∈ SL2(Z), α(∞) = s.

We have to prove that this definition is independent of the chosen matrix α.

Let h be the smallest positive integer such that
[

1 h
0 1

]
∈ α−1Γα. Consider

the Fourier series of f [α]k,

(f [α]k)(τ) =
∑
n∈Z

anq
n
h , qh = e2πiτ/h.

By definition
ν∞(f [α]k) = min{n ∈ Z | an 6= 0}.

Furthermore, the matrices of SL2(Z) that take ∞ to s are

±αβ, with β =

[
1 j
0 1

]
, j ∈ Z,

and (f [±αβ]k)(τ) = (±1)k(f [α]k)(τ + j), ∀ τ ∈ H. Therefore,

(f [±αβ]k)(τ) = (±1)k
∑
n∈Z

anµ
nj
h q

n
h , qh = e2πiτ/h,
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where µh is the complex h-th root of the unity e2πi/h (e2πi(τ+j)/h = µjhqh).

Thus we can conclude that the definition of the order of f at the cusp s
is independent of the chosen matrix α ∈ SL2(Z) with α(∞) = s.

Note that the order of f is also well-defined on the modular curve X(Γ),
i.e., if s ∈ Q̂ and γ ∈ Γ, then

νs(f) = νγ(s)(f).

The modular forms are defined the same way as automorphic forms except
with holomorphy in place of meromorphy.

Definition 2.6. Let Γ be a congruence subgroup of SL2(Z) and k ∈ Z.
A holomorphic function f : H → Ĉ is a modular form of weight k with
respect to Γ if

. f is weight-k invariant under Γ, and

. f [α]k is holomorphic at ∞, for all α ∈ SL2(Z).

If in addition,

. a0 = 0 in the Fourier series of f [α]k, for all α ∈ SL2(Z),

then f is a cusp form of weight k with respect to Γ.

The sets of modular and cusp forms of weight k with respect to Γ are denoted

Mk(Γ) and Sk(Γ),

respectively. Note that both sets are vector subspaces of Ak(Γ), since

Mk(Γ) = {f ∈ Ak(Γ) | f is holomorphic and ν∞(f [α]k) ≥ 0,∀α ∈ SL2(Z)}

and

Sk(Γ) = {f ∈ Ak(Γ) | f is holomorphic and ν∞(f [α]k) ≥ 1,∀α ∈ SL2(Z)}.

As a consequence,

Sk(Γ) ⊂Mk(Γ) ⊂ Ak(Γ) ⊂M(H).

Remarks 2.7.

. Let Γ1, Γ2 be congruence subgroups of SL2(Z) such that Γ1 ⊂ Γ2. Then

Sk(Γ2) ⊂ Sk(Γ1), Mk(Γ2) ⊂Mk(Γ1) and Ak(Γ2) ⊂ Ak(Γ1).
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. Let α ∈ SL2(Z). The weight-k operator associated to the matrix α
induces the following isomorphisms of C-vector spaces:

Ak(Γ) ∼= Ak(α−1Γα) Mk(Γ) ∼=Mk(α
−1Γα) Sk(Γ) ∼= Sk(α−1Γα)

. If f ∈Ak(Γ) (resp. Mk(Γ) or Sk(Γ)) and g∈Al(Γ) (resp. Ml(Γ) or Sl(Γ)),
then fg ∈ Ak+l(Γ) (resp. Mk+l(Γ) or Sk+l(Γ)). Indeed,

- fg is weight-(k + l) invariant under Γ, and

- the Fourier series of (fg)[α](k+l), with α ∈ SL2(Z), is

(fg)[α](k+l) =
∑
n∈Z

(
∑
s+j=n

asbj)q
n
h , qh = e2πiτ/h,

where

f [α]k =
∑
s∈Z

asq
s
h, g[α]l =

∑
j∈Z

bjq
j
h and h = h(α−1Γα).

Thus the direct sums

A(Γ) =
⊕
k∈Z
Ak(Γ), M(Γ) =

⊕
k∈Z
Mk(Γ) and S(Γ) =

⊕
k∈Z
Sk(Γ)

forms graded rings.

. Let R = A,M or S. For each α ∈ SL2(Z), the map∑
k∈Z

fk ∈ R(Γ) 7→
∑
k∈Z

fk[α]k ∈ R(α−1Γα)

is an isomorphism of graded rings.

. If f ∈ Mk(Γ) and g ∈ Sl(Γ), then fg ∈ Sk+l(Γ). As a consequence,
observe that S(Γ) is a graded ideal of M(Γ), since

M(Γ)S(Γ) ⊂ S(Γ) and S(Γ) =
⊕
k∈Z

(Mk(Γ) ∩ S(Γ)).

. If f ∈ Ak(Γ) and g ∈ Al(Γ) (g 6= 0), then f/g ∈ Ak−l(Γ). Indeed,

1/g ∈ A−l(Γ) and f/g = f(1/g) ∈ Ak−l(Γ).

In particular, note that

Ak(Γ) = fA0(Γ) = {ff0 | f0 ∈ A0(Γ)}, whenever f 6= 0.
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. If f, g ∈ A0(Γ) and λ, β ∈ C, then λf + βg, fg, 1/f (f 6= 0) ∈ A0(Γ).
This implies that A0(Γ) is a C-algebra that presents structure of field.
Moreover, the map

f ∈ A0(Γ) 7→ F ∈M(X(Γ)), F (x) =

{
f(τ) if x = Γτ ,
f(s) if x = Γs,

defines an isomorphism of C-algebras.

. If −I ∈ Γ and k is odd, then Sk(Γ) = Mk(Γ) = Ak(Γ) = {0}, since
the only function that is weigh-k invariant under Γ is the zero function.

Theorem 2.8. Let Γ be a congruence subgroup of SL2(Z) of level N , k ∈ Z
and f : H→ C a holomorphic function. If f is weight-k invariant under Γ,
f is holomorphic at ∞,

f(τ) =

∞∑
n=0

anq
n
N , qN = e2πiτ/N , ∀ τ ∈ H,

and in addition, there exist positive constants C and r such that

|an| ≤ Cnr, ∀n ≥ 1,

then f [α]k is holomorphic at∞, ∀α ∈ SL2(Z). As a consequence, f ∈Mk(Γ).

Proof: Let α ∈ SL2(Z). The function

(f [α]k)(τ) = j(α, τ)−kf(α(τ)), ∀ τ ∈ H,

is holomorphic and weight-k invariant under α−1Γα, so it has an expansion

(f [α]k)(τ) =
∑
n∈Z

a′nq
n
N , ∀ τ ∈ H.

Therefore, to prove that f [α]k is holomorphic at ∞, it suffices to see that

lim
qN→0

((f [α]k)(τ) · qN ) = 0. (2.1)

Let us suppose that we have proved that there exist constants C0, C1 > 0
satisfying the following property:

|f(τ)| ≤ C0 + C1/y
r, as y →∞ (τ = x+ iy ∈ H). (2.2)

If α(∞) =∞, then (2.1) is immediate, since α = ±
[ 1m

0 1

]
, with m ∈ Z, and

(f [α]k(τ)) = (±1)kf(τ +m) = (±1)kµmN

∞∑
n=0

anq
n
N , ∀ τ ∈ H,
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where µN = e2πi/N . Otherwise, we have c 6= 0 and

|(f [α]k)(τ)| = |f(α(τ))||cτ + d|−k

≤
(
C0 + C1Im (α(τ))−r

)
|cτ + d|−k

=
(
C0 + C1|cτ + d|2ry−r

)
|cτ + d|−k, as y →∞,

where c and d are the lower entries of the matrix α. If we assume that

0 ≤ x ≤ N ((f [α]k)(τ) = (f [α]k)(τ +N)),

then |cτ+d| grows as y, and as a consequence, there exists a constant C2 > 0
such that

|(f [α]k)(τ)| ≤ C2y
r−k, as y →∞.

Using this estimation we obtain (2.1), since y = (N/2π) log(1/|qN |) and

|(f [α]k)(τ) · qN | ≤ C2(N/2π)r−k log(1/|qN |)r−k|qN | → 0, as qN → 0.

To conclude this proof we need to prove that there exist constants C0, C1 > 0
satisfying the property (2.2). By hypothesis,

|f(τ)| ≤ |a0|+ C

∞∑
n=1

nre−2πny/N , ∀ τ = x+ iy ∈ H.

Let gy : R→ R be the function

gy(t) = tre−2πty/N , ∀ t ∈ R.

As its derivative is

g′y(t) =

(
rtr−1 − 2πy

N
tr
)
e−2πty/N , ∀ t ∈ R,

we deduce that this function decreases monotonically on the interval [ rN2πy ,∞).
Therefore,

|f(τ)| ≤ |a0|+ C
(
gy(1) +

∞∑
n=2

gy(n)
)

≤ |a0|+ C
(

1 +
∞∑
n=2

∫ n

n−1
gy(t) dt

)
[rN/2π < y]

≤ |a0|+ C + C

∫ ∞
0

tre−2πty/N dt [t = 2πty/N ]

= |a0|+ C + C(N/2π)r+11/yr+1

∫ ∞
0

tre−t dt, as y →∞.
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Letting

C0 = |a0|+ C and C1 = C(N/2π)r+1

∫ ∞
0

tre−t dt,

we obtain that

|f(τ)| ≤ C0 + C1/y
r, as y →∞ (τ = x+ iy ∈ H).

The condition of holomorphy at the cusps, f [α]k is holomorphic at ∞,
keeps the vector spaces of modular and cusp forms finite-dimensional.

Theorem 2.9. Let k be an even integer. Let Γ be a congruence subgroup of
SL2(Z), g the genus of X(Γ), ε2 the number of elliptic points with period 2,
ε3 the number of elliptic points with period 3 and ε∞ the number of cusps.
Then

dim(Mk(Γ)) =


(k − 1)(g − 1) +

⌊
k
4

⌋
ε2 +

⌊
k
3

⌋
ε3 + ε∞, if k ≥ 2,

1, if k = 0,
0, if k < 0,

and

dim(Sk(Γ)) =


(k − 1)(g − 1) +

⌊
k
4

⌋
ε2 +

⌊
k
3

⌋
ε3 + (k2 − 1)ε∞, if k ≥ 4,

g, if k = 2,
0, if k ≤ 0.

Proof: [DS05, p.86-88]

Let s ∈ Q̂ and α ∈ SL2(Z) taking ∞ to s. Recall that the width h ∈ Z+

of s with respect to a congruence subgroup Γ satisfies the condition

{±I}(Γα)∞ = {±I}
〈[

1 h
0 1

]〉
, where Γα = α−1Γα.

Therefore, this implies that

(Γα)∞ = {±I}
〈[

1 h
0 1

]〉
, (Γα)∞ =

〈[
1 h
0 1

]〉
or (Γα)∞ =

〈
−
[

1 h
0 1

]〉
,

since the negative identity matrix −I might not be in the subgroup α−1Γα.

The cusp π(s) ∈ X(Γ) is called a regular cusp of Γ if

(Γα)∞ = {±I}
〈[

1 h
0 1

]〉
or (Γα)∞ =

〈[
1 h
0 1

]〉
.

Otherwise, π(s) is called irregular cusp of Γ,

(Γα)∞ =
〈
−
[

1 h
0 1

]〉
.

Note that this definition is independent of the chosen matrix α ∈ SL2(Z).



2. Automorphic, modular and cusp forms 53

Theorem 2.10. Let k be an odd integer. Let Γ be a congruence subgroup of
SL2(Z), g the genus of X(Γ), ε3 the number of elliptic points with period 3,
εreg∞ the number of regular cusps and εirr∞ the number of irregular cusps.
If −I /∈ Γ, then

dim(Mk(Γ)) =

{
(k − 1)(g − 1) +

⌊
k
3

⌋
ε3 + k

2ε
reg
∞ + k−1

2 εirr∞ , if k ≥ 3,
0, if k < 0,

and

dim(Sk(Γ)) =

{
(k − 1)(g − 1) +

⌊
k
3

⌋
ε3 + k−2

2 εreg∞ + k−1
2 εirr∞ , if k ≥ 3,

0, if k < 0.

If εreg∞ > 2g − 2, then dim(M1(Γ)) = εreg∞ /2 and dim(S1(Γ)) = 0. If εreg∞ ≤
2g− 2, then dim(M1(Γ)) ≥ εreg∞ /2 and dim(S1(Γ)) = dim(M1(Γ))− εreg∞ /2.

Proof: [DS05, p.90-91]

The demonstration of these dimension formulas uses the Riemann-Roch
Theorem A.44. Specifically, the following consequence:

Let X be a compact Riemann surface of genus g. If D is a divisor on X
such that deg(D) > 2g − 2, then

dimL(D) = deg(D)− g + 1.

We introduce some applications of these dimension formulas in Section 2.2.

Remark 2.11. Observe that we have not given dimension formulas for
the vector spaces

M1(Γ) and S1(Γ), when εreg∞ ≤ 2g − 2.

Determining dimension formulas for these spaces is an open problem.

2.1.1 Eisenstein series for SL2(Z)

Let k ≥ 3 be an even integer. The Eisenstein series of weight k for SL2(Z)
is defined as

Gk(τ) =
∑′

(c,d)

1

(cτ + d)k
, ∀ τ ∈ H,

where the primed summation means to sum over the pairs (c, d) ∈ Z2\{(0, 0)}.
If we let Λτ denote the lattice

τZ + Z = {cτ + d | c, d ∈ Z}, τ ∈ H,



54 Modular forms

then another expression for the Eisenstein series of weight k is

Gk(τ) =
∑′

w∈Λτ

1

wk
, ∀ τ ∈ H,

where the primed summation means now to sum over the points w ∈ Λτ \{0}.
The following lemma is an important technical result. We will use it

to prove that the Eisenstein series define holomorphic functions on the upper
half plane.

Lemma 2.12. Let Λ be a lattice in C and r > 0. Then the series∑′

w∈Λ

1

|w|r
<∞ if and only if r > 2.

Proof: Let (w1, w2) be a basis of Λ. For each k ∈ Z+, define

Ak = {mw1 + nw2 | (m,n) ∈ Z2, |m|+ |n| = k} and

Sk = {xw1 + yw2 | (x, y) ∈ R2, |x|+ |y| = k}.
Then

Ak ⊂ Sk, Sk = kS1 and |Ak| = 4k, ∀ k ∈ Z+.

Using this, we obtain that∑′

w∈Λ

1

|w|r
=
∞∑
k=1

∑
w∈Ak

1

|w|r
, (2.3)

4

Cr

∞∑
k=1

1

kr−1
≤
∞∑
k=1

∑
w∈Ak

1

|w|r
≤ 4

cr

∞∑
k=1

1

kr−1
, (2.4)

where
C = max

z∈S1

|z| and c = min
z∈S1

|z|.

As the series of positive terms

∞∑
k=1

1

kr−1
<∞ if and only if r > 2,

the proof of the lemma is an immediate consequence of (2.3) and (2.4).

Theorem 2.13. The Eisenstein series

Gk(τ) =
∑
(c,d)

′ 1

(cτ + d)k
, with k ≥ 3,

defines a holomorphic function on the upper half plane.
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Proof: We show that the series converges uniformly on the subset

Ω(a, b) = {τ ∈ H | |Re τ | ≤ a, Im τ ≥ b}, a, b > 0.

Let τ ∈ H, τ = x+ iy, and c, d ∈ Z. Then

|cτ + d|2 = c2x2 + d2 + 2cdx+ c2y2.

Choose δ > 0 such that a2

a2+b2
< δ2 < 1 and rewrite the anterior equality as

|cτ + d|2 =

[
y2 +

(
1− 1

δ2

)
x2

]
c2 +

(
δd+

cx

δ

)2
+ (1− δ2)d2.

If τ ∈ Ω(a, b) (i.e., |x| ≤ a and y ≥ b), we obtain that

|cτ + d|2 ≥
[
y2 +

(
1− 1

δ2

)
x2

]
c2 + (1− δ2)d2

≥
[
b2 +

(
1− 1

δ2

)
a2

]
c2 + (1− δ2)d2.

As the coefficients of c2 and d2 are both positive, there exists ε > 0 such that

|cτ + d|2 ≥ ε2(c2 + d2), ∀ c, d ∈ Z,

or equivalently,

1

|cτ + d|
≤ 1

ε

1

|ci+ d|
, ∀ (c, d) ∈ Z2, (c, d) 6= (0, 0). (2.5)

Furthermore, by Lemma 2.12∑′

(c,d)

1

|ci+ d|k
<∞,

so it suffices to apply the Weierstrass M-test to deduce that the series∑′

(c,d)

1

(cτ + d)k

converges uniformly on the subset Ω(a, b).

We only have defined Eisenstein series of weight k ≥ 3 even. If k ≥ 3 is odd,
thenGk is also a holomorphic function, but in this case it is the zero function,
since the terms corresponding to (c, d),−(c, d) ∈ Z2\{(0, 0)},

1

(cτ + d)k
and

1

(−1)k(cτ + d)k
,
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cancel out - are cancelled.

Below, we show thatGk is a modular form of weight k with respect to SL2(Z).
Let α =

[ a b
c d

]
∈ SL2(Z). Then

Gk(α(τ)) =
∑′

(c′,d′)

1

(c′(α(τ)) + d′)k

= (cτ + d)k
∑′

(c′,d′)

1

((c′a+ d′c)(τ) + (c′b+ d′d))k
, ∀ τ ∈ H.

Furthermore, as the map (c′, d′) 7→ (c′, d′)
[ a b
c d

]
= (c′a + d′c, c′b + d′d) is

a bijection from Z2\{(0, 0)} to itself, we deduce that the right side of this
equality is (cτ+d)kGk(τ). Therefore, Gk is weight-k invariant under SL2(Z),

Gk[α]k = Gk, ∀α ∈ SL2(Z).

To compute the Fourier series of Gk, we use the following two identities
of the cotangent function:

π cot(πz) =
1

z
+

∞∑
d=1

(
1

z − d
+

1

z + d

)
, ∀ z ∈ C \ Z (2.6)

π cot(πτ) = πi
q + 1

q − 1
= πi− 2πi

∞∑
m=0

qm, q = e2πiτ , ∀ τ ∈ H (2.7)

The first identity is a partial fraction decomposition of the meromorphic
function π cot(πz). We omit its proof since it is not trivial. It can be
consulted in [SS03, p.142]. The second identity follows from the expansion

1

q − 1
= −

∞∑
m=0

qm, ∀ q ∈ C, |q| < 1.

Equating these two expressions for π cot(πτ) and differentiating k−1 times
with respect to τ , we obtain that

∑
d∈Z

1

(τ + d)k
=

(−2πi)k

(k − 1)!

∞∑
m=1

mk−1qm, ∀ τ ∈ H, k ≥ 2. (2.8)

For k ≥ 3 even,

∑′

(c,d)

1

(cτ + d)k
=
∑
d 6=0

1

dk
+ 2

∞∑
c=1

(∑
d∈Z

1

(cτ + d)k

)

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
c=1

∞∑
m=1

mk−1qcm, ∀ τ ∈ H,
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where ζ denotes the Riemann zeta function,

ζ(s) =
∞∑
n=1

1

ns
, ∀ s ∈ C, Re (s) > 1.

Rearranging the terms of the last double series gives the Fourier series,

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn, ∀ τ ∈ H, (2.9)

where the coefficients of the series are the values of the arithmetic function

σk−1(n) =
∑
m|n
m>0

mk−1, ∀n ≥ 1.

This proves that Gk is a modular form of weight k with respect to SL2(Z).

Remark 2.14. For each 0 < r < 1, observe that

∞∑
c=1

∞∑
m=1

mk−1|q|cm =
∞∑
m=1

mk−1 |q|m

1− |q|m

≤ 1

1− r

∞∑
m=1

mk−1rm <∞, ∀ q ∈ rD.

Therefore, the doubles series

∞∑
c=1

∞∑
m=1

mk−1qcm, q ∈ D, k ∈ Z,

converges uniformly on compact subsets of the unit disc.

Remark 2.15. There is another way of proving thatGk is holomorphic at ∞
without having to compute its Fourier series. Let a = 1/2 and b = 1. By the
proof of Theorem 2.13 there exists a positive constant C such that

|Gk(τ)| ≤
∑′

(c,d)

1

|cτ + d|k
≤ C

∑′

(c,d)

1

|ci+ d|k
, ∀ τ ∈ Ω(a, b),

and since Gk is Z-periodic

|Gk(τ)| ≤ C
∑′

(c,d)

1

|ci+ d|k
, ∀ τ = x+ iy ∈ H, y ≥ 1.

Hence Gk is bounded as Im (τ)→∞, and the function g associated to Gk,

g(q) = Gk(τ), q = e2πiτ , ∀ τ ∈ H,

has a removable singularity at q = 0.
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For an nontrivial example of cusp form of weight 12 with respect to SL2(Z),
let g2, g3 : H→ C be the functions

g2(τ) = 60G4(τ), g3(τ) = 140G6(τ), ∀ τ ∈ H.

and define the discriminant function

∆ : H→ C, ∆(z) = g2(τ)3 − 27g3(τ)2, ∀ τ ∈ H

If we let ℘τ denote the Weierstrass ℘-function for the lattice Λτ = τZ + Z,
then the nonsingular cubic equation satisfied by ℘τ and ℘′τ is

(℘′τ )2 = 4℘3
τ − g2(τ)℘τ − g3(τ),

since

g2(τ) = 60
∑′

w∈Λτ

1

w4
, g3(τ) = 140

∑′

w∈Λτ

1

w6
, ∀ τ ∈ H.

Therefore, the discriminant function is nonvanishing on H by Theorem B.7,

∆(τ) 6= 0, ∀ τ ∈ H.

As g2∈M4(SL2(Z)) and g3∈M6(SL2(Z)), we deduce that ∆∈M12(SL2(Z)).
Furthermore, using the expansions (2.9) and the identities

ζ(4) =
∞∑
n=1

1

n4
=
π4

90
and ζ(6) =

∞∑
n=1

1

n6
=

π6

945
, (2.10)

we obtain that

∆(τ) = π12(212q + · · · ), q = e2πiτ , ∀ τ ∈ H.

Thus we conclude that ∆ is cusp form of weight 12 with respect to SL2(Z).

Remark 2.16. The identities in (2.10) are well-known. They can be derived
from (2.6) by taking Laurent series around z = 0 to both sides and equating
the coefficients of z3 and z5.

The modular function j : H→ C is defined as

j(τ) = 1728
(g2(τ))3

∆(τ)
, ∀ τ ∈ H.

Observe that it is a holomorphic function since the discriminant function ∆
does not have zeros in H. Furthermore, as the numerator and denominator
are modular forms of weight 12 with respect to SL2(Z), we deduce that
the function j is an automorphic form of weight 0 with respect to SL2(Z).



2. Automorphic, modular and cusp forms 59

The coefficient 1728 normalizes its Fourier series to

j(τ) =
(2π)12 + · · ·
(2π)12q + · · ·

=
1

q
+
∞∑
n=0

anq
n, q = e2πiτ , ∀ τ ∈ H. (2.11)

It is possible to prove that the coefficients an are integer numbers [Apo90, p.21].

The following theorem states that any automorphic form of weight 0 with
respect to SL2(Z) is a rational expression in the modular function j, i.e.,

A0(SL2(Z)) = C(j).

Theorem 2.17. The modular function j generates the field of meromorphic
functions on the modular curve X(SL2(Z)).

Before proving this theorem, observe that as a consequence of (2.11),
the modular function j : X(SL2(Z))→ Ĉ has a simple pole at x∞=SL2(Z)∞.

Proof: Let f : X(SL2(Z)) → Ĉ be a nonconstant meromorphic function.
We can suppose without loss of generality that f has neither a zero nor
a pole at x∞, since if f has a zero or a pole at x∞, then we can replace it
by the function

fje, where e = ordx∞(f).

Define the function

g : X(SL2(Z))→ Ĉ, g(τ) =

∏n
i=1(j(τ)− j(zi))∏m
i=1(j(τ)− j(pi))

, ∀ τ ∈ H,

where z1, . . . zn and p1, . . . pm are the zeros and poles of f , respectively,
listed with multiplicity. Observe that g has the same zeros and poles as f ,
since by Theorem A.35 we have∑

x∈X(SL2(Z))

ordx(f) = n−m = 0 (g(∞) ∈ C∗).

Therefore, the function f/g has not zeros and poles, and as a consequence,
it must be constant by Corollary A.14. This proves that

f = cg ∈ C(j), for some constant c ∈ C.

Remarks 2.18.

. The modular function j : X(SL2(Z)) → Ĉ is a isomorphism of Riemann
surfaces, since j has only a simple pole at SL2(Z)∞ (Theorem A.34).
As a consequence, the genus of X(SL2(Z)) is equal to 0.
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. The restriction of the modular function j to the fundamental domain F
for SL2(Z) defined in Subsection 1.3.1,

F = {τ ∈ H | |Re (τ)| ≤ 1/2, |τ | ≥ 1},

is a surjective function (Lemma 1.13).

. The derivative of the modular function j satisfies the functional equation

j′ = (j′)[α]2, ∀α ∈ SL2(Z).

Furthermore, observe that j′ is meromorphic at ∞, since

j′(τ) = −2πi
(1

q
−
∞∑
n=0

nanq
n
)
, q = e2πiτ , ∀ τ ∈ H.

Therefore, the spaces of automorphic forms A2k(SL2(Z)), with k ∈ Z,
contain nonzero elements.

. More generally, if Γ is a congruence subgroup that does not contain
the matrix −I, then the spaces of automorphic forms Ak(Γ), with k ∈ Z,
are not trivial [DS05, p.91-92].

2.1.2 More examples of modular forms

The Eisenstein series of weight 2 for SL2(Z) is defined as

G2(τ) =
∑
c∈Z

∑
d∈Z′c

1

(cτ + d)2
, ∀ τ ∈ H,

where Z′c = Z \ {0} if c = 0 and Z′c = Z otherwise. This double series
does not converges absolutely (Lemma 2.12), but if we sum in the indicated
order, we have a convergent series.

Theorem 2.19. The Eisenstein series of weight 2 defines a holomorphic
function on the upper half plane. Furthermore,

G2(τ) = 2ζ(2)− 8π2
∞∑
n=1

σ(n)qn, q = e2πiτ , ∀ τ ∈ H,

where the coefficients of the series are the values of the arithmetic function

σ(n) =
∑
d|n
d>0

d, ∀n ≥ 1.
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Proof: As in the previous section, using (2.8) we have∑
c∈Z

∑
d∈Z′c

1

(cτ + d)2
= 2ζ(2) + 2

∞∑
c=1

(∑
d∈Z

1

(cτ + d)2

)

= 2ζ(2) + 2(−2πi)2
∞∑
c=1

∞∑
m=1

mqcm, ∀ τ ∈ H.

Therefore, G2 defines a holomorphic function on H, since the double series

∞∑
c=1

∞∑
m=1

mqcm, q ∈ D,

converge uniformly on compact subsets of the unit disc (see Remark 2.14).
To obtain its Fourier series it suffices to rearrange the terms of this double
series.

An immediate consequence of this theorem is that the Eisenstein series
of weight 2 is Z-periodic, i.e.,

G2(τ) = G2(τ +m), ∀ τ ∈ H, ∀m ∈ Z,

and therefore it is invariant under the operator [T ]2, where T =
[ 1 1

0 1

]
.

However, if we let S =
[ 0−1

1 0

]
, then

(G2[S]2)(τ) = τ−2
∑
c∈Z

∑
d∈Z′c

1

(c(1/τ) + d)2

=
∑
c∈Z

∑
d∈Z′c

1

(dτ + c)2
= 2ζ(2) +

∑
d∈Z

∑
c 6=0

1

(cτ + d)2
, ∀ τ ∈ H,

which differs fromG2(τ) = 2ζ(2)+
∑
c 6=0

∑
d∈Z

(cτ+d)−2 in the order of summation.

Lemma 2.20. Let τ ∈ H. Then∑
c6=0

∑
d∈Z

1

(cτ + d)(cτ + d+ 1)
= 0.

Proof: Using partial fractions, we have∑
c 6=0

∑
d∈Z

1

(cτ + d)(cτ + d+ 1)
=
∑
c 6=0

∑
d∈Z

(
1

(cτ + d)
− 1

(cτ + d+ 1)

)
and∑
d∈Z

(
1

(cτ + d)
− 1

(cτ + d+ 1)

)
= lim
N→∞

N−1∑
d=−N

(
1

(cτ + d)
− 1

(cτ + d+ 1)

)
.
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As the finite sum is telescoping, we deduce that

N−1∑
d=−N

(
1

(cτ + d)
− 1

(cτ + d+ 1)

)
=

1

(cτ −N)
− 1

(cτ +N)

N →∞
−→ 0.

As a consequence of this lemma, observe that

G2(τ) = G2(τ)−
∑
c 6=0

∑
d∈Z

1

(cτ + d)(cτ + d+ 1)

= 2ζ(2) +
∑
c 6=0

∑
d∈Z

1

(cτ + d)2(cτ + d+ 1)
, ∀ τ ∈ H.

where the double sum is now absolutely convergent (recall the proof of
Theorem 2.13). Changing the order of summation in the double series
and separating the convergence terms back out, we obtain that

G2(τ) = 2ζ(2) +
∑
d∈Z

∑
c 6=0

1

(cτ + d)2(cτ + d+ 1)

= (G2[S]2)(τ)−
∑
d∈Z

∑
c 6=0

1

(cτ + d)(cτ + d+ 1)
, ∀ τ ∈ H,

The error term is

−
∑
d∈Z

∑
c 6=0

1

(cτ + d)(cτ + d+ 1)
= − lim

N→∞

N−1∑
d=−N

∑
c 6=0

1

(cτ + d)(cτ + d+ 1)

= − lim
N→∞

∑
c 6=0

N−1∑
d=−N

(
1

cτ + d
− 1

cτ + d+ 1

)

= − lim
N→∞

1

τ

∑
c 6=0

(
1

c+ (−N/τ)
+

1

(−N/τ)− c

)

since the finite series is telescoping. Using the identities 2.6 and 2.7 of the cotangent
function (Subsection 2.1.1), we can write

1

τ

∑
c6=0

(
1

c+ (−N/τ)
+

1

(−N/τ)− c

)
=

2πi

τ
+

2

N
− 4πi

τ

∞∑
m=0

(e−2πiN/τ )m,

and therefore

lim
N→∞

1

τ

∑
c 6=0

(
1

c+ (−N/τ)
+

1

(−N/τ)− c

)
=

2πi

τ
.
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Theorem 2.21. The Eisenstein series of weight 2 satisfies the functional
equation

G2[α]2(τ) = G2(τ)− 2πic

j(α, τ)
, ∀ τ ∈ H, ∀α =

[
a b
c d

]
∈ SL2(Z).

Proof: Since SL2(Z) is generated by the matrices T and S (Lemma 1.1),
it suffices to prove the following assertion: Suppose that G2 satisfies the
equation for two matrices α1 =

[ a1 b1
c1 d1

]
, α2 =

[ a2 b2
c2 d2

]
∈ SL2(Z),

G2[α1]2(τ) = G2(τ)− 2πic1

j(α1, τ)
, ∀ τ ∈ H (2.12)

and

G2[α2]2(τ) = G2(τ)− 2πic2

j(α2, τ)
, ∀ τ ∈ H. (2.13)

Then G2 also satisfies the equation for the inverse α−1
1 =

[
d1 −b1−c1 a1

]
and

the product

α1α2 =

[
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

]
.

Applying the operator [α−1
1 ]2 to both sides of the equation (2.12) and

using that 1 = j(α1, α
−1
1 (τ))j(α−1

1 , τ), we obtain that

G2(τ) = (G2[α−1]2)(τ) +
2πi(−c1)

j(α−1
1 , τ)

, ∀ τ ∈ H.

As a consequence, observe that G2 satisfies the equation for the inverse α−1
1 .

Now applying the operator [α2]2 to both sides of the equation (2.12) and
using that j(α1α2, τ) = j(α1, α2(τ))j(α2, τ), we obtain that

(G2[α1α2]2)(τ) = (G2[α2]2)(τ)− 2πic1

j(α1α2, τ)j(α2, τ)

= G2(τ)− 2πic2

j(α2, τ)
− 2πic1

j(α1α2, τ)j(α2, τ)
[(2.13)]

= G2(τ)− 2πi(c1a2 + d1c2)

j(α1α2, τ)

j(α2, τ)

j(α2, τ)
[1 + c2b2 = a2d2]

= G2(τ)− 2πi(c1a2 + d1c2)

j(α1α2, τ)
, ∀ τ ∈ H.

Therefore, observe that G2 also satisfies the equation for the product α1α2.

For any N ∈ Z+, define G2,N : H→ C as

G2,N (τ) = G2(τ)−NG2(Nτ), ∀ τ ∈ H.
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Then this holomorphic function is a example of modular form of weight 2
with respect to Γ0(N), since

(G2,N [α]2)(τ) = G2(τ)− 2πic′N

j(α, τ)
− N

j(α, τ)2
G2(Nα(τ))

= G2(τ)−N
(

2πic′

j(α′, Nτ)
+G2[α′]2(Nτ)

) (
α′ =

[ a Nb
c′ d

])
= G2(τ)−NG2(Nτ), ∀ τ ∈ H, ∀α =

[
a b
c′N d

]
∈ Γ0(N),

and its Fourier series is

G2,N (τ) = 2ζ(2)(1−N)− 8π2
∞∑
n=1

σ1,N (n)qn, q = e2πiτ , ∀ τ ∈ H,

where the coefficients of the series are the values of the arithmetic function

σ1,N (n) =
∑

0<d|n
N -d

d, ∀n ≥ 1.

2.2 Some applications

2.2.1 Transformation law of the Dedekind eta function

The Dedekind eta function η : H→ C is defined as the infinite product

η(τ) = q24

∞∏
n=1

(1− qn), q24 = e2πiτ/24, q = e2πiτ , ∀ τ ∈ H.

Lemma 2.22. The series

∞∑
n=1

log(1− qn), q ∈ D,

converges uniformly on compact subsets of the unit disc. As a consequence,
the function η defines a holomorphic function on the upper half plane.

Proof: Let 0 < r < 1. Recall that

log(1 + z) =
∞∑
n=0

(−1)nzn+1

n+ 1
, ∀ z ∈ C, |z| < 1.

Using this Taylor series, we obtain the estimation

| log(1 + z)| ≤
∞∑
n=0

|z|n+1 ≤ |z|
1− r

, ∀ z ∈ C, |z| < r.
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Therefore,

∞∑
n=1

| log(1− qn)| ≤ 1

1− r

∞∑
n=1

rn =
r

(1− r)2
, ∀ q ∈ D, |q| < r.

Note that the function η is nonvanishing on H, since q24 6= 0 and

∞∏
n=1

(1− qn) = e
∑∞
n=1 log(1−qn) 6= 0, ∀ τ ∈ H.

Theorem 2.23. The Dedekind eta function satisfies the transformation law

η(−1/τ) =
√
−iτη(τ), ∀ τ ∈ H,

where
√

is the principal branch of the multivalued function z1/2.

Proof: The logarithmic derivative of η is

d

dτ
log(η(τ)) =

πi

12
− 2πi

∞∑
d=1

dqd

1− qd
=
πi

12
− 2πi

∞∑
d=1

d

∞∑
m=1

qdm

=
πi

12
− 2πi

∞∑
m=1

∞∑
d=1

dqdm =
πi

12
− 2πi

∞∑
n=1

∑
0<d|n

d

 qn

=
πi

12
E2(τ), ∀ τ ∈ H,

where E2 : H→ C is the normalized Eisenstein series of weight 2,

E2(τ) =
G2(τ)

2ζ(2)
= 1− 24

∞∑
n=1

σ(n)qn, q = e2πiτ , ∀ τ ∈ H.

Therefore,

d

dτ
log(η(−1/τ)) =

πi

12
τ−2E2(−1/τ), ∀ τ ∈ H,

and

d

dτ
log(
√
−iτη(τ)) =

1

2τ
+
πi

12
E2(τ) =

πi

12

(
E2(τ) +

12

2πiτ

)
, ∀ τ ∈ H.

Using Theorem 2.21 with α =
[ 0−1

1 0

]
, we obtain that

τ−2E2(−1/τ) = E2(τ) +
12

2πiτ
, ∀ τ ∈ H,
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so
d

dτ
log(η(−1/τ))− d

dτ
log(
√
−iτη(τ)) = 0, ∀ τ ∈ H.

As a consequence, observe that there exists a constant c ∈ C such that

η(−1/τ) = c
√
−iτη(τ), ∀ τ ∈ H.

Letting τ = i, we conclude that this constant c must be equal to 1, since

η(i) = η(−1/i) = c
√
−i2η(i) = cη(i).

The function η24 : H→ C,

η24(τ) = q
∞∏
n=1

(1− qn)24, q = e2πiτ , ∀ τ ∈ H,

is a cusp form of weight 12 with respect to SL2(Z), since

η24(τ + 1) = η24(τ), η24(−1/τ) = τ12η24(τ), ∀ τ ∈ H,

and

lim
Im (τ)→∞

η24(τ) = 0.

As the function ∆ is also a cusp form of weight 12 with respect to SL2(Z)
and dim(S12(SL2(Z))) = 1 by Theorem 2.9, we deduce that

∆ = cη24, for some constant c ∈ C.

Equating the coefficients of their Fourier series, we obtain the identity

∆ = (2π)12η24.

2.2.2 Four squares problem

Let us consider the following questions:

Can each positive integer n be written as a sum of four squares,

n = z2
1 + z2

2 + z2
3 + z2

4 , zi ∈ Z?

In which case, in how many ways can n be written as a sum of
four squares? Is it possible to determine an explicit formula?
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The answers to these questions are affirmative, i.e, each positive integer n
can be written as a sum of four squares, and in addition, there exists an
explicit formula that counts the representation number of n by four squares.

The proof that we present here uses basically the fact of that the functions

G2,2(τ) = G2(τ)− 2G2(2τ) and G2,4(τ) = G2(τ)− 4G2(Nτ)

(see Subsection 2.1.2) form a basis of the space of modular formsM2(Γ0(4)).

Define
r(n, k) = #{z ∈ Zk |n = z2

1 + · · ·+ z2
k}, k ≥ 1,

and consider the generating function of the representation numbers,

θ(τ, k) =
∞∑
n=0

r(n, k)qn, q = e2πiτ , τ ∈ H.

This series defines a holomorphic function on the upper half plane, since
it converges uniformly on the subsets Ω(b) = {τ ∈ H | Im τ ≥ b}, b > 0.
Indeed,

∞∑
n=0

r(n, k)|q|n =

∞∑
n=0

r(n, k)(e−2πy)n

≤
∞∑
n=0

(1 + 2
√
n)k(e−2πb)n <∞, ∀ τ = x+ iy ∈ Ω(b).

Furthermore, as

r(n, k) =
∑
s+j=n

r(s, k1)r(j, k2), k1 + k2 = k,

we deduce that

θ(τ, k1)θ(τ, k2) = θ(τ, k1 + k2), ∀ τ ∈ H.

Let θ : H→ C be the function

θ(τ) = θ(τ, 1), ∀ τ ∈ H.

The following lemma summarizes the principal properties of this holomorphic
function. Its proof is immediate and it is left as an exercise to the reader.

Lemma 2.24. Let k be a positive integer. Then:

1. θ is Z-periodic

2. θ(τ)k = θ(τ, k), ∀ τ ∈ H
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3. θ(τ) =
∑∞

n=0 r(n, 1)qn =
∑

n∈Z e
2πin2τ , q = e2πiτ , ∀ τ ∈ H.

This last expression for θ allows us to determine another transformation law.

Theorem 2.25. The function θ satisfies the transformation law

θ(−1/2τ) =
√
−iτθ(τ/2), ∀ τ ∈ H,

where
√

is the principal branch of the multivalued function z1/2.

Proof: Observe that it suffices to prove this transformation law for τ = it,
with t > 0, since the two sides of the equation are holomorphic functions on H.
Let f, ft : R→ R be the functions

f(x) = e−πx
2

and ft(x) = e−πtx
2
.

Recall that the Fourier transform of the function f is itself, i.e.,∫ +∞

−∞
e−πx

2
e−2πixξdx = e−πξ

2
, ∀ ξ ∈ R.

The change of variables x = t1/2x in the integral shows that the Fourier
transform of the function ft is

f̂t(ξ) = t−1/2e−πξ
2/t, ∀ ξ ∈ R.

As a consequence, using the Poisson summation formula, we obtain that∑
n∈Z

e−πtn
2

=
∑
n∈Z

t−1/2e−πn
2/t, ∀ t > 0,

or equivalently,

θ(τ/2) =
1√
−iτ

θ(−1/2τ), τ = it, ∀ t > 0.

Note that the transformation law of the function θ can also be written as

θ(−1/4τ) =
√
−2iτθ(τ), ∀ τ ∈ H. (2.14)

The matrix
[ 0−1

4 0

]
taking τ to −1/4τ is not in SL2(Z), but the product[

0 1/4
−1 0

] [
1 −1
0 1

] [
0 −1
4 0

]
=

[
1 0
4 1

]
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taking τ to τ/(4τ + 1), is in SL2(Z). Applying the corresponding succession
of transformations and using (2.14) twice, we obtain that

θ

(
τ

4τ + 1

)
= θ

(
− 1

4(−1/4τ − 1)

)
=

√
2i

(
1

4τ
+ 1

)
θ
(
− 1

4τ

) [
θ
(
− 1

4τ

)
= θ
(
− 1

4τ
− 1
)]

=

√
2i

(
1

4τ
+ 1

)
(−2iτ)θ(τ) =

√
4τ + 1θ(τ), ∀ τ ∈ H,

where in the penultimate equality we have used tacitly that√
2i(1/4τ + 1)

√
−2iτ =

√
2i(1/4τ + 1)(−2iτ), ∀ τ ∈ H.

As a consequence, observe that

θ(γ(τ), 4) = (cτ + d)2θ(τ, 4), for γ = ±
[

1 1
0 1

]
and ±

[
1 0
4 1

]
.

Lemma 2.26. The subgroup Γθ,4 of SL2(Z) generated by the matrices

±
[

1 1
0 1

]
and ±

[
1 0
4 1

]
is

Γ0(4) =

{[
a b
c d

]
∈ SL2(Z) |

[
a b
c d

]
≡
[
∗ ∗
0 ∗

]
(mod 4)

}
.

Proof: Let α =
[ a b
c d

]
∈ Γ0(4). Below, we describe an algorithm to

compute γ ∈ Γθ,4 such that αγ ∈ Γθ,4 (and therefore α ∈ Γθ,4).

We can suppose without loss of generality that c 6= 0, since otherwise
α =

[±1 b
0 ±1

]
∈ Γθ,4. The identity[

a b
c d

] [
1 n
0 1

]
=

[
a′ b′

c nc+ d

]
, n ∈ Z,

shows that there exists a matrix γ1 ∈ Γθ,4 such that αγ1 ∈ Γ0(4) has bottom
row

(c′, d′) = (c, nc+ d), with |d′| < |c′|/2

(the inequality is clearly strict because of properties of c and d modulo 4).
On the other hand, the identity[

a′ b′

c′ d′

] [
1 0

4n 1

]
=

[
a′′ b′′

c′ + 4nd′ d′

]
, n ∈ Z,
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shows that there exists a matrix γ2 ∈ Γθ,4 such that αγ1γ2 ∈ Γ0(4) has
bottom row

(c′′, d′′) = (c′ + 4nd′, d′), with |c′′| < 2|d′′|

(the inequality is again strict because of properties of c′ and d′ modulo 4).
As a consequence, observe that these two multiplications allow us to reduce
strictly the absolute value of lower left entry of the matrix α, since

|c′′| < 2|d′′| = 2|d′| < |c′| = |c|.

Repeating this argument whenever the lower left entry of the resulting
matrix is nonzero (a finite number of times), we deduce that there exists a
matrix γ ∈ Γθ,4 such that αγ ∈ Γ0(4) has bottom row (0,±1), and therefore

αγ ∈ Γθ,4.

Using Theorem 2.8 we can conclude that θ(·, 4) ∈M2(Γ0(4)), since

θ(τ, 4) =
∞∑
n=0

r(n, 4)q4n
4 , q4 = e2πiτ/4, ∀ τ ∈ H,

and

r(n, 4) ≤ (1 + 2
√
n)4, ∀n ≥ 1.

Theorem 2.27. The representation number of a positive integer n by four
squares is

r(n, 4) = 8
∑

0<d|n
4-d

d.

As a consequence, observe that n can be written as a sum of four squares.

Proof: Consider the modular forms G2,2, G2,4 ∈M2(Γ0(4)),

G2,2(τ) = −π
2

3

(
1 + 24

∞∑
n=1

σ1,2(n)qn

)
, ∀ τ ∈ H

and

G2,4(τ) = −π2

(
1 + 8

∞∑
n=1

σ1,4(n)qn

)
, ∀ τ ∈ H

The subset {G2,2, G2,4} forms a basis of the vector space M2(Γ0(4)), since
it is linearly independent and dim(M2(Γ0(4))) = 2 (compute the dimension
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of this space using [DS05, p.107]). Therefore, the function θ(·, 4) can be
expressed in a unique way as a linear combination of these modular forms,

θ(·, 4) = aG2,2 + bG2,4, a, b ∈ C.

The expansions

θ(τ, 4) = 1 + 8q + · · · ,

− 3

π2
G2,2(τ) = 1 + 24q + · · · ,

− 1

π2
G2,4(τ) = 1 + 8q + · · · ,

show that θ(·, 4) = −(1/π2)G2,4. Equating the Fourier coefficients, we obtain
that the representation number of a positive integer n as a sum of four
squares is

r(n, 4) = 8σ1,4(n) = 8
∑

0<d|n
4-d

d.
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Chapter 3

Modularity Theorem

In this third chapter we introduce moduli spaces for the modular curves

Y0(N), Y1(N), and Y (N), N ∈ Z+,

and we explain a complex analytic version of the Modularity Theorem which
is equivalent to the original version that was proved about twenty years ago.

3.1 Weil pairing

Let Λ be a lattice in C with basis (w1, w2),

Λ = w1Z + w2Z (assume w1/w2 ∈ H),

and N a positive integer. Consider the multiply-by-N map

[N ] : C/Λ→ C/Λ, z + Λ 7→ Nz + Λ.

This map is a holomorphic group homomorphism (Remark B.6). Its kernel
is the set of N -torsion points of C/Λ,

ker[N ] = {P ∈ C/Λ | [N ]P = 0} = 〈w1/N + Λ〉+ 〈w2/N + Λ〉,

a subgroup isomorphic to Z/NZ× Z/NZ.

0 w1

w2

Figure 3.1: ker[5]: the 5-torsion points of C/Λ
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Let E denote the torus C/Λ, E[N ] its subgroup of N -torsion points and
µN the cyclic group of the complex N -th roots of unity,

µN = {z ∈ C | zN = 1} = 〈e2πi/N 〉.

The Weil pairing eN : E[N ]× E[N ]→ µN is defined as

eN (P,Q) = e2πidet(γ)/N , ∀ (P,Q) ∈ E[N ]× E[N ],

where the matrix γ ∈ M2(Z/NZ) is determined by the condition[
P
Q

]
= γ

[
w1/N + Λ
w2/N + Λ

]
=

[
k1(P ) k2(P )
k1(Q) k2(Q)

] [
w1/N + Λ
w2/N + Λ

]
. (3.1)

Even though the determinant of the matrix γ is defined only modulo N ,
the root e2πidet(γ)/N is well-defined, since the function e2πiz/N is NZ-periodic.

The Weil pairing is independent of the chosen basis (w1, w2) of the lattice Λ.
Let (w′1, w

′
2) be another basis of Λ, with w′1/w

′
2 ∈ H, and γ′ ∈ M2(Z/NZ)

satisfying the condition [
P
Q

]
= γ′

[
w′1/N + Λ
w′2/N + Λ

]
.

Then [
w′1
w′2

]
=

[
a b
c d

] [
w1

w2

]
, for some α =

[
a b
c d

]
∈ SL2(Z),

and [
P
Q

]
= γ′

[
w′1/N + Λ
w′2/N + Λ

]
= γ′

[
ā b̄
c̄ d̄

] [
w1/N + Λ
w2/N + Λ

]
.

As a consequence,

γ = γ′
[
ā b̄
c̄ d̄

]
, and therefore det(γ) = det(γ′).

Remark 3.1. If P and Q generate the group E[N ], then the matrix γ
satisfying the condition (3.1) is invertible, i.e., γ ∈ GL2(Z/NZ). Therefore,

eN (P,Q) = e2πidet(γ)/N

is a primitive complex N -th root of unity, since det(γ) ∈ (Z/NZ)∗

The following lemma states the principal properties of the Weil pairing.
We leave to the reader as an exercise its proof, which is easy and routine.
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Lemma 3.2. The Weil eN -pairing has the following properties:

1. It is bilinear,

eN (P1 + P2, Q) = eN (P1, Q)eN (P2, Q), ∀P1, P2, Q ∈ E[N ],

eN (P,Q1 +Q2) = eN (P,Q1)eN (P,Q2), ∀P1, P2, Q ∈ E[N ].

2. It is alternating,
eN (P, P ) = 1, ∀P ∈ E[N ].

In particular, observe that

eN (P,Q) = eN (Q,P )−1, ∀P,Q ∈ E[N ].

3. It is nondegenerate,

if P ∈ E[N ] and eN (P,Q) = 1, ∀Q ∈ E[N ], then P = 0.

4. It is compatible with N , i.e., for any positive integer d, the diagram

E[dN ]× E[dN ]

d(·,·)
��

edN (·,·) // µdN

·d

��
E[N ]× E[N ]

eN (·,·) // µN

commutes, where the vertical maps are suitable multiplications by d.

Let Λ′ be another lattice in C. Suppose that the torus C/Λ and C/Λ′
are isomorphic, i.e., there exists α ∈ C such that αΛ = Λ′ (Corollary B.4).

Theorem 3.3. The isomorphism of Riemann surfaces

z + Λ ∈ C/Λ F7−→ αz + Λ′ ∈ C/Λ′

preserves the Weil eN -pairing, eN (P,Q) = eN (F (P ), F (Q)), ∀P,Q ∈ E[N ].

Let E′ denote the torus C/Λ′ and E′[N ] its subgroup of N -torsion points.
Before proving this theorem, recall that F is also an isomorphism of groups,
since F (0+Λ) = 0+Λ′ (Remark B.6). Therefore, F (P ) ∈ E′[N ], ∀P ∈ E[N ].

Proof: Let (w′1, w
′
2) = (αw1, αw2), a basis of the lattice Λ′. If γ∈M2(Z/NZ)

satisfies the condition [
P
Q

]
= γ

[
w1/N + Λ
w2/N + Λ

]
,

then applying the isomorphism F to both sides of the equation gives[
F (P )
F (Q)

]
= γ

[
w′1/N + Λ
w′2/N + Λ

]
.

Observe that this proves that eN (P,Q) = eN (F (P ), F (Q)), ∀P,Q ∈ E[N ].
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3.2 Moduli spaces for modular curves

Recall that a complex elliptic curve is a compact Riemann surface of genus 1.
The reader can consult the results over complex elliptic curves in Appendix B.
Since any complex elliptic curve E is isomorphic to a complex torus C/Λ,
in this section we let the term complex elliptic curve be a synonym for com-
plex torus.

Let E = C/Λ and E′ = C/Λ′ be two complex elliptic curves. If E and E′

are isomorphic, then there always exists a holomorphic group isomorphism

F : E → E′, F (z + Λ) = αz + Λ′, with α ∈ C, αΛ = Λ′.

We are interested in these isomorphisms since they preserve the group struc-
tures on the complex elliptic curves. Therefore, to simplify in this section,
we also assume that the term “isomorphism” always means holomorphic
group isomorphism.

Let N be a positive integer:

. An enhanced elliptic curve for Γ0(N) is an ordered pair (E,C) where
E is a complex elliptic curve and C is a cyclic subgroup of E of order N .
Two such pairs (E,C) and (E′, C ′) are equivalent, denoted (E,C) ∼ (E′, C ′),
if there exists some isomorphism E → E′ taking C to C ′. The set of equiv-
alence classes is denoted

S0(N) = {enhanced elliptic curves for Γ0(N)}/ ∼ .

An element of S0(N) is denoted [E,C], the square brackets [ ] connoting
equivalence class.

. An enhanced elliptic curve for Γ1(N) is an ordered pair (E,P ) where
E is a complex elliptic curve and P is a point of E of order N . Two such
pairs (E,P ) and (E′, P ′) are equivalent, denoted (E,P ) ∼ (E′, P ′), if there
exists some isomorphism E → E′ taking P to P ′. The set of equivalence
classes is denoted

S1(N) = {enhanced elliptic curves for Γ1(N)}/ ∼ .

An element of S1(N) is denoted [E,P ].

. An enhanced elliptic curve for Γ(N) is an ordered pair (E, (P,Q)) where
E is a complex elliptic curve and (P,Q) is a pair of points of E that gen-
erates the N -torsion subgroup E[N ] with Weil pairing eN (P,Q) = e2πi/N .
Two such pairs (E, (P,Q)) and (E′, (P ′, Q′)) are equivalent, denoted

(E, (P,Q)) ∼ (E′, (P ′, Q′)),

if there exists some isomorphism E → E′ taking P to P ′ and Q to Q′.
The set of equivalence classes is denoted

S(N) = {enhanced elliptic curves for Γ(N)}/ ∼ .

An element of S(N) is denoted [E, (P,Q)].
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The sets S0(N), S1(N) and S(N) are moduli spaces of isomorphism classes
of complex elliptic curves enhanced by associated N -torsion data. Observe
that when N = 1, the three moduli spaces reduce to the isomorphism class
of complex elliptic curves, since the N -torsion data do not play any role.

For each τ ∈ H, let Eτ denote the elliptic curve C/Λτ , where Λτ = τZ + Z.

Lemma 3.4. Let E = C/Λ be a complex elliptic curve. Then there exists
τ ∈ H such that E is isomorphic to Eτ as Riemann surfaces.

Proof: Let (w1, w2) be a basis of Λ, with w1/w2 ∈ H. Then

(1/w2)Λ = Λτ , where τ = w1/w2.

As a consequence, the map

z + Λ ∈ E 7→ (1/w2)z + Λτ ∈ Eτ

is an isomorphism between the complex elliptic curves E and Eτ .

Theorem 3.5. Let N be a positive integer.

1. The moduli space for Γ0(N) is

S0(N) = {[Eτ , 〈1/N + Λτ 〉] | τ ∈ H}.

Two points [Eτ , 〈1/N+Λτ 〉] and [Eτ ′ , 〈1/N+Λτ ′〉] are equal if and only if
Γ0(N)τ = Γ0(N)τ ′. Thus there exists a bijection

ψ0 : S0(N)→ Y0(N), [Eτ , 〈1/N + Λτ 〉] 7→ Γ0(N)τ.

2. The moduli space for Γ1(N) is

S1(N) = {[Eτ , 1/N + Λτ ] | τ ∈ H}.

Two points [Eτ , 1/N + Λτ ] and [Eτ ′ , 1/N + Λτ ′ ] are equal if and only if
Γ1(N)τ = Γ1(N)τ ′. Thus there exists a bijection

ψ1 : S1(N)→ Y1(N), [Eτ , 1/N + Λτ ] 7→ Γ1(N)τ.

3. The moduli space for Γ(N) is

S(N) = {[Eτ , (τ/N + Λτ , 1/N + Λτ )] | τ ∈ H}.

Two points [Eτ , (τ/N +Λτ , 1/N +Λτ )] and [Eτ ′ , (τ
′/N +Λτ ′ , 1/N +Λτ ′)]

are equal if and only if Γ(N)τ = Γ(N)τ ′. Thus there exists a bijection

ψ : S(N)→ Y (N), [Eτ , (τ/N + Λτ , 1/N + Λτ )] 7→ Γ(N)τ.
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Proof: We only prove the third case that is perhaps the more complicated.
Let [E, (P,Q)] be a point of S(N). Since E is isomorphic to Eτ ′ for some
τ ′ ∈ H (Lemma 3.4), we can suppose without loss of generality that E = Eτ ′ .
Thus

P = (aτ ′ + b)/N + Λτ ′ and Q = (cτ ′ + d)/N + Λτ ′ , with a, b, c, d ∈ Z.

As P and Q generate Eτ ′ [N ] and have Weil pairing eN (P,Q) = e2πi/N ,

the matrix α =
[ ā b̄
c̄ d̄

]
∈ SL2(Z/NZ). Indeed,[

P
Q

]
= α

[
τ ′/N + Λτ ′

1/N + Λτ ′

]
and eN (P,Q) = e2πidet(α)/N .

In Section 1.2 we proved that SL2(Z) surjects to SL2(Z/NZ), therefore
we can also suppose that

[ a b
c d

]
∈ SL2(Z) (since this does not affect P and Q).

Let τ =
[ a b
c d

]
(τ ′) ∈ H and m = cτ ′ + d. Then mτ = aτ ′ + b, so

mΛτ = m(τZ + Z) = (aτ ′ + b)Z + (cτ ′ + d)Z = τ ′Z + Z = Λτ ′ ,

m(τ/N + Λτ ) = P and m(1/N + Λτ ) = Q.

This proves that [Eτ ′ , (P,Q)] and [Eτ , (τ/N+Λτ , 1/N+Λτ )] are equal points.

Suppose now that two points τ, τ ′ ∈ H are Γ(N)-equivalent, i.e.,

τ = γ(τ ′), for some γ =

[
a b
c d

]
∈ Γ(N).

Letting m = cτ ′ + d as before, we obtain that mΛτ = Λτ ′ ,

m(1/N + Λτ ) = 1/N + Λτ ′ and m(1/N + Λτ ) = 1/N + Λτ ′ ,

since γ ≡ I (mod N) (the matrix congruence is interpreted by entries).

Reciprocally, suppose that

[Eτ , (τ/N + Λτ , 1/N + Λτ )] and [Eτ ′ , (τ
′/N + Λτ ′ , 1/N + Λτ ′)],

with τ, τ ′ ∈ H, are equal points. Then for some m ∈ C, mΛτ = Λτ ′ ,

m(τ/N + Λτ ) = τ ′/N + Λτ ′ and m(1/N + Λτ ) = 1/N + Λτ ′ ,

As a consequence of the equality mΛτ = Λτ ′ , observe that[
mτ
m

]
= γ

[
τ ′

1

]
, for some γ =

[
a b
c d

]
∈ SL2(Z),

so in particular m = cτ ′ + d. Using this the other equalities become

(aτ ′ + b)/N + Λτ ′ = τ ′/N + Λτ ′ and (cτ ′ + d)/N + Λτ ′ = 1/N + Λτ ′ ,
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showing that γ ≡ I (mod N). Therefore, Γ(N)τ = Γ(N)τ ′, since τ = γ(τ ′).

In the special case N = 1, the previous theorem shows that the space
of isomorphism classes of complex elliptic curves parametrizes the modular
curve

SL2(Z)\H = Y0(1) = Y1(1) = Y (1).

Recall that the modular function

j : SL2(Z)\H→ C

is a bijective function (see Remark 2.18). Therefore, we can associate to
each isomorphism class of elliptic curves a complex number, the value of j at
the corresponding orbit SL2(Z)τ ∈ SL2(Z)\H. This value is also associated
to any elliptic curve E in the isomorphism class and is denoted j(E).

3.3 Complex analytic version of the Modularity
Theorem

The complex analytic version of the Modularity Theorem states that the
elliptic curves with rational j-values come from the modular curves

X0(N), N ∈ Z+,

via surjective morphisms of Riemann surfaces.

Theorem 3.6 (Modularity Theorem, Complex analytic version).
Let E be a complex elliptic curve with j(E) ∈ Q. Then for some positive
integer N there exists a surjective morphism of Riemann surfaces from the
modular curve X0(N) to the elliptic curve E,

X0(N) −→ E.

The surjection in the theorem is called a modular parametrization of E
of level N . Observe that if Γ is a congruence subgroup of SL2(Z) such that
Γ ⊂ Γ0(N) (e.g., Γ(N) or Γ1(N)), then the composition of the natural
projection from X(Γ) to X0(N) with a modular parametrization of E,

X(Γ) −→ X0(N) −→ E

is also a surjective morphism of Riemann surfaces (Theorem 1.26).
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Appendix A

Riemann surfaces

A Riemann surface is simply a nonempty connected Hausdorff topological
space endowed with an equivalence class of complex atlases. In this chapter
we introduce all the theory of Riemann surfaces we need in this work:

- Holomorphic maps

- Meromorphic differentials

- Divisors and Riemann-Roch Theorem

A good reference book about Riemann surfaces is for example [Mir95].

A.1 Basic definitions

Let X be a topological space. We want X to behave locally as an open subset
of the complex plane, thus it will allow us to define complex coordinates
at each point of X.

Definition A.1. A complex chart, or simply chart, on X is a homeomor-
phism φ : U → V , where U ⊂ X is an open subset of X and V ⊂ C is an
open subset of C.

A complex chart φ : U → V is denoted by (U, φ). The open subset U is
called domain of the chart φ. Furthermore, the chart φ is centered at p ∈ U
if φ(p) = 0.

Examples A.2.

1. In the euclidean plane, consider any open subset U ⊂ R2. The map
φU : U → U , φU (x, y) = x+ iy, is a chart on R2.
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2. In the Riemann sphere, consider the open subsets U1 = C, U2 = Ĉ \ {0}.
The maps φi : Ui → C,

φ1(z) = z, φ2(z) =
1

z
(where

1

∞
:= 0),

are charts on Ĉ.

Two complex charts φ1 : U1 → V1 and φ2 : U2 → V2 on X are compatible
if either U1 ∩ U2 = ∅ or U1 ∩ U2 6= ∅ and

φ2 ◦ φ−1
1 : φ1(U1 ∩ U2)︸ ︷︷ ︸

V1,2

→ φ2(U1 ∩ U2)︸ ︷︷ ︸
V2,1

is holomorphic. Note that the definition is symmetric, i.e., if U1 ∩ U2 6= ∅
and

φ2 ◦ φ−1
1 : φ1(U1 ∩ U2)→ φ2(U1 ∩ U2)

is holomorphic, then

φ1 ◦ φ−1
2 : φ2(U1 ∩ U2)→ φ1(U1 ∩ U2)

is holomorphic. As a consequence,

(φ2 ◦ φ−1
1 )′(z) 6= 0, ∀ z ∈ φ1(U1 ∩ U2).

The function φ2◦φ−1
1 is called transition function between the two charts.

U1∩U2U1 U2

V1,2 V2,1

V1 V2

φ1 φ2

φ2 ◦ φ−1
1

Figure A.1: Transition function

Definition A.3. A complex atlas, or simply atlas, A on X is a collection

{φα : Uα → Vα}

of pairwise compatible complex charts whose domains cover X, i.e., X=
⋃
Uα.
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Examples A.4.

1. In the euclidean plane, the collection of charts

A = {φU : U → U |U ⊂ R2 is an open subset}

is an atlas on R2.

2. In the Riemann sphere, the collection of charts

A = {φi : Ui → C | i = 1, 2}

is an atlas on Ĉ. Indeed, U1 ∩ U2 = C∗ and φ2 ◦ φ−1
1 (z) = 1/z, ∀ z ∈ C∗.

Two complex atlases on X are equivalent if every chart of one is compatible
with every chart of the other. Note that two complex atlases are equivalent
if and only if their union is also a complex atlas. Moreover, every complex
atlas A on X is contained in a unique maximal complex atlas A∗ on X
which consists of all charts on X that are compatible with every chart of A.
Therefore, two complex atlases are equivalent if and only if they are both
contained in the same maximal complex atlas.

Definition A.5. A complex structure on X is an equivalence class of complex
atlases on X, or equivalently, a maximal complex atlas on X.

As any complex atlas on X determines a unique complex structure on X,
this will be the usual way to define a complex structure on X.

Definition A.6. A Riemann surface is a nonempty connected Hausdorff
topological space endowed with a complex structure.

Convention. If X is a Riemann surface, then by a chart on X we always
mean a chart belonging to the maximal atlas of the complex structure on X.

Remarks A.7.

. A domain in a Riemann surface is a nonempty connected open subset.
Note that these subsets inherit naturally the structure of Riemann surface.

. Each point of a Riemann surface has an open neighbourhood which is
homeomorphic to an open disc of the complex plane. As a consequence,
the topological local properties of the euclidean plane are preserved.
For example, any Riemann surface is locally path-connected, locally com-
pact, locally contractible, locally metrizable. . .

. According to Radó’s Theorem [NR11, p.71], every Riemann surface is
second-countable, i.e., there exists a countable base for its topology.
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. Classically, a compact Riemann surface is called closed while a noncompact
surface is called open. It is important to note that there exist notable
differences between the theory of compact Riemann surfaces and that of
noncompact Riemann surfaces.

. Every Riemann surface is an orientable connected 2-dimensional smooth
manifold, since any complex atlas is an oriented smooth atlas. Therefore,
every compact Riemann surface is diffeomorphic to a torus with g holes,
for some unique integer g ≥ 0. This integer g is called the genus of the
Riemann surface and is a topological invariant.

Examples A.8.

1. The euclidean plane endowed with the complex structure determined by
the atlas A = {φR2 : R2 → R2} is a noncompact Riemann surface called
Complex Plane. It is denoted by C.

2. The Riemann sphere endowed with the complex structure determined by
the atlas A = {φi : Ui → C | i = 1, 2} is a compact Riemann surface
called Riemann Sphere. It is denoted by Ĉ.

A.2 Morphisms

Let X,Y, Z be Riemann surfaces.

Definition A.9. Let U be a nonempty open subset of X.

. A map F : U → Y is holomorphic at p ∈ U if there exist charts
φ1 : U1 → V1 on X, with p ∈ U1, and φ2 : U2 → V2 on Y , with F (p) ∈ U2,
such that the composition

φ2 ◦ F ◦ φ−1
1

is holomorphic at φ1(p).

. A map F : U → Y is holomorphic on a nonempty open subset V ⊆ U if
F is holomorphic at each point of V .

. A map F : X → Y is a morphism if F is holomorphic on X.

Examples A.10.

1. The holomorphic functions on a nonempty open subset of C.

2. The fractional linear transformations T : Ĉ→ Ĉ,

T (z) =
az + b

cz + d
, with ad− bc 6= 0, are bijective morphisms.
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3. Let C/Λ1,C/Λ2 be complex tori and α a complex number such that
αΛ1 ⊂ Λ2. For each β ∈ C, the map Fα,β : C/Λ1 → C/Λ2,

Fα,β(z + Λ1) = (αz + β) + Λ2, ∀ z + Λ ∈ C/Λ1,

is a morphism.

4. Let Γ1, Γ2 be congruence subgroups of SL2(Z) such that Γ1 ⊂ Γ2.
The natural projection of the corresponding compact modular curves

F : X(Γ1)→ X(Γ2), Γ1τ 7→ Γ2τ,

is a surjective morphism.

In the special case Y = C, it is important to note that a function f : U → Y
is holomorphic at p ∈ U if and only if there exists a chart φ1 : U1 → V1 on X,
with p ∈ U1, such that the composition f ◦ φ−1

1 is holomorphic at φ1(p).

The set of holomorphic functions on U is denoted by OX(U),

OX(U) = {f : U → C | f is holomorphic on U}.

It is a C-algebra, since the constant functions are holomorhic functions and
the sum and product of holomorhic functions are also holomorphic functions.
Moreover, if U is connected, then O(U) is an integral domain.

The following proposition states the main results concerning holomorphic
maps between Riemann surfaces.

Proposition A.11. Let U be an open subset of X, F :U→ Y a map and
p ∈ U .

1. If F is holomorphic at p, then F is continuous at p.

2. If F is holomorphic at p, then F is holomorphic on an open subset Up ⊂ U
with p ∈ Up.

3. F is holomorphic at p if and only if for any pair of charts φ1 : U1 → V1 on
X, with p ∈ U1, and φ2 : U2 → V2 on Y , with F (p) ∈ U2, the composition

φ2 ◦ F ◦ φ−1
1

is holomorphic at φ1(p).

4. If F is continuous at p and there exists an open subset Up ⊂ U , with
p ∈ Up, such that F is holomorphic on Up\{p}, then F is holomorphic at p.

5. Let V be an open subset of Y and G : V → Z a map such that F (U) ⊂ V .
If F is holomorphic at p and G is holomorphic at F (p), then G ◦ F is
holomorphic at p.
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It is not difficult to prove that if F : X → Y is a bijective morphism, then
F−1 : Y → X is also a morphism. A bijective morphism F : X → Y is called
isomorphism. The Riemann surfaces X and Y are isomorphic if there exists
an isomorphism F : X → Y . Note that the relation of being isomorphic
is an equivalence relation on Riemann surfaces, since the composition of
morphisms is a morphism.

As usual, a self-isomorphism F : X → X is also called automorphism.
The automorphisms of X form a group under the operation of composition.

A.2.1 Theorems on morphisms

Now we present several results about morphisms between Riemann surfaces.
In the majority of cases these results are immediate consequences of the
corresponding results of complex analysis about holomorphic functions.

Theorem A.12 (Identity Theorem). Let F,G : X → Y be morphisms.
If there exists a subset S ⊂ X such that S′ 6= ∅ and F (x) = G(x), ∀x ∈ S,
then F = G.

Theorem A.13 (Open Mapping Theorem). Let F : X → Y be a non-
constant morphism. Then F is an open map.

Corollary A.14. Let F : X → Y be a nonconstant morphism. If X is
compact, then F is surjective and Y is compact.

As a consequence, observe that if X is compact, then O(X) = C.

Corollary A.15 (Discreteness of Preimages). Let F : X → Y be a
nonconstant morphism. Then F−1(q) is a discrete subset of X for all q ∈ Y .
In particular, if X is compact, then F−1(q) is a nonempty finite subset of X
for all q ∈ Y .

Theorem A.16. Let F : X → Y be an injective morphism. Then its
restriction on its image F : X → F (X) is an isomorphism.

Theorem A.17 (Local normal form). Let F : X → Y be a nonconstant
morphism and p ∈ X. There exists a unique integer m ≥ 1 which satisfies
the following property: For each chart φ2 : U2 → V2 on Y, centered at F (p),
there exists a chart φ1 : U1 → V1 on X, centered at p, with F (U1) ⊂ U2,
such that

φ2 ◦ F ◦ φ−1
1 (z) = zm, ∀ z ∈ V1.

Proof: [Mir95, p.44]
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Definition A.18. Let F : X → Y be a nonconstant morphism. The
ramification index of F at p ∈ X is the unique integer m ≥ 1 which satisfies
the property cited in the previous theorem. It is denoted by ep(F ).

Examples A.19.

1. Let f : C → C be the holomorphic function f(z) = zm, with m ≥ 1.
The index ramification of f at z ∈ C∗ is ez(f) = 1 and at 0 is e0(f) = m.

2. Let f : Ĉ→ Ĉ be the holomorphic function

f(z) = zm + c1z
m−1 · · ·+ cm (where f(∞) :=∞),

with m ≥ 1. The index ramification of f at ∞ is e∞(f) = m.

There exists an easy way to compute the ramification index without having
to find centered charts which put the morphism into local normal form.
Let us fix two charts φ1 : U1 → V1 onX, with p ∈ U1, and φ2 : U2 → V2 on Y,
with F (p) ∈ U2. As the composition

φ2 ◦ F ◦ φ−1
1

is holomorphic at z0 = φ1(p),

φ2 ◦ F ◦ φ−1
1 =

∞∑
n=1

an(z − z0)n.

Then

ep(F ) = min{n ≥ 1 | an 6= 0}.

Proposition A.20. Let F : X → Y be a nonconstant morphism and p ∈ X.
The following conditions are equivalent:

1. ep(F ) = 1

2. F is a local isomorphism at p, i.e., there exist connected open subsets
Up ⊂ X, with p ∈ Up, and VF (p) ⊂ Y , with F (p) ∈ VF (p), such that
F|Up : Up → VF (p) is an isomorphism.

Definition A.21. Let F : X → Y be a nonconstant morphism. A point
p ∈ X is a ramification point of F if ep(F ) > 1. A point y ∈ Y is a branch
point of F if it is the image of a ramification point of F .

As a consequence of the above, the ramification points of a nonconstant
morphism F : X → Y form a discrete closed subset of X.
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Definition A.22. A morphism F : X → Y is a branched covering if
for each q ∈ Y holds that

. F−1(q) is a nonempty finite subset of X, F−1(q) = {p1, . . . , pr}, and

. there exist charts φi : Ui → Vi on X, centered at pi, φ : U → V on Y ,
centered at q, with

F−1(U) =

r⊔
i=1

Ui,

and integers ei ≥ 1, such that for all i = 1, . . . , r,

φ ◦ F ◦ φ−1
i (z) = zei , ∀ z ∈ Vi.

Note that the integers ei are the ramification indexes of the points pi.

Examples A.23.

1. The holomorphic function f : C → C, f(z) = zm, with m ≥ 1, is a
branched covering.

2. The holomorphic function f : Ĉ → Ĉ, f(z) = zm + c1z
m−1 · · · + cm,

with m ≥ 1, is a branched covering.

The following theorem is really useful to prove that a morphism is a
branched covering since it characterizes the branched coverings in a simple way.

Theorem A.24 (Characterization of Branched Coverings). Let
F : X → Y be a nonconstant morphism. The following conditions are
equivalent:

1. F is a branched covering.

2. For each q ∈ Y , F−1(q) is a nonempty finite subset of X, and in addition,
the map

q ∈ Y 7→
∑

p∈F−1(q)

ep(F ) ∈ Z

is constant.

3. F is a proper map.

In particular, observe that if X is compact, then F is a branched covering.

Proof: [Gir70, p.7]

Since any proper map between locally compact topological spaces is closed,
we deduce from this result that any branched covering is a closed map.
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Definition A.25. Let F : X → Y be a branched covering. The number

deg(F ) =
∑

p∈F−1(q)

ep(F )

is called the degree of the branched covering F .

Proposition A.26. Let F : X → Y , G : Y → Z be branched coverings.
Then the composition G ◦ F is a branched covering and

deg(G ◦ F ) = deg(G) deg(F ).

Proposition A.27. Let F : X → Y be a branched covering and

R = {p ∈ X | ep(F ) > 1}.

Then F (R) is a closed discrete subset of Y . Moreover, R is empty if and
only if F is an étale covering.

Finally, we present the Riemann-Hurwitz formula which relates the genus
of two compact Riemann surfaces through a nonconstant morphism between
each other.

Theorem A.28 (Riemann-Hurwitz formula). Let F : X → Y be a
nonconstant morphism. If X is compact, then

2g(X)− 2 = deg(F )(2g(Y )− 2) +
∑
p∈X

(ep(F )− 1).

Proof: [Mir95, p.52]

A.2.2 Meromorphic functions

Definition A.29. Let U be a nonempty open subset of X.

. A function f : U → Ĉ is meromorphic at p ∈ U if there exists a chart
φ1 : U1 → V1 on X, with p ∈ U1, such that the composition f ◦ φ−1

1 is
meromorphic at φ1(p). In this case, for any chart ψ1 : U ′1 → V ′1 on X,
with p ∈ U ′1, the composition f ◦ ψ−1

1 is meromorphic at ψ1(p).

. A function f : U → Ĉ is meromorphic on a nonempty open subset V ⊂ U
if f is meromorphic at each point of V .

Note that a function f : U → Ĉ is meromorphic at p ∈ U if and only if
f is holomorphic at p (as Riemann surfaces) and there does not exist a
neighbourhood Up of p, with Up ⊂ U , such that f is identically infinity on Up.
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Examples A.30.

1. The meromorphic functions on a nonempty open subset of C.

2. Let C/Λ be a complex torus. For each elliptic function f with periods Λ,
the induced function F : C/Λ→ Ĉ,

F (z + Λ) = f(z), ∀ z + Λ ∈ C/Λ,

is a meromorphic function on C/Λ.

3. Let Γ be a congruence subgroup of SL2(Z). For each automorphic form
f of weigh 0 with respect to Γ, the induced function F : X(Γ)→ Ĉ,

F (x) =

{
f(τ) if x = Γτ ,
f(s) if x = Γs,

∀x ∈ X(Γ),

is a meromorphic function on X(Γ).

The set of meromorphic functions on U is denoted by MX(U),

MX(U) = {f : U → C | f is meromorphic on U}.

Note that it is a C-algebra that containsOX(U) as subalgebra. Furthermore,
if U is connected, thenMX(U) is a field, since if f is a meromorphic function
which is not identically zero, then 1/f is also a meromorphic function.

Definition A.31. Let f : X → Ĉ be a nonzero meromorphic function on X.
The order of f at p ∈ X is defined as

ordp(f) = min{n ∈ Z | an 6= 0},

where {an}n∈Z is the sequence of Laurent coefficients of f around p with
respect to a chart φ1 : U1 → V1 on X, with p ∈ U1, i.e.,

f ◦ φ−1
1 (z) =

∑
n∈Z

an(z − z0)n, z0 = φ1(p).

One can easily check that this definition is independent of the chosen chart
to define the coefficients of the Laurent series.

We say that the function f has a zero of order n at p ∈ X if ordp(f) = n ≥ 1
and has a pole of order n at p ∈ X if ordp(f) = −n ≤ −1.

Examples A.32.

1. The function induced by the Weierstrass ℘-function for a lattice Λ in C

℘Λ : C→ Ĉ, ℘Λ(z) =
1

z2
+
∑′

w∈Λ

(
1

(z − w)2
− 1

w2

)
, ∀ z ∈ C, z /∈ Λ,

has a double pole at 0 + Λ.
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2. The function induced by the modular function

j : H→ C, j(τ) = 1728
g2(τ)3

∆(τ)
, ∀ τ ∈ H,

has a simple pole at SL2(Z)∞.

Convention. If f : X → Ĉ is identically zero, then ordp(f) = +∞, ∀ p ∈ X.

Remarks A.33.

. Let f be a nonzero meromorphic function on X:

- If f has a zero at p ∈ X, then ep(f) = ordp(f).

- If f has a pole at p ∈ X, then ep(f) = −ordp(f).

- If f has neither a zero nor a pole at p ∈ X, then

ep(f) = ordp(f − f(p)).

. Let f, g be nonzero meromorphic functions on X. Then

ordp(f ± g) ≥ min{ordp(f), ordp(g)}, ordp(1/f) = −ordp(f),
ordp(fg) = ordp(f) + ordp(g), ordp(f/g) = ordp(f)− ordp(g).

The following theorems are immediate consequences of the characterization
of branched coverings, since if f : X → Ĉ is a branched covering, then the
map

q ∈ Ĉ 7→
∑

p∈f−1(q)

ep(f) ∈ Z

is constant.

Theorem A.34. Let f : X → Ĉ be a branched covering. If f has a unique
simple pole, then f is an isomorphism. Therefore, X is isomorphic to Ĉ.

Theorem A.35. Let f : X → Ĉ be a branched covering. Then∑
p∈X

ordp(f) = (number of zeros of f)− (number of poles of f) = 0.

A.3 Meromorphic differentials

Let X be a Riemann surface and n an integer.
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Definition A.36. A local representation of a meromorphic differential on X
of degree n is a collection of pairs

(φα, fα),

where φα :Uα→Vα is a chart on X and fα :Vα→ Ĉ is a meromorphic function,
that satisfies the following conditions:

. {φα : Uα → Vα} is a complex atlas on X,

. and in addition, if Uα1 ∩ Uα2 6= ∅, then

fα1(z) = fα2(φα2,α1(z))(φ′α2,α1
(z))n, ∀ z ∈ φα1(Uα1 ∩ Uα2),

where φα2,α1 is the transition function from the chart φα1 to the chart φα2.

Two local representations of meromorphic differentials on X of degree n,

{(φα, fα)} and {(φα′ , fα′)}

are equivalent (or represent the same meromorphic differential of degree n)
if its union

{(φα, fα)} ∪ {(φα′ , fα′)}

also satisfies the second condition of the previous definition.

Let {(φα, fα)} be a local representation of a meromorphic differential
of degree n. If {φα′ :Uα′ → Vα′} is another complex atlas, then we can define

fα′(z) = fα(φα,α′(z))(φ
′
α,α′(z))

n, ∀ z ∈ φα′(Uα ∩ Uα′),

where φα,α′ is the transition function from the chart φα′ to the chart φα.
As a consequence, observe that the representations

{(φα, fα)} and {(φα′ , fα′)}

are equivalent.

Definition A.37. A meromorphic differential w on X of degree n is a equiv-
alence class of local representations of meromorphic differentials of degree n.

Although a meromorphic differential w of degree n is a equivalence class,
we keep the same notation

w = {(φα, fα)}

if there is no risk of confusion.
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The set of meromorphic differentials on X of degree n is denotedM(n)(X).
It is a C-vector space together with the operations

w + w′ = {(φα, fα + gα)}, w = {(φα, fα)}, w′ = {(φα, gα)}

and
λw = {(φα, λfα)}, w = {(φα, fα)}, λ ∈ C.

Observe that these operations are independent of the local representations.

If w = {(φα, fα)} ∈ M(s)(X) and w′ = {(φα, gα)} ∈ M(j)(X), then
the product

ww′ = {(φα, fαgα)} ∈ M(s+j)

is well-defined. Thus the direct sum over all the degrees⊕
n∈Z
M(n)(X)

forms naturally a graded ring.

Remark A.38. The spaceM(0) is a C-algebra together with this product.
Furthermore, the map

f ∈M(X) 7→ {(φα, f ◦ φ−1
α )} ∈ M(0), where {φα} is an atlas on X,

defines an isomorphism of C-algebras.

Examples A.39.

1. The collection
{(φR2 , f)}, with f ∈M(C),

is a meromorphic differential on the complex plane of any degree n ∈ Z.

2. The collection

{(φ1, f1 = 1), (φ2, f2(z) = (−1/z2)n)}

is a meromorphic differential on the Riemann sphere of any degree n ∈ Z.

3. Let C/Λ be a complex torus. The collection

{(φz : π(Dz)→ Dz, fz = 1) | z ∈ C}

is a meromorphic differential on the complex torus of any degree n ∈ Z.

Definition A.40. Let w = {(φα, fα)} be a meromorphic differential on X
of degree n. The order of w at p ∈ X is defined as

ordp(w) = νzp(fα),

where (φα :Uα→Vα, fα) is a pair in w, with p ∈ Uα, and zp = φα(p).
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One can easily check that this definition is independent of the chosen pair,
i.e, if (φα′ :Uα′→Vα′ , fα′) is another pair in w, with p ∈ Uα′ , then

νzp(fα) = νz′p(fα′), where z′p = φα′(p).

A.4 Divisors and Riemann-Roch Theorem

Let X be a compact Riemann surface.

Definition A.41. A divisor D on X is a map from X to Z whose support

{p ∈ X |D(p) 6= 0}

is a finite subset of X.

A divisor D on X is denoted

D =
∑

npp, where np = D(p), ∀ p ∈ X.

The set Div(X) of divisors on X forms a Abelian group, the free abelian
group generated by the set X, under the addition

D +D′ =
∑

(np + n′p)p, D =
∑

npp, D
′ =

∑
n′pp.

The degree of a divisor D =
∑
npp on X is defined as deg(D) =

∑
np.

Observe that the map deg : Div(X) → Z is a homomorphism of groups.
Its kernel is the subgroup

Div0(X) = {D ∈ Div(X) | deg(D) = 0}.

Each meromorphic function f : X → Ĉ defines a divisor on X,

div(f) =
∑

ordp(f)p (f 6= 0).

The divisors D on X of the form D = div(f) are called principal divisors.
Let M(X)∗ be the multiplicative group of nonzero meromorphic functions.
Observe that the map div : M(X)∗ → Div(X) is also a homomorphism of
groups, since

div(fg) = div(f) + div(g), ∀ f, g ∈M(X)∗.

By Theorem A.35 its image

PDiv(X) = {div(f) | f ∈M(X)∗}
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is a subgroup of the group Div0(X). Abel’s Theorem [Mir95, p.250-263]
states that the quotient Div0(X)/PDiv(X) is isomorphic to a g-dimensional
complex torus Cg/Λg, where g is the genus of X and Λg is a lattice in Cg.

Let D =
∑
npp, D

′ =
∑
n′pp be divisors on X. If n′p ≤ np, ∀ p ∈ X, then

we write

D′ ≤ D or D ≥ D′.

The linear space L(D) associated to a divisor D on X is defined as

L(D) = {f ∈M(X) | f = 0 or div(f) +D ≥ 0}.

The inequality

ordp(f + g) ≥ min{ordp(f), ordp(g)}, ∀ p ∈ X, ∀ f, g ∈M(X),

shows that L(D) is a vector subspace. It is well-known that this subspace
turns out to be finite-dimensional [Mir95, p.151]. Its dimension is denoted `(D).

Remarks A.42.

. If D is the zero divisor, then

L(D) = C,

since the meromorphic functions without poles are the constants functions.

. If D is a divisor with degree deg(D) < 0, then L(D) = {0}, since

deg(div(f) +D) = deg(D), ∀ f ∈M(X)∗.

Each meromorphic differential w ∈M(n)(X) also defines a divisor on X,

div(w) =
∑

ordp(w)p (w 6= 0).

Observe that

div(w1w2) = div(w1) + div(w2)

for any nonzero meromorphic differentials w1 ∈M(s)(X) and w2 ∈M(j)(X).
The divisors D on X of the form D = div(λ), with λ ∈M(1)(X), λ 6= 0, are
called canonical divisors.

Lemma A.43. Let λ1, λ2 ∈M(1)(X) be nonzero meromorphic differentials.
Then there exists a unique nonzero meromorphic function f :X → Ĉ such
that λ2 = fλ1. As a consequence, observe that

div(λ2) = div(f) + div(λ1).



96 Appendix A

Proof: Let {φα : Uα → Vα} be a complex atlas on X. There exist local
representations

λ1 = {(φα, f1
α)} and λ2 = {(φα, f2

α)}.

Then the meromorphic function f : X → Ĉ,

f(p) =
f2
α(φα(p))

f1
α(φα(p))

, ∀ p ∈ Uα,

is well-defined and is the unique nonzero meromorphic function on X that
satisfies the desired property.

Theorem A.44. [Riemann-Roch] Let X be a compact Riemann surface
of genus g. If div(λ) is a canonical divisor on X, then for any divisor
D ∈ Div(X),

`(D) = deg(D)− g + 1 + `(div(λ)−D).

Proof: [Mir95, p.192]

Observe that if div(λ′) is another canonical divisor on X, then the vector
spaces Lλ = L(div(λ)−D) and Lλ′ = L(div(λ′)−D) are isomorphic, since
the map

g ∈ Lλ 7→ g/f ∈ Lλ′ , where f ∈M(X)∗, λ′ = fλ,

is an isomorphism of C-vector spaces. As a consequence,

`(div(λ)−D) = `(div(λ′)−D).

Corollary A.45. Let X, g, div(λ) and D be as above. Then

1. `(div(λ)) = g

2. deg(div(λ)) = 2g − 2

3. If deg(D) < 0, then `(D) = 0

4. If deg(D) > 2g − 2, then `(D) = deg(D)− g + 1

Proof: To prove the first equality letD = 0 in the Riemann-Roch Theorem
and recall that `(0) = 1. To prove the second equality it suffices to apply
the Riemann-Roch Theorem with D = div(λ), since

g
(1 )
= `(div(λ)) = deg(div(λ))− g + 2.
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We now argue the third assertion by contradiction. Let us suppose that there
exists a nonzero meromorphic function f ∈L(D). Then div(f) ≥ −D, and
taking degrees follows that deg(D) ≥ 0, which is a contradiction. Finally,
the fourth assertion is consequence of (2 ) and (3 ) since if deg(D) > 2g− 2,
then

deg(div(λ)−D)
(2 )
= 2g − 2− deg(D) < 0.
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Complex elliptic curves

The compact Riemann surfaces of genus equal to 1 are called complex elliptic
curves for reasons to be explained in this chapter. It is possible to prove that
any complex elliptic curve is isomorphic to a complex torus (as Riemann
surfaces). As a consequence, these curves can be endowed with an analytic
group structure which is uniquely determined by the choice of identity ele-
ment. In this chapter we detail all these results over complex elliptic curves.

B.1 Complex Tori

Let us begin by defining the Riemann surfaces called complex torus.

It is well-known that the discrete subgroups of C are

- {0},

- Zw, with w ∈ C∗, and

- Zw1 + Zw2, with w1, w2 ∈ C linearly independent over R.

A lattice Λ in C is a discrete subgroup of C of the third kind, that is,
Λ = Zw1 +Zw2, with w1, w2 ∈ C linearly independent over R. Note that the
pair (w1, w2) has the property that any w ∈ Λ has a unique representation

w = m1w1 +m2w2, with m1,m2 ∈ Z.

Any pair with this property is called a basis of the lattice Λ.

It is usual to make the normalizing convention w1/w2 ∈ H, but this still
does not determine a basis given a lattice. In fact, two pairs (w1, w2) and
(w′1, w

′
2) are bases of a same lattice if and only if[

w′1
w′2

]
=

[
a b
c d

] [
w1

w2

]
, for some α =

[
a b
c d

]
∈ GL2(Z).
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0

w2

w1

Figure B.1: Lattice with basic (w1, w2)

If we make the normalizing convention w1/w2, w
′
1/w

′
2 ∈ H, then α ∈ SL2(Z).

Let Λ be a lattice in C, with basis (w1, w2),

Λ = Zw1 + Zw2.

Let us consider the quotient group C/Λ endowed with the topology induced
by the natural projection π : C → C/Λ, that is, a subset U ⊂ C/Λ is open
if and only if π−1(U) is open in C. Note that C/Λ is a compact connected
topological space, since π is a continuous map with respect to this topology
and π(Pa) = C/Λ, for any period parallelogram

Pa = Pa(w1, w2) = {a+ λw1 + βw2 | 0 ≤ λ, β < 1}, a ∈ C.

Pa(w1, w2)

a a+ w1

a+ w2

Figure B.2: Period parallelogram

Furthermore, π is an open map, since

π−1(π(V )) =
⋃
w∈Λ

w + V, ∀ V ⊂ C.

Let us now prove that C/Λ is a Hausdorff topological space. Let z1 + Λ,
z2 + Λ be points in C/Λ, with z2 − z1 /∈ Λ. Then

η = min
w∈Λ
|(z2 − z1)− w| > 0.
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As a consequence,

π(D(z1, η/2)) and π(D(z2, η/2))

are disjoint open subsets of C/Λ containing z1 + Λ and z2 + Λ, respectively.

Finally, let us define an atlas on C/Λ. For each z ∈ C, consider the disc
Dz = D(z, δ/2), where

δ = min
w∈Λ\{0}

{|w|}.

Note that π|Dz : Dz → π(Dz) is a homeomorphism. We denote by φz its
inverse homeomorphism. Below, we show that the collection of charts

A = {φz : π(Dz)→ Dz | z ∈ C}

is an atlas on C/Λ:

- Evidently, C/Λ =
⋃
z∈C π(Dz).

- Furthermore, if π(Dz1) ∩ π(Dz2) 6= ∅, with z1, z2 ∈ C, then there exists
w ∈ Λ such that

φz2 ◦ φ−1
z1 (z) = z + w, ∀ z ∈ V1,2,

where V1,2 = φz1(π(Dz1) ∩ π(Dz2)). Indeed,

ϕ(z) := φz2 ◦ φ−1
z1 (z)− z ∈ Λ, ∀ z ∈ V1,2,

and

|ϕ(s1)− ϕ(s2)| < δ, ∀ s1, s2 ∈ V1,2.

The topological space C/Λ endowed with the complex structure determined
by the atlas A is a compact Riemann surface called Complex Torus. It is
important to note that the group structure on C/Λ is analytic, i.e., in terms
of local charts about any two given points in the complex torus, addition is
a holomorphic function of two complex variables.

Let z1 + Λ, z2 + Λ ∈ C/Λ. Consider the charts

φz1 : π(Dz1)→ Dz1 ,

φz2 : π(Dz2)→ Dz2 ,

φz3 : π(Dz3)→ Dz3 ,

where z3 = z1 +z2, and fix an open neighbourhood V of (z1, z2) in Dz1×Dz2

such that s1 + s2 ∈ Dz3 , ∀ (s1, s2) ∈ V . Then

φz3
(
φ−1
z1 (s1) + φ−1

z2 (s2)
)

= s1 + s2, ∀ (s1, s2) ∈ V.
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B.1.1 Analytic group structure

As mentioned at the beginning of this chapter, if E is a complex elliptic
curve, then there exists a lattice Λ in C such that E is isomorphic to C/Λ
as Riemann surfaces [Mir95, p.265]. Therefore, there exists an isomorphism

F : C/Λ→ E.

Now, through this isomorphism the complex elliptic curve E inherits the
analytic group structure on C/Λ. To see this, it suffices to define

F (z1 + Λ) + F (z2 + Λ) := F ((z1 + z2) + Λ), ∀ z1 + Λ, z2 + Λ ∈ C/Λ.

Note that the isomorphism becomes a group isomorphism from C/Λ to E
with respect to this group structure.

The following theorem states that an analytic group structure on a complex
elliptic curve is uniquely determined by the identity element.

Theorem B.1. Let E be a complex elliptic curve and p0 ∈ E. Then there
exists a unique analytic group structure on E such that p0 is the identity
element.

Proof: Let Λ be a lattice in C such that E is isomorphic to C/Λ and
F : E → C/Λ an isomorphism. The map G : E → C/Λ,

G(p) = F (p)− F (p0), ∀ p ∈ E,

is an isomorphism, taking p0 to 0 + Λ. So the inverse isomorphism defines
an analytic group structure on E as above, such that

p0 = G−1(0 + Λ)

is the identity element.

Let us now prove the uniqueness.
First, we consider the case E = C/Λ, with Λ a lattice in C, and p0 = 0 + Λ.
Let ⊕ : E × E → E be another addition which defines an analytic group
structure with identity element 0 + Λ. Below, we show that

z̃1 + z̃2 = z̃1 ⊕ z̃2, ∀ z̃1 = z1 + Λ, z̃2 = z2 + Λ ∈ E.

- For z̃2 = 0 + Λ, it is obvious.

- For z̃2 6= 0 + Λ, the map Fz̃2 : E → E,

Fz̃2(z̃) = z̃ ⊕ z̃2, ∀ z̃ = z + Λ ∈ E,

is an automorphism without fixed points. Then

Fz̃2(z̃) = z̃ + z̃3, ∀ z̃ = z + Λ ∈ E,



Complex elliptic curves 103

for some z̃3 = z3 +Λ ∈ E, with z3 /∈ Λ (Corollary B.5). As a consequence,

z̃2 = Fz̃2(0 + Λ) = z̃3.

The arbitrary case of an elliptic curve E, with identity element p0 ∈ E,
follows from the case just considered since if there exists another analytic
group structure on E, with identity element p0, then the isomorphism

G : E → C/Λ

defined above carries the two analytic group structures on E to two distinct
analytic group structures on C/Λ, with identity element 0 + Λ.

From the uniqueness stated in the previous theorem, we obtain the following
corollary.

Corollary B.2. Let E1, E2 be two complex elliptic curves with identity
elements p1

0 and p2
0, respectively. If F : E1 → E2 is an isomorphism of

Riemann surfaces such that F (p1
0) = p2

0, then

F (p) + F (q) = F (p+ q), ∀ p, q ∈ E1.

Therefore, the isomorphism F is also a group isomorphism from E1 to E2.

B.2 Morphisms between complex tori

Let C/Λ1,C/Λ2 be two complex tori.

Theorem B.3. If F : C/Λ1 → C/Λ2 is a morphism of Riemann surfaces,
then there exist α, β ∈ C, with αΛ1 ⊂ Λ2, such that

F (z + Λ1) = (αz + β) + Λ2, ∀ z + Λ1 ∈ C/Λ1.

Reciprocally, if there exists α ∈ C, with αΛ1 ⊂ Λ2, then for each β ∈ C
the map Fα,β : C/Λ1 → C/Λ2,

Fα,β(z + Λ1) = (αz + β) + Λ2, ∀ z + Λ1 ∈ C/Λ1.

is a morphism of Riemann surfaces. Its degree is the index of αΛ1 in Λ2,

deg(Fα,β) = [Λ2 : αΛ1].

Proof: [Mir95, p.63]

Note that the map Fα,β is bijective if and only if αΛ1 = Λ2. In such case,
its inverse is

F−1
α,β(z + Λ2) = (1/α)z − β/α+ Λ1, ∀ z + Λ2 ∈ C/Λ2.
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Corollary B.4. The isomorphisms from C/Λ1 to C/Λ2 are

F (z + Λ1) = (αz + β) + Λ2, ∀ z + Λ1 ∈ C/Λ1,

where α, β ∈ C, αΛ1 = Λ2.

Therefore, the complex tori C/Λ1 and C/Λ2 are isomorphic (as Riemann
surfaces) if and only if there exists α ∈ C such that αΛ1 = Λ2, i.e.,
if the lattices Λ1 and Λ2 are homothetic.

Corollary B.5. Let C/Λ be a complex torus.

1. The morphisms from C/Λ to itself are

F (z + Λ) = (αz + β) + Λ, ∀ z + Λ ∈ C/Λ,

where α, β ∈ C, αΛ ⊂ Λ.

2. The automorphisms of C/Λ are

F (z + Λ) = (αz + β) + Λ, ∀ z + Λ ∈ C/Λ,

where α, β ∈ C, αΛ = Λ.

3. The automorphisms of C/Λ without fixed points are

F (z + Λ) = (z + β) + Λ, ∀ z + Λ ∈ C/Λ,

where β ∈ C \ Λ.

Remark B.6. The maps Fα,β : C/Λ1 → C/Λ2,

Fα,β(z + Λ1) = (αz + β) + Λ2, ∀ z + Λ1 ∈ C/Λ1.

are group homomorphisms if and only if Fα,β(0 + Λ1) = 0 + Λ2, i.e., β ∈ Λ2.

B.3 Weierstrass ℘-function

The Weierstrass ℘-function for a lattice Λ in C is defined as

℘Λ(z) =
1

z2
+
∑′

w∈Λ

(
1

(z − w)2
− 1

w2

)
, ∀ z ∈ C, z /∈ Λ,

where the primed summation means to sum over the points w ∈ Λ \ {0}.
It is the most important specific example of elliptic function with periods Λ,

℘Λ(z) = ℘Λ(z + w), ∀ z ∈ C, ∀w ∈ Λ.
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As the series converges uniformly on compact subsets which do not meet Λ,
the function is holomorphic on C/Λ and has double poles at lattice points.
So its order is 2, i.e, the number of poles in any period parallelogram

Pa(w1, w2) = {a+ λw1 + βw2 | 0 ≤ λ, β < 1}, a ∈ C,

where (w1, w2) is a basic of Λ, is equal to 2.

Its derivative is also an elliptic function with periods Λ,

℘′Λ(z) = −2
∑′

w∈Λ

1

(z − w)3
, ∀ z ∈ C, z /∈ Λ.

In fact, it turns out that ℘Λ and ℘′Λ are the only specific examples we need
since the field of elliptic functions with periods Λ is generated by ℘Λ and ℘′Λ.
It is important to note that ℘Λ is an even function while ℘′Λ is an odd function.

The following theorem states the main results of the Weierstrass ℘-function.

Theorem B.7. Let ℘Λ be the Weierstrass function with respect to a lattice Λ.

1. The Laurent series of ℘Λ is

℘Λ(z) =
1

z2
+

∞∑
n=2
n even

(n+ 1)Gn+2(Λ)zn, ∀ z ∈ Ḋ(0, δ),

where

Gk(Λ) =
∑′

w∈Λ

1

wk
, k > 2 even,

and
δ = min

w∈Λ\{0}
{|w|}.

2. The functions ℘Λ and ℘′Λ satisfy the cubic equation

(℘′Λ)2 = 4℘3
Λ − g2(Λ)℘Λ − g3(Λ),

where g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).

3. Let (w1, w2) be a basis of Λ and w3 = w1 + w2. Then the cubic equation
satisfied by ℘Λ and ℘′Λ is

y2 = 4(x− e1)(x− e2)(x− e3), where ei = ℘Λ(wi/2), ∀ i = 1, 2, 3.

This equation is nonsingular, meaning its right side has distinct roots.
In particular, its discriminant up to constant multiple

∆(Λ) = g2(Λ)3 − 27g3(Λ)2 6= 0.
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Proof: [Apo90, p.9-14]

As a consequence of this result, the following question arises:

Let c2, c3 be complex numbers satisfying c3
2 − 27c2

3 6= 0. Does there
exist a lattice Λ in C such that

gk(Λ) = ck, k = 2, 3 ?

Using properties of the modular function

j : H→ C, j(τ) = 1728
g2(τ)3

∆(τ)
, ∀ τ ∈ H,

it is possible to demonstrate that the answer to this question is affirmative.

Theorem B.8. Let c2, c3 be complex numbers satisfying c3
2 − 27c2

3 6= 0.
Then there exists a unique lattice Λ in C such that

gk(Λ) = ck, k = 2, 3.

Proof: [Apo90, p.42]

Therefore, we can conclude that there exists a natural bijection between

Complex Nonsingular
tori −−→ cubic equations
C/Λ y2 = 4x2 − c2x− c3

Definition B.9. A elliptic curve over C is any nonsingular cubic equation
of this form,

E : y2 = 4x3 − c2x− c3, c2, c3 ∈ C, c3
2 − 27c2

3 6= 0.

A good reference book about elliptic curves is for example [Sil09].

B.3.1 Algebraic models

Let Λ be a lattice in C, with basis (w1, w2). Consider the nonsingular cubic
equation satisfied by ℘Λ and ℘′Λ,

y2 = 4x3 − g2(Λ)x− g3(Λ).

Observe that it determines a noncompact topological subspace XΛ of C2,

XΛ = {(x, y) ∈ C2 | y2 − 4x3 + g2(Λ)x+ g3(Λ) = 0}.
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To compactify it we add an additional point that will be denoted by (∞,∞),

EΛ = XΛ ∪ {(∞,∞)},

and we define the following topology: The open subsets of EΛ are

- the open subsets of XΛ, and

- the complements of compact subsets in XΛ.

Theorem B.10. The complex elliptic curve

EΛ = XΛ ∪ {(∞,∞)}

is a compact connected Hausdorff topological space with respect to this topology.

Let us now define an atlas on EΛ. Consider the natural projections

πx : C2 → C, πx(x, y) = x, and πy : C2 → C, πy(x, y) = y.

We need a version of the implicit function theorem for polynomials in C[x, y].

Theorem B.11. Let p ∈ C[x, y] and (a, b) ∈ C2. Suppose that

p(a, b) = 0 and ∂yp(a, b) 6= 0.

Then there exist open subsets Va, Vb ⊂ C, with a ∈ Va, b ∈ Vb, and a holomorphic
function g : Va → Vb such that for all (x, y) ∈ Va × Vb,

p(x, y) = 0 if and only if y = g(x).

This result allows us to invert locally the natural projections πx and πy
on the curve EΛ. Define

f = y2 − 4x3 + g2(Λ)x+ g3(Λ) ∈ C[x, y]

and

f∞ = y2 − x4
( 4

x3
− g2(Λ)

1

x
− g3(Λ)

)
∈ C[x, y]

The map ψ : U → U∞ defined as

ψ(x, y) = (
1

x
,
y

x2
), ∀ (x, y) ∈ U,

where
U = {(x, y) ∈ C2 |x 6= 0, f(x, y) = 0}

and
U∞ = {(x, y) ∈ C2 |x 6= 0, f∞(x, y) = 0},

is a homeomorphism. Its inverse homeomorphism is defined in the same way,

ψ−1 : U∞ → U, ψ−1(x, y) = (
1

x
,
y

x2
), ∀ (x, y) ∈ U∞.
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Remark B.12. Let (x, y) ∈ U . Observe that( y
x2

)2
=

1

x4
(4x3 − g2(Λ)x− g3(Λ)) ∼ 1

x
, as x→∞,

Making the change of variables z = 1/x and w = y/x2, we obtain that

w2 = z4(
4

z3
− g2(Λ)

1

z
− g3(Λ))

This argument justifies the previous definition of the polynomial f∞ ∈ C[x, y].

Let (a, b) ∈ XΛ. Suppose that ∂yf(a, b) 6= 0. Then there exist open subsets
Va, Vb ⊂ C, with a ∈ Va, b ∈ Vb, and a holomorphic function g : Va → Vb
such that for all (x, y) ∈ Va × Vb, f(x, y) = 0 if and only if y = g(x).
Therefore, the projection πx : U(a,b) → Va, where U(a,b) = (Va × Vb) ∩ XΛ,
is a chart on EΛ. Its inverse homeomorphism is π−1

x (x) = (x, g(x)), ∀x ∈ Va.
We can define a chart πy : U(a,b) → Vb in the same way as above if
∂xf(a, b) 6= 0. Since the partial derivatives of f are not both zero,

∂xf(a, b) 6= 0 or ∂yf(a, b) 6= 0,

we have defined a complex chart on the curve EΛ for each point (a, b) ∈ XΛ.

Observe now that ∂xf∞(0, 0) = −4, since

∂xf∞ = −4 + 3g2(Λ)x2 + 4g3(Λ)x3.

Then there exist open subsets V1, V2 ⊂ C, with 0 ∈ V1 ∩ V2, and a holomor-
phic function h : V2 → V1 such that for all (x, y) ∈ V1 × V2, f∞(x, y) = 0
if and only if x = h(y). As above, the projection πy : U1,2 → V2, where
U1,2 = {(x, y) ∈ V1 × V2 | f∞(x, y) = 0}, is a homeomorphism. Therefore,
the composition π∞ = πy ◦ ψ : ψ−1(U1,2) ∪ {(∞,∞)} → V2,

π∞(x, y) = y/x2, ∀ (x, y) ∈ ψ−1(U1,2) [ψ(∞,∞) := (0, 0)],

is a chart on EΛ about the point (∞,∞).

Proving the compatibility of these charts is left as an exercise to the lector.
The elliptic curve EΛ endowed with the complex structure determined by
this collection of pairwise compatible charts is a compact Riemann surface.

Let FΛ : C/Λ→ EΛ be the map

FΛ(z + Λ) = (℘Λ(z), ℘′Λ(z)), ∀ z + Λ ∈ C/Λ.

Observe that it is well-defined since ℘Λ and ℘′Λ are both elliptic functions.

Theorem B.13. The map FΛ is an isomorphism of Riemann surfaces.
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Proof: Let us begin by proving that FΛ is bijective. Let (x0, y0) ∈ EΛ.
If (x0, y0) = (∞,∞), then the only preimage of this point is 0+Λ. Otherwise,
the equation

℘Λ(z̃) = x0, z̃ = z + Λ ∈ C/Λ,

has two solutions z̃1, z̃2 ∈ C/Λ, since ℘Λ is an elliptic function of order 2.
If x0 is a root of the polynomial

−4x3 + g2(Λ)x+ g3(Λ) ∈ C[x],

then these two solutions are the same, since

(℘′Λ(zi))
2 = −4(℘Λ(zi))

3 + g2(Λ)℘Λ(zi) + g3(Λ) = 0, i = 1, 2.

And if x0 is not a root of this polynomial, then these two solutions must
be distinct, since otherwise we can conclude that ℘Λ does not have order 2.
Therefore, it suffices to see that

℘′Λ(z1) 6= ℘′Λ(z2),

to conclude that (x0, y0) has only a preimagen in C/Λ. As ℘Λ is even and
z̃1 6= −z̃1 (since the derivative ℘′Λ only vanishes at the points of C/Λ that
have order 2, Theorem B.7), we deduce that z̃2 = −z̃1. Using now that ℘′Λ
is odd, we obtain that

℘′Λ(z2) = ℘′Λ(−z1) = −℘′Λ(z1).

To prove that FΛ is holomorphic at z̃0 = z0 + Λ ∈ C/Λ we distinguish
the following three cases:

- If z0 /∈ Λ and ℘Λ(z0) 6= 0, then a complex chart on EΛ about the point
(x0, y0) = FΛ(z̃0) is πx, since ∂yf(x0, y0) 6= 0. So

πx ◦ FΛ ◦ φ−1
z0 (z) = πx0(FΛ(z + Λ))

= πx0(℘Λ(z), ℘′Λ(z)) = ℘Λ(z)

- If z0 /∈ Λ and ℘Λ(z0) = 0, then a complex chart on EΛ about the point
(0, y0) = FΛ(z̃0) is πy, since ∂xf(0, y0) 6= 0. So

πy ◦ FΛ ◦ φ−1
z0 (z) = πy(FΛ(z + Λ))

= πy(℘Λ(z), ℘′Λ(z)) = ℘′Λ(z).

- If z0 ∈ Λ (z0 + Λ = 0 + Λ), then a complex chart on EΛ about the point
(∞,∞) = FΛ(z̃0) is π∞. Therefore,

π∞ ◦ FΛ ◦ φ−1
z0 (z) = π∞(FΛ(z + Λ))

= π∞(℘Λ(z), ℘′Λ(z)) =
℘′Λ(z)

(℘Λ(z))2
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and

lim
z→z0

℘′Λ(z)

(℘Λ(z))2
= lim

z→z0
−2(z − z0) + (higher order terms) = 0.

Observe that the three compositions are well-defined in neighbourhoods of z0.

Final conclusion: Let E be a complex elliptic curve (compact Riemann
surface of genus 1). Then there exist a lattice Λ in C and an isomorphism
F : E → C/Λ. Therefore,

E
F−→ C/Λ FΛ−→ EΛ

is an isomorphism from E to EΛ.
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