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Abstract

The Modularity Theorem states that all rational elliptic curve arise from
modular forms. In 1995, Andrew Wiles proved a special case of this theorem
(then known as the Taniyama—Shimura conjecture) for semistable elliptic
curves, completing the proof of Fermat’s Last Theorem after some 350 years.
Later, Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor
extended Wiles’s techniques to prove completely the Modularity Theorem.
In this work we explain a complex analytic version of this notable theorem.

Translation to Spanish

El Teorema de Modularidad afirma que todas las curvas elipticas racionales
surgen de formas modulares. En 1995, Andrew Wiles probd un caso especial
de este teorema (entonces conocido como la conjetura de Taniyama—Shimura)
para curvas elipticas semiestables, completando asi la prueba del Ultimo
Teorema de Fermat después de unos 350 anos. Més tarde, Christophe Breuil,
Brian Conrad, Fred Diamond and Richard Taylor extendieron las técnicas
de Wiles para probar completamente el Teorema de Modularidad. En este
trabajo nosotros explicamos una versiéon analitica compleja de este notable
teorema.
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Symbols

Z set of integer numbers

7+ set of positive integer numbers

Q set of rational numbers

R set of real numbers

C set of complex numbers

Cc* set of nonzero complex numbers

C Riemann sphere

H upper half plane

D unit disc

Rez real part of a complex number z

Im z imaginary part of a complex number z

|z absolute value of a complex number z

D(z,¢) {weCl|lw-z <e}

D(z,¢) {weCl0<|w—2z|<e}

D(z,¢) {weCllw—2z <&}

0 empty set

int(A) interior of a subset A

A’ derived of a subset A

A clousure of a subset A

Y (') noncompact modular curve I'\H

X(T) compact modular curve I'\H* (H* = HU QU {oo})
A (T) set, of automorphic forms of weight k with respect to '
M () set of modular forms of weight k£ with respect to I'
Si(T) set of cusp forms of weight k£ with respect to I’
Ox(U) set of holomorphic functions on U

Mx (U) set of meromorphic functions on U

MM (X) set of meromorphic differentials on X of degree n
Div(X) set of divisors on X

ix



X Symbols

For a commutative ring R with unity we write

May(R) = set of square matrices of degree 2 with coefficients in R,
GL2(R) = {a € Mz(R)| det(a) € R*},
SLa(R) = {a € Ma(R)| det(a) =1},

where R* is the group of invertible elements in R.



Introduction

Cubum autem in duos cubos, aut quadratoquadratum in
duos quadratoquadratos, et generaliter nullam in infinitum
ultra quadratum potestatum in duos ejusdem nominis fas est
dividere: cujes rei demonstrationem mirabilem sane detexi.
Hanc marginis exiguitas non caperet.

Pierre de Fermat, 1637

The French mathematician Pierre de Fermat (17 August 1601, Beaumont-
de-Lomagne, France — 12 January 1665, Castres, France) wrote this note in
the margin of his copy of Diophantus’s Arithmetica stating that the equation

2"yt =2", neclZh, (1)

has no solutions in positive integers if n is greater than 2. He also claimed
to have a marvelous proof of this statement, but this was never published
(the previous note was published in 1670 by his older son after his death).
This statement became known over time as Fermat’s Last Theorem (FLT),
since it was the last of Fermat’s asserted theorems to remain unproved.

Figure 1: Pierre de Fermat

11



12 Modular forms

Let (FLT),, denote the following statement:
The equation (1) has no solutions in positive integers.

It is easy to prove that (FLT),, implies (FLT)g, for any positive integer k,
so it suffices to prove

(FLT)s and (FLT), for any prime ¢ > 2,

to conclude that Fermat’s Last Theorem is true. Fermat proved (FLT)4
by showing that the equation

has no solutions in positive integers. Its proof can be consulted in [vdP96, p.3].
As a consequence, (FLT) reduced to the following question:

Is (FLT), true for any prime ¢ > 2 ?

History of Fermat’s Last Theorem

During the next three centuries (18-20th), giving an answer to this question
would become one of the most difficult mathematical problems to resolve.
The first complete proof of the case (FLT)3 was given by Gauss [IR90, p.284]
(Euler gave a proof of (FLT)3 in 1753, but this contains an alleged error).
Gauss’s proof leads to a strategy that succeeds for other values of ¢ as well.
Peter Dirichlet and Adrien Legendre proved independently (FLT)s5 in 1825,
and Gabriel Lamé settled (FLT)7 in 1839.

The work of Sophie Germain

In 1823, Sophie Germain proved that if ¢ = 2¢ + 1 is also prime number,
then the equation
a4 ye = (2)
has no solutions in positive integers with ¢ { xyz. Germain’s theorem was
the first really general result on Fermat’s Last Theorem, since the previous
results only considered Fermat’s equation for a specific exponent.

At this point, the study of Fermat’s Last Theorem was divided into two
cases,

- the first case involved showing that the equation (2) has no solutions
in positive integers with ¢ { zyz, and

- the second case involved showing that the equation (2) has no solutions
in positive integers with ¢ | zyz.
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The proposed proof of Gabriel Lamé

On 1 March, 1847, Lamé informed the Parisian Académie des Sciences that
he had resolved the general case. The basic idea of his proof consisted in
working with cyclotomic integers,

Z[¢) = {ao + ar1Ce + -+ ap_a % |a; € Z}, where ¢ = *™/",
Using these numbers, we can write

at+yt = (@ +y) e+ Gy)@+Gy) - (@ + G y),

and therefore, Fermat’s equation assumes the form

(z+y) (@ + )@+ Cy) - (@ + ¢ y) = 2"

As this product of numbers without common factors (assume ged(z,y) = 1)
is an /-th power, Lamé thought that each number would be an ¢-th power
(he implicitly assumed that unique factorization into products of primes also
held for cyclomotic integers, but Z[(,] is a UFD if and only if ¢ < 23) and
proceeded with an argument showing necessarily one of x or y to be zero.

The work of Ernst Kummer

The mathematician Ernst Kummer formalized this argument of Lamé.
He began studying the ideal class group of Q((;), which is a finite group
that measures how far Z[(,] is from being a unique factorization domain
(for example, Z[(/] is a UFD if and only if hy = 1, where hy denotes the
order of the ideal class group of Q((;)). Between 1847 and 1853, he published
some masterful papers. In these papers he defined regular prime numbers
(a prime number ¢ is called regular if £ 1 hy; otherwise, ¢ is called irregular)
and proved the following theorem:

Theorem 0.1 (KUMMER). Let £ be a odd prime number. Then
1. (FLT)y is true if € is regular,

2. £ is regqular if and only if £ does not divide the numerator of B; for any
even 2 < i < (¢ —3)/2, where B; are the Bernoulli numbers,
(o)
z

= > (Bn/nl)z".

=0

The unique inconvenient of this result is that there exist infinitely many
irregular primes (and therefore, Fermat’s Last Theorem was not proved).
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Computational studies
In 1954, Harry Vandiver used a SWAC computer to prove
(FLT), for all primes ¢ up to 2521.

By 1978, Samuel Wagstaff had extended this to all primes £ less than 125.000.
Before Wiles, (FLT), had been proved for all primes ¢ less than four million.

Taniyama—Shimura conjecture

On the other hand, in the middle of the 20th century, the Japanese mathe-
maticians Yutaka Taniyama and Goro Shimura observed a possible relation
between two apparently distinct branches of mathematics, elliptic curves
and modular forms. This possible relation was formalized later by Shimura,
giving rise to what we know now as Modularity Theorem (then known as
Taniyama-Shimura conjecture):

All rational elliptic curves arise from modular forms.

Ribet’s theorem for Frey curves

In 1985, Gerhard Frey observed a link between Fermat’s equation and
the modularity theorem (then still a conjecture). If there exist positive
integers a, b, ¢ such that

at + bt = ¢,
then the semistable elliptic curve (it has square-free conductor)

y? = a(x —a’)(z+ b5 [Frey curve]

would have such unusual properties that it was unlikely to be modular.
A year later, Kenneth Ribet proved that this curve is definitely not modular.
His strategy consisted in showing that if the Frey curve is associated to
a modular form, then it must be associated to one of weight 2 and level 2.
No cuspidal eigenforms of this kind exist, giving the desired contradiction.

Wi iles’s proof of Fermat’s Last Theorem

The British mathematician Andrew Wiles published in 1995 a proof of the
Modularity Theorem (then still known as the Taniyama—-Shimura conjecture)
for semistable elliptic curves [Wil95, TW95]. Due to the previous works
of Frey and Ribet, the Modularity Theorem for semistable elliptic curves
implied Fermat’s Last Theorem, since if there exist positive integers a, b, c
such that a’ + b* = ¢f, then the semistable elliptic curve

y? = x(x — ae)(a? + be)
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would not be modular, contradicting the Modularity Theorem for semistable
elliptic curves proved by Andrew Wiles.

Note. A nice historical overview of Fermat’s Last Theorem, together with
notes and remarks is given in [vdP96].

The Modularity Theorem

An elliptic curve over Q is a nonsingular cubic equation of the form
E:y? =423 —cox —c3, c2,c3€Q (C?Q) — 2703 #0).

A modular form is simply a holomorphic function on the complex upper half
plane that satisfies “certain” transformation and holomorphy conditions.
The original version of the Modularity Theorem that was proved by Andrew
Wiles, Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor
is the following:

Each Galois representation pg, associated to an elliptic
curve E over Q arises from a Galois representation py g
associated to a modular form f,

PEL ™~ Pfe
In this work we explain an (equivalent) version the Modularity Theorem

that relates rational elliptic curves and modular curves as Riemann surfaces.

Theorem 0.2 (MODULARITY THEOREM, COMPLEX ANALYTIC VERSION).
Let E be a complex elliptic curve with j(E) € Q. Then for some positive
integer N there exists a surjective morphism of Riemann surfaces from the
modular curve Xo(N) to the elliptic curve E,

Xo(N) — E.

To understand this affordable version of the theorem we have to introduce:

Riemann surfaces
(Appendix A)

Modular curves Automorphic forms Elliptic curves
(Chapter 1) (Chapter 2) (Appendix B)

Moduli spaces
(Chapter 3)
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Outline of the work

In Chapter 1 we introduce the modular group, its congruence subgroups
and the modular curves, which are quotient spaces of the upper half plane
by the action of a congruence subgroup of the modular group. Furthermore,
we show these curves are Riemann surfaces that can be compactified.

In Chapter 2 we introduce the automorphic, modular and cusp forms.
They are (meromorphic) holomorphic functions on the upper half plane that
satisfy certain transformation and (meromorphy) holomorphy conditions.
We comment on the dimension formulas of the vector spaces of modular
and cusp forms, and we conclude with two interesting applications.

In Chapter 3 we introduce moduli spaces (isomorphism classes of complex
elliptic curves enhanced by associated torsion data) for some modular curves
and we explain the complex analytic version of the Modularity Theorem
we have mentioned above.

In Appendix A we recall all the theory of Riemann surfaces that we need
in this work: Holomorphic maps, meromorphic differentials, divisors and
the Riemann-Roch Theorem.

In Appendix B we explain the principal results over compact Riemann
surfaces of genus equal to 1. These Riemann surfaces are called complex
elliptic curves for reasons to be explained in this chapter.

Comments on Bibliography

Most of the content of this work has been extracted from the book [DS05].
This book explains (equivalent) distinct versions of the Modularity Theorem.
Other books about this topic we have used are [Apo90, Miy06, Ser73, Shi71].

A good reference book about Riemann surfaces we have used in Appendix
is [Mir95]. Also, we have used this magnificent book [Sil09] about elliptic
curves in Appendix B.

The results of complex analysis we utilize in this work are really basic.
The reader can consult them in any of these two books [Ahl78, SS03].



Chapter 1

Modular curves

In this first chapter we introduce the modular curves which are quotient
spaces of the upper half plane by the action of a congruence subgroup I
of SLy(Z). We show these curves are Riemann surfaces (see Appendix A)
that can be compactified. The theory of compact Riemann surfaces allows us
to calculate the topological genus of these compactified curves.

1.1 The modular group

The modular group is
ab
SLQ(Z) = { |:C d:| S Mg(Z)‘ad—bC: 1}.

Lemma 1.1. The modular group SLo(Z) is generated by the two matrices

=[] e[

Proor: Let I' be the subgroup of SLa(Z) generated by these matrices
and o = [g 3] € SLy(Z). Below, we describe an algorithm to compute v € T’
such that ay € I' (and therefore we will be able to conclude that o € T').

First observe that we can suppose without loss of generality that ¢ # 0,

since otherwise a = [iol fl] € I'. Indeed,

1n

01

1n

n _
=0

] and SQT”——T"——[ ], VneZ.

The identity
" abl|[1n a v
ol _[cd] [01}_[0 nc—i—d}’ €z,

17
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shows that there exists a matrix v; € I' such that ay; has bottom row
(cd,d") = (c,nc+d), with |d'| <|c|/2.
On the other hand, the identity
a b][0-1 b —ad
05'715—[0/ d/] |:1 0:|—|:d/ _C/:|> n€Z7
shows that this process can be iterated (a finite number of times) to find a

matrix v € I' such that oy has bottom row (0,+£1), and therefore ary € T.
O

Each element of the modular group induces naturally an automorphism of
the Riemann sphere, the fractional linear transformation

az+b

o(2) = cz+d’

VzeC, fora= [z 2} € SLy(Z).

The identity matrix I and its negative —I both induce the identity map.
It is not difficult to prove that two matrices a, o’ € SLy(Z) induce the same
transformation if and only if o’ = +a. Furthermore, note that

(ad/) (1) = a(d/(7)), VzeC, Va,do €SLy(Z).

Therefore, the modular group acts on the Riemann sphere. The subgroup
of transformations defined by the modular group is generated by the two
maps induced by the two matrix generators,

T(t)=7+1 and S(r)=-1/7.
The upper half plane is
H={r € C|Im(r) > 0}.

The formula

Im (1)

Im (a(7)) = o+ dP’ VreH, Va= [a b] € SLy(Z) (1.1)

cd

shows that each element of the modular group maps the upper half plane
back to itself. Hence the modular group acts also on the upper half plane.

Definition 1.2. A matriz o = [gdb] € SLo(Z), o # +1, is called elliptic,
parabolic, or hyperbolic if the absolute value of its trace, |a+d|, is less than 2,
equal to 2, or greater than 2, respectively.
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To see the geometrical meaning of this classification, we have to study the
fixed points of the induced transformation on the Riemann sphere.

If ¢ = 0, then « is of the form

:t[(l)n;], for some m € Z\ {0},

so « is parabolic and its unique fixed point is oo € C. Ifc £ 0, then co € C
can not be a fixed point of «a, since a(oco) = a/c. In this case, observe that
the fixed points of « satisfy the quadratic equation cz? + (d — a)z — b = 0.
As the discriminant of this equation is

(d—a)® +4cb = (d+ a)? — 4,
the fixed points of a are two conjugate complex numbers, a real number, or

two distinct real numbers if « is elliptic, parabolic or hyperbolic, respectively.

Theorem 1.3. A matriz o = [gg} € SLy(Z), o # £1, is characterized by

its fized points in C as follows:
> « is elliptic if and only if a has two fived points T and T, with T € H.
> « is parabolic if and only if o has only one fixed point in R U {oc}.

> « is hyperbolic if and only if o has two distinct fized points in R.

1.2 Congruence subgroups

The principal congruence subgroups are

T(N) = HZ Z] € SLy(Z) | [Z 2} = [(1) ﬂ (mod N)}, Nez®.

The matrix congruence is interpreted by entries, i.e.,
a=1 (mod N), b=0 (mod N),
c=0 (mod N), d=1 (mod N).
Let us consider the canonical homomorphism from SLy(Z) to SL2(Z/NZ),

[a b] € SLo(Z) > [

. ] € SLy(Z/NZ).

By definition, its kernel is I'(V). So I'(/V) is a normal subgroup of SLy(Z).

s

Let Ld

] be a matrix of SLa(Z/NZ). As

ad—bc=1 (mod N),
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we deduce that ged(c,d, N) = 1. Using the Chinese remainder theorem it is
possible to prove that there exist integers ¢; and d; such that

ci1=c (mod N), di=d (mod N) and ged(er,di) = 1.
Let g = ged(e,d). If ¢ # 0, consider the system

t=1 (mod p), with p prime, plg,
t=0 (mod p), with p prime, plc, p1g,

and define ¢; = c and d; = d + tN. If ¢ = 0, then necessarily d # 0
(unless N = 1, but this case is trivial). Therefore, consider the system

s=1 (mod p), with p prime, p|g,
s=0 (mod p), with p prime, p|d, p1g,

and define ¢; = ¢+ sN and d = dy. These two cases prove the statement.
Let k be the unique integer such that

ady —bc; =14+ kN.

As ged(eq, dy) = 1, there exist integers a; and by such that a1d; —bic; = —k.
Letting
as=a+aN, by=b+0bN,

cp =c1, dop=d,

we obtain that

az by as by ] _[ab
[02 d2:| € SLa(Z) and [02 dz] :[cd} (mod N).

Thus we can conclude that this homomorphism is surjective. Therefore,
it induces an isomorphism

SLy(Z)/T(N) <5 SLy(Z/NZ).

As a consequence, note that I'(N) has finite index in SLo(Z). In fact, it is
possible to compute that

1
SLa() : (V) = N ] (1 - ) ,
p
pIN
where the product is taken over all prime divisors of N [Miy06, p.105].
Definition 1.4. A subgroup I' of SLa(Z) is a congruence subgroup if there

erists N € Z such that T'(N) C T, in which case T is called congruence
subgroup of level N.
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Remarks 1.5.
> Each congruence subgroup I' has finite index in SLo(Z), since

I'(N)cT, forsome N €Z".
> Each congruence subgroup I' contains a translation matrix of the form

Lhl, +
[01] T —>T4+h, heZr.

Let

hr = min{h € Z* | {(l)}ll] el'}

and let us fix a positive integer N such that I'(N) C I'. As

q
{é]\{]:[éhlﬂ {(1]714}, whenever N = ghr +7r, q,7 € Z,

we deduce that hr necessarily divides .

The reason why these subgroups are called congruence subgroups is justified
in the following lemma which describes the congruence subgroups of level V.

Lemma 1.6. Let T' be a subgroup of SLo(Z) and N € Z*+. The following
conditions are equivalent:

1. T is a congruence subgroup of level N.

2. There exist v1,...,vq € SLo(Z) such that T = U;.lzl I'(N)v;, i.e.,

d
I'= U{’y € SLo(Z) |y =vj (mod N)}.
j=1

Proor: If I'(N) C T, then I'(N) has finite index in I'. Reciprocally,
if there exist v1,...,74 € SL2(Z) such that I' = U;l:1 I'(N)~y;, then

I'=~; (mod N), forsome j=1,...,d,

where I is the identity matrix. So I'(N) =T'(N)y; C T.
O
An immediate consequence of the fact that I'(/N) is normal in SLo(Z)
is that any conjugated subgroup of a congruence subgroup of level IV is also
a congruence subgroup of level V.
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Lemma 1.7. Let T' be a congruence subgroup of Slo(Z), N € Z* and
a € SLo(Z). If T is a congruence subgroup of level N, then

o 'Ta = {a ya|y eT}

s also a congruence subgroup of level N.

Proor: As I'(V) C T, we deduce that
I'(N)=a 'T(N)a C o 'Ta,

since I'(N) is a normal subgroup of SLa(Z).
0

In addition to the principal congruence subgroups, the most important
congruence subgroups are

To(N) = {[Z 2] € STa(Z)| [Z 2} _

and

rl(N):{[Zz]eSLQ(Z)y[Zﬁz{éﬂ (modN)}, N e Z*,

[; :} (mod N)}, NezZ*,

where * means “unspecified”. Note that
['(N) CT1(N) Cc To(N) C SLa(Z), VN €Z" .
In the special case N =1,
['(1) =T1(1) =To(1) = SLa(Z).

The map I'y(N) — Z/NZ,
ab -
L d] €T (N) = be Z/NZ,

is surjective, since

01
Its kernel is I'(V). Therefore, I'(N) is also a normal subgroup of I'y (V) and

[1 k] €Ty (N), VkeZ

I'y(N)/T(N) 2 Z/NZ, with [[1(N):T(N)]=N.

Analogously, the map I'o(N) — (Z/NZ)*,

[Z 2] eTo(N) = d € (Z/NZ)*.
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is surjective as well, since for each d € (Z/NZ)* there exist integers e; and kg
such that
eqd =1+ kgN.

Therefore

[j\‘; kcdl] €To(N), Vde (Z/NZ) .

Further, its kernel is I'; (N). So I';(N) is a normal subgroup of I'g(N) and
Lo(N)/T1(N) = (Z/NZ)", with [Co(N): [1(N)] = ¢(N),
where ¢ is the Euler’s totient function from number theory,

i} 1
o0 =Iz/vzy =N ] (1- ).
p
pIN
Finally, taking into account all the above, we can deduce that
1
SLa(2)  To(N)] = N ] (1 " p) ,

p|N

where the product is taken over all prime divisors of N.

1.3 The Riemann surfaces Y (I') = I'\H

Let T" be a congruence subgroup of SLg(Z) acting on the upper half plane.
The modular curve Y (T") is defined as the quotient space of orbits under T,

Y() =T\H={I'r| 7 € H}.
The topology of this space is induced by the natural projection 7 : H — Y (T"),
w(r)=T7r, V7eH,

that is, a subset of Y (I') is open if its inverse image under 7 is open in H.
This makes ™ an open map, since

' (x(U) = JU), VUCH.
yel’

Observe that 7 is also a continuous map by definition. As a consequence,
the modular curve Y (T") is a connected topological space, since w(H) = Y (T").
The modular curves for I'(N), I'g(/V) and I'; (N) are denoted

Y(N) =T(N)\H, Yy(N)=To(N)\H and Yi(N)=Ty(N)\H.
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In this section we show that Y(I') can be made into a Riemann surface.
The reader can consult the theory of Riemann surfaces in Appendix A.
One of the main results we need to carry out this task is that the action
of the modular group on the upper half plane is properly discontinuous, i.e.,
any two points in H have neighbourhoods small enough so that each trans-
formation of the modular group taking one point away from the other also
takes its neighbourhood away from the other’s.

Proposition 1.8. Let 11,70 € H. Then there exist open neighbourhoods
Uy of 1 and Us of 1o in H, with the following property:

For all o € SLy(Z), if a(Ur) NUy # 0, then a(m) = 7o.

Proor: Let U{ and U} be any open neighbourhoods of 71 and 72, respectively,
with compact closure in H. Consider the intersection

a(U))NU},  « € SLy(Z).

We claim that this intersection is empty for all but finitely many o € SLo(Z).
Note that for all but finitely many pairs (c,d) € Z2, with ged(c,d) = 1,

sup{Im (a(7)) |a = [: Z} € SLy(Z),7 € U1} < inf{Im (1) |7 € Uy}

holds (making the intersection empty), since

Im (1) 1 Y1 / ab

— < A U Va= SLo(Z
ler +d|? — mm{chl, (cRe () —l—d)?}’ TEMD @ cdl|€ 2(Z),
where

y1 = inf{Im (7) |7 € Uj} and Y; =sup{lm(7)|7r € Ui}

Furthermore, for each pair (c,d) € Z2, with ged(c,d) = 1, the matrices
a € SLg(Z) with bottom row (¢, d) are

1k ab
[0 1}[cd}’ kez,

where (a,b) € Z? is any particular pair such that ad — bc = 1. As

o(U}) U = ([3 Z] (U{)+k> N,

we deduce that the intersection is empty for all but finitely many o € SLo(Z)
with bottom row (c,d). Therefore, combining these two remarks we can
conclude that there are only finitely many « € SLg(Z) such that

a(Uy) NU; # 0,
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as claimed.

Finally, let F' be the finite set {« € SLa(Z) | a(U]) NUS # 0, (1) # 72}
For each o € F' there exist disjoint open neighbourhoods Uj o of a(1) and
Us,o of T2 in H, since a(71) # 72. Define

Uy =UinN ( ﬂ oz_l(ULa)> , an open neighbourhood of 71 in H,
acF

and

Uy =UjnN ( ﬂ U27a> , an open neighbourhood of 7 in H.
a€cF

Observe that these open neighbourhoods satisfy the desired property, i.e.,
if there exists o € SLa(Z) such that a(Uy) NUs # (), then necessarily « ¢ F,
since otherwise

a(U)NUz CU Lo NUzq = 0.
O
The first immediate consequence of this result is the following corollary.

Corollary 1.9. The modular curve Y (I') is a Hausdorff topological space.

Proor: Let m(71), m(72) be distinct points in Y (I'). By Proposition 1.8
there exist open neighbourhoods U; of 71 and Us of 75 in H such that

"}/(Ul)ﬂUQ:@, Vyel.

As a consequence,
m(U;) and 7(Uz)

are disjoint open subsets of Y (I') containing 7 (71) and 7(72), respectively.
O

1.3.1 Elliptic points

To define charts on the curve Y (I') we have to prove that the isotropy
subgroups of I' are finite cyclic. This requirement will bee more clearly seen
in the next subsection where we study the action of an isotropy subgroup
of I' on the upper half plane.

Definition 1.10. Let I'; denote the isotropy subgroup of a point 7 € H,
i.e., the T-firing subgroup of I',

Ir={yel[y(r) =7}

The point T is an elliptic point of I' if there exists v € I'; such that v # +1,
i.e., if I'y defines a nontrivial subgroup of transformations.
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Remarks 1.11.

> Let 7 € H. Note that 7 is an elliptic point of I' if and only if the
containment of matrix groups

{1} Cc {£I}T;
is proper.

> Let 7,77 € H be I'-equivalent points, 7/ = ~(7) for some v € I". Then
their isotropic subgroups are conjugated subgroups, since

Iy = /71—‘77_1

Therefore, if 7 is an elliptic point of I', then so is 7/, and as a consequence
it makes sense to say that the corresponding point 7(7) € Y (T') is elliptic.

Definition 1.12. A connected subset F' of H is a fundamental domain for I’
if it satisfies the following three conditions:

> H=U,erv(F)
> F =G, where G = int(F)

> v(G)NG =0 forally €T, v # +I.

Let F' be the connected subset of H
{r eH||Re(7)| <1/2,|r| > 1}.

We represent it in Figure 1.1. The points i, p = €2™/% and p+ 1 are special.

The following two results prove that F' is a fundamental domain for SLy(Z).
In general, it is possible to prove that there exists a fundamental domain
for any congruence subgroup I' of SLo(Z) [Miy06, p.22].

Lemma 1.13. Let 7 be the natural projection from H to Y (1) = SLo(Z)\H,
(1) =SLa2(Z)r, V71 eH.

Each point 7 € H is SLa(Z)-equivalent to some point in F, i.e., m(F)=Y (1).
Proor: Let us describe an algorithm to compute some 7/ € F' such that
SLQ(Z)T == SL2 (Z)T’.

First apply repeatedly one of the matrices

1+£1
0 1

:|:T’—>7‘:|:1
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Figure 1.1: The fundamental domain for SLy(Z)

to translate 7 into the vertical trip {z € C||Re(z)| < 1/2} and replace T by
this transform. Now, if 7 ¢ F, then necessarily |7| < 1. So

Im(—1/7) =Im (—7‘/]T|2) =Im (7’/|7’|2) > Im (7).

Then replace 7 by [(1) _(ﬂ (1) = —1/7 and repeat the same process again.
The formula (1.1) shows that this algorithm finalizes with some 7 € F
because there are only finitely many pairs (¢, d) € Z? such that |er +d| < 1.
O

Note that the projection « : F' — Y (1) is not injective. The translation
[(1] H : 7 — 7+ 1 identifies the two boundary rays and the inversion [? _(1)] :

7 +— —1/7 identifies the two halves of the boundary circular arc. But these
boundary identifications are the only ones that exist in F.

Theorem 1.14. Let 71 and 1 be points in F' such that

T = «(r1), for some a = [g 2] € SLa(Z).

If 11 and 19 are distinct points, then either
> Re(n)==%1/2 and o =71 F1 or
> |m| =1 and o = —1/71.

Otherwise, 7 and 7o must be both equal to i,p, or p+ 1, unless o = +1.

Proor: By symmetry, we can suppose without loss of generality that
Im (71) < Im (72),
or equivalently, |er; + d|? < 1. Further, as 71 € F, Im (1) > \/3/2 So

\c]\/§/2 < |eIm (7)) = [Im (e + d)| < |ery +d| <1,
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As a consequence of this inequality, we can deduce that necessarily |c| < 1.
If c=0, then o = [ ibl] Since —1/2 < Re(71),Re(m2) < 1/2, this
implies either b = 0 and a« = £1 or |b| = 1 and ™ = 71 £ b, in which case
one of the numbers Re (71) and Re (72) must be equal to —1/2 and the other
to 1/2.
If ¢ # 0, then we can suppose that ¢ = 1, since 75 = a(71) = (—a)(m1).
The condition |er; + d|? < 1 is equivalent to

(Re (1) +d)* + (Im (71))* < 1.

So
(Re(r1) 4+ d)?> <1—(Im(m))?<1-3/4=1/4,
implying |Re (71) + d| < 1/2. Note that this inequality forces that |d| < 1.

If c=1 and |d| =1, then |Re(71) + d| = 1/2. So the preceding inequality
implies that |ery +d| = 1 and Im (7)) = Im () = V3/2 (ie, 71,7 €
{p, p+1}). The case d = 1forces that « = [§ * T 1] and 7 = —1/(11+1)+a,
so eithera=0and =7 =pora=1,71=pandm=p+1 (a =-1
is not possible). And the case d = —1 forces that a = [{ _(a;{ 1)} and
o =1/(m1 —1)+a,soeithera=0and =7 =p+1lora=—-1,1=p
and 71 = p+ 1 (a = 1 is not possible).

If c=1and d =0, then o = H_(l)] and the condition |cm +d| <1
becomes |71| < 1, so in fact |71| = 1 (since |7i| > 1) and Im (71) = Im (72).
This implies either a = 0 and 7 = —1/7m or |a| =1 and » = —1/71 + a,
in which case 71 and 79 must be both equal to p or p + 1.

O

We deduce from this theorem that the only elliptic points of SLg(Z) in F
are 7, p and p 4+ 1 with isotropy subgroups

- SLy(Z); = < [(1) _(1)] > , a cyclic subgroup of order 4,

- SLa(Z), = < [(1) _1 ] >, a cyclic subgroup of order 6,

- SLa(Z)pt1 = < [ 1 _(1]] >, a cyclic subgroup of order 6.

Corollary 1.15. The modular curve SLa(Z)\H has two elliptic points,
SLQ(Z)Z and SLQ(Z)p.

Therefore, for each T € H its isotropy subgroup SLo(Z); is finite cyclic.

Proor: Let 7 € H be an elliptic point of SLg(Z). By Lemma1.13 there
exists a € SLg(Z) such that a(7) € F and by Theorem 1.14 «(7) must be
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equal to i, p or p+ 1, since (1) is also an elliptic point of SLa(Z).
O

Corollary 1.16. The modular curve Y (I') has only finitely many elliptic
points. Furthermore, for each T € H its isotropy subgroup I'; is finite cyclic.

Proor: Let SLa(Z) = U;l:1 IF'ej. As I'; is a subgroup of SLa(Z),, V1 € H,
the elliptic points of Y'(I') are a subset of Er = {T'a;(7),Tevj(p) : 1 < j < d}.
For the second statement, recall that a subgroup of a cyclic group is cyclic.

O

Corollary 1.17. Let o € SLy(Z), o« # +1. If « is a elliptic matriz, i.e.,
o) = 7, with 7 € H, then « is conjugate to some of the following matrices:

0 1 +1 0 —1 +1 0 —1 +1
-1 -1 ’ 1 0 ’ 1 1 ’
As a consequence, observe that the matriz o must have order 3,4 or 6.

Proor: By Corollary 1.15 there exists 5 € SLa(Z) such that §(7) is equal
to i or p, since 7 is an elliptic point of SLy(Z). Therefore,

SLo(Z); = B 'SLa(Z)iB8 or SLo(Z), = B 'SLa(Z),B.
O

Corollary 1.18. The modular curves Y(N), with N > 1, do not have
elliptic points.

Proor: Let us suppose that there exists v € I'(IV), v # +I, such that
(1) = 7 for some 7 € H. Then ~ must be conjugate to some of the six
matrices aq, ..., ag of Corollary 1.17, i.e.,

v = Bozjﬁ_l, for some S € SLa(Z).
As T'(N) is a normal subgroup of SLa(Z), we deduce that
aj =18 € BIT(N)B =T(N),

which is evidently a contradiction, since o ¢ I'(N), Vj=1,...,6 (N > 1).
Hence, the modular curves Y (N), with N > 1, do not have elliptic points.
O

1.3.2 Complex charts

Each point 7 € H has an associated positive integer,

r.|/2 if —1el,,
b= hor = enrogen) = V2 e
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This A is called the period of 7 with respect to I' for reasons to be explained.
Its definition counts correctly the 7-fixing transformations induced by I
As a consequence, observe that

hr > 1 if and only if 7 is an elliptic point of T

Let a € SLg(Z). Then the isotropy subgroups I'; and (aFa_l)a(T) are
conjugated subgroups, since
(aI‘ofl)a(T) =al,a b

Hence the period of a(7) under al'a™! is equal to the period of 7 under T.
This proves in particular that the period of m(7) € Y(I') is also well defined.

Examples 1.19.
1. The period of a point 7 € H with respect to I'(N), N > 1, is h; = 1.
2. The periods of the points i, p € H with respect to SLo(Z) are
hi =2 and h,=3.
The following corollary which will be necessary to define charts on Y (T')

is another immediate consequence of Proposition 1.8.

Corollary 1.20. FEach point 7 € H has an open neighbourhood U in H,
with the following property:

For ally €T, if y(U)NU # 0, then v € T;.

Such an open neighbourhood has no elliptic points of I' except possibly T.

Proor: Let i, = 7, ¢ = 1,2. By Proposition 1.8, there exist open neigh-
bourhoods Uy of 71 and Us of 75 in H such that

for all a € SLy(Z), if a(Uy) N Uz # 0, then a(r) = 7.
Define U = U; N Us. Note that
forally e T, if y(U)NU # O, then v € T';.

Let us now suppose that there exists v € I, v # +1, such that (7') = 7/,
for some 7 € U. Then v(U) NU # 0, implying v € ;. But v has only one
fixed point in H (elliptic transformation), so necessarily 7 = 7’.

L]

Let 7 € H. Define the matrix 6, = H “Z] € GL2(C) and observe that the
induced transformation on the Riemann sphere

z—T

0:(2) = ——, Vze (@,

zZ—T
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satisfies
d-(t) =0, 6-(7T) =00 and (57(]@) = 0D, where R=RU {o0}.

As a consequence, it follows that ¢, induces an isomorphism from H to .
Let I's, denote the matrix subgroup

6,067 = (6,16 1)y € SLy(C).
The action of this subgroup on D is equivalent to the action of I'; on H,
1,7 € H are I'--equivalent < m € I'ymy

=1 5T(T2) S (5TF75T_1)(57—(7’1))
& 0.(11),0-(m2) € D are I's_-equivalent.

Let us consider the subgroup of transformations defined by I's_,
S AN 67 /{+1},

which must be finite cyclic of order h, by Proposition 1.16. As this subgroup
of transformations fixes 0 and oo, it consists of maps of the form

z+—az, a€C,

and since the subgroup is finite cyclic of order A, these must be rotations
through angular multiples of 27 /h; about the origin,

Z 627”']“/’“2, kelZ.

Taking into account this, we can easily describe the action of I';_ on D,

2mik/hr

21,22 € D are I's_-equivalent < 29 =e z1, for some k € Z.

Observe that each circular sector of angle 27/h; in which has been divided
the unit disc corresponds in the upper half plane with a “triangle” formed by
two circular arcs (including lines) orthogonal to the real line and a segment
of real line (possibly unbounded). It is for this reason that we say that
6 is straightening neighbourhoods of 7 to neighbourhoods of the origin.
The figure 1.2 illustrates representative two cases, I' = SLy(Z) and 7 = i, p.

The previous description of the action of I's, on D suggests to consider
the wrapping map A\, : D — D,

M(z)=2", VzeD.
Observe that this map allow us to write that
71,2 € H are I'--equivalent < A (6-(71)) = A (6-(12)).

Let us construct a chart on Y (I') about the point 7(7). By Corollary 1.20
there exists an open neighbourhood U of 7 in H with the following properties:



32 Modular forms

E 6;(—1)
m 0i
; —>
—1 . 1
5:(1)
§ 5,(~2)
N e
’ 3p(1)

Figure 1.2: I' = SLo(Z) and 7 =4, p

- Forally el if y(U)NU # 0, then v € ;.
- U has no elliptic points of I' except possibly 7.
Define ¢, : U — C as
U (7)) = M\ (6:(7), VT eU,
and let V' =1,(U). Then for any points 7,7 € U,
m(n)=mn(n) & neln o neln < ¥(n) =Y (m),

i.e., the projection m and the wrapping 1, identify the same points of U.
As a consequence, there exists a bijection ¢, : w(U)— V making the diagram

U
N
w(U) Vv

commutative. Further, as m and ¥, are both continuous and open maps,
we deduce that this bijection ¢, : 7(U) — V is in fact a homeomorphism.

Caution: This complex chart depend on the open neighbourhood U of 7.
Below, we show that all these charts determine an atlas on the curve Y (I').
Let ¢1 : m(U1) — V4 and ¢ : m(Usz) — Va be two charts such that

¢1 = <f>na (ZSQ = ¢7‘2 and ﬂ-(Ul) N ﬂ-(UQ) 7é @
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Consider the commutative diagram

7T(U1) N 7T(U2)

ST
$2,1

Vio : Vaa

where ¢o.1 = ¢po0p;t, Vi = ¢1(n(Ur)N7(Ua)) and Vo = ¢o(m(Uy) N (Uz)).
We have to prove that ¢ 1 is holomorphic at ¢1(z) for all x € 7(Uy) N7 (Ua).
Put x = n(71) = 7w(72) with 71 € Uy, 75 € Uy and 72 = y7; for some vy € I.
Let U2 = U ﬁfy*l(Ug), an open neighbourhood of 77 in H. Since 7 is open,
its projection 7(Uy 2) is an open neighbourhood of z in 7 (Uy) N w(Us).

An input point ¢ = ¢1(2’) to ¢21 in ¢1(mw(Ur2)) is of the form

q= o1 (m(7)) = (7)) = (6:())™,  for some 7' € Ui 2,
where 01 = d,, and h; is the period of 71. So the corresponding output is

$2(2') = da(m(4(7))) = Y2(y(7))  (since (') € U2)
= (B2(y(")"2 = (62787 ) (E1(7")))",

where 03 = d, and hy is the period of 7.

This calculation shows that the only case possible where the transition
function might not be holomorphic at ¢;(x) is when §;(71) = 0 and hy > 1,
i.e., when 7 = 7 and 71 is an elliptic point of I'. In this case, 7o = v(71)
would also be an elliptic point of I" with the same period, implying 7o = 7»
(recall that Us has no elliptic points except possibly 75 by construction).
Therefore,

Soydyt = [g(ﬂ)] , for some a,3 € C*,

since
51_1 vy 62 51_17 Y. — 62
O— 7T +—1+——0 and oo+ 71— T9+— 0.

As a consequence, the formula for ¢, becomes

o= ([ ] @m)" = wore. vac o

Observe that this proves that transition function is holomorphic at ¢;(x) = 0.
The modular curve Y (I') is now a (noncompact) Riemann surface.

1.4 The Riemann surfaces X (I') = I'\H*

In this last section of the chapter we show that the Riemann surface Y (I")
can be compactified. The resulting compact Riemann surface is denoted X (T").
The Riemann-Hurwitz formula A.28 will allow us to calculate its genus.
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1.4.1 Cusps

To compactify the modular curve Y (I') = I'\H, define
H* :HU@, where @:Qu{oo},

and consider the following topology on H*:

- A fundamental system of neighbourhoods at 7 €H is formed by the usual
open neighbourhoods of 7 in H.

- A fundamental system of neighbourhoods at s € @ is formed by the subsets
aNpyU{oo}): M >0, acSLy(Z), a(cx) = s,
where Ny = {7 € H|Im (7) > M} for any real number M > 0 (N := N7).

As fractional linear transformations are conformal and take circles to circles,
if a(00) € Q, then a(Nys U {oc}) is a disc tangent to the real line at a(c0).
The formula (1.1) allow us to compute that the radius of this disc is 1/2¢?M,
where c is the lower left entry of the matrix «.. Therefore,

a(Ny U{oo) NN U{ool) =0, VM >1.

If a(o0) = o0, then aris a translation matrix and a(Ny U {oo}) =Ny U {0},
since the isotropy subgroup of co in SLy(Z) is

SLy(Z)oe = {i [(1) ”I] |m€Z}.

Lemma 1.21. Let o € SLa(Z). Then the following conditions are equivalent:
1. a € SLy(Z)

2. a(Ny) = N, for any M > 0.

3. a(Ny) NNy # 0, for some M > 1.

As a consequence, observe that N does not contains elliptic points of SLa(Z).

The proof of this lemma is easy and is left as an exercise to the reader.
Below, the Figure 1.3 shows N U {co} and some of its SLo(Z)-translates.

Note that H* is a Hausdorff topological space with respect to this topology.
The modular group acts on this space via fractional linear transformations.

Let T be a congruence subgroup of SLy(Z) acting on H*. The compact
modular curve X (I') is defined as the quotient space of orbits under I,

X(T)=T\H* = Y(I) uT\Q.
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Figure 1.3: Neighbourhoods of co and of some rational points

As in Section 1.3, the topology of this quotient space is induced by the
natural projection = : H* — X(I") which is an open continuous map.
The I'-equivalence classes of points in Q are also called the cusps of X (T).

The (compact) modular curves for T'(IV), I'g(/V) and I'1 (N) are denoted
X(N)=T(N\H, Xo(N)=To(N)\H and X;(N)=T1(N)\H.
Lemma 1.22. The modular curve SLo(Z)\H* has only one cusp, SLa(Z)occ.

ProOF: Let s = a/c be a rational number in reduced form, ged(a,c) = 1.
By the Bézout’s identity, there exist integers b and d such that ad — bc = 1.
Then

{gs] €SLs(Z) and [32}(00):3-

O

Corollary 1.23. The modular curve X (T') has only finitely many cusps.

Proor: Let SLy(Z) = U;l:l I'e;. For each s € Q there exists a € SLa(Z)

such that a(co) = s. So s is I'-equivalent to a;(00), for some j =1,...,d.
O

Theorem 1.24. The modular curve X (T') is Hausdorff, connected and com-
pact.

Proor: Let z1,z2 € X(I') be distinct points. To prove that X (I') is
Hausdorff, we have to find disjoint open neighbourhoods of these two points.
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Note that the case x1 = I'mq;, o = I'rg, with 7, 79 € H, was already proved
in Corollary 1.9, since the natural inclusion Y (I') < X (T") is an open map.

Suppose that x; = I'sy, 2o = I're, with s1 € QU {oo} and 7 € H. Then
s1 = ay(00) for some ay € SLy(Z). Let Us be any open neighbourhood of 7
with compact closure in H. The inequality

Im (a(7)) < max{Im (7),1/Im (1)}, V7 eH, Ya € SLa(Z),

shows that there exists M > 0 such that a(Uz) NNy = 0, Va € SLa(Z).
Let Uy = o (N U {o0}). Then

m(U;) and 7(Uz)

are disjoint open subsets of the curve X (I') containing x; and z2, respectively.
Suppose now that z; = T'sy, o3 = I'sy, with s1,89 € QU {oo}. Then
s1 = a1(00), s9 = ag(oo) for some aq, e € SLa(Z). Let

U =a1(NU{oc}) and Uz = as(N U{oo}).

Then 7(U;) and 7(Usz) be must disjoint open subsets of X (I"), since otherwise
there exists vy € T' such that oy 'yai(N U {oo}) N (N U {o0}) # 0, ie.,
a;lwal € SLy(Z)s, but this is not possible since the points x; and o
are distinct. These three cases prove that the curve X (I') is Hausdorff.

Let H* = G1 U G2 be a disjoint union of two open subsets. Then

H= (G NnH)U (G " H).

But H is a connected subset and the subsets G; N H and G N H are open,
so this implies that either HH C G7 and G5 = ) or G; = () and H C Go.
Thus we conclude that H* is connected and therefore so is the curve X (T").

For compactness, let SLy(Z) = U;.lzl Faj. As F* = F U {oo} is compact
subset of H* and

d
H* = SLy(Z)F* = | J Lo (F*),
j=1

we deduce that the curve modular X (I') is a finite union of compact subsets,

X(T) = w(y(F)).

Jj=1
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1.4.2 Complex charts

Each point s € (@ has an associated positive integer
hs = hsr = |SLa(Z) oo/ (6 {HI}T5; 1) o0,

where d5 € SLo(Z) takes s to co. This hy is called the width of s with respect
to T for reasons to be explained. As the subgroup SLy(Z)oo = {£I}{ [(1) H>
is infinite cyclic as a group of transformations, the width of s is characterized
by the conditions

(£1}(3.767 ) = {1} < [(1) ﬂ > with k> 0,

Observe that the width of s is independent of the matrix s taking s to oo,
since

hs = |SLo(Z),/ {=£1}T|.

Let o € SLy(Z). Then the isotropy subgroups SLa(Z)s and SLa(Z)qs)
are conjugated subgroups, SLa(Z)s(s) = aSLy(Z)sa~!. Further,

{£I}(ala ™)y = af £} T

Hence the width of a(s) under al'a™! is equal to the width of s under T.
This proves in particular that the width of 7(s) € X(T") is also well defined.

Examples 1.25.
1. The width of a point s € Q with respect to SL2(Z) is hs = 1.
2. More generally, the width of a point s € @ with respect to I'(IV) is hs = N.

Let us construct a chart on X (I') about the point 7(s). Define
U =0, (NU{o0}).
Note that this open neighbourhood of s in H* has the following property:
For all v e T, if v(U) N U # 0, then v € Ts.
As a consequence,
21,722 € U are I'-equivalent < 21,29 € U are I's-equivalent.

Consider the subgroup

(10T s01) = {1} (0.6 oo = {1} < [(1) e ] > .
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Figure 1.4: T' = SLo(Z), s = 0 and 05 = [?_(1)]

Then for any points 71,79 € U,

m(m) =7(r2) & 71 € TsTo
& 05(11) € 6,050, (65(2))
< 05(11) = ds(m2) + mhs, for some m € Z.

This shows that the width of a cusp is the number of unit vertical strips in N
that are distinct under isotropy. The Figure 1.4 illustrates the situation.
Observe that each unit vertical strip in N corresponds in U with a “triangle”
formed by three circular arcs (including lines). Hence the width of a cusp
is also the number of such triangles that are not identified under isotropy.
This time J5 is straightening neighbourhoods of s to neighbourhoods of cc.

Define 95 : U — C as
V(1) = As(65(7)), VT EU,

where ), is the hy-periodic wrapping map \(z) = e2™#/"s (A;(c0) := 0).
Taking into account the above, it is immediate to check that this map and
the projection 7 identify the same points of U. Let V = t5(U) (= (e~ 27/ D).
Then there exists a bijection ¢, : m(U) — V making the following diagram

U
o\
w(U) Vv

commutative. Further, as m and 1 are both continuous and open maps,

we deduce that this bijection ¢s : 7(U) — V is in fact a homeomorphism.
Caution: This chart complex depend on the matrix ds taking s to oo.
Below, we show that all these complex charts together with the ones

constructed in the previous section determine an atlas on the curve X (T).
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Let ¢1 : m(U1) — Vi and ¢9 : m(Uz) — Va be two charts such that
m(Uy) Nw(Us) # 0.
Consider the commutative diagram
m(U1) N7 (Us)

ST
2,1

V12 : ‘/21

) )

where ¢o1 = ¢po0p;*, Vi = ¢1(n(Ur)N7(U2)) and Va1 = ¢o(n(Uy) N (Uz)).
We have to prove that ¢ 1 is holomorphic at ¢1(z) for all z € 7(Uy) N w(Us).
Put x = 7(7) = 7w(72) with 71 € Uy, 75 € Uy and 72 = y7; for some v € I.
Let Uy 2 = Uiy~ }(Uz), an open neighbourhood of 71 in H*. Since 7 is open,
its projection m(Uj2) is an open neighbourhood of z in «(Uy) N w(Us).
Note that the case ¢; = ¢, and ¢p2 = ¢, with 71,72 € H, was already
proved in the previous section.

Suppose that ¢ = ¢, with 71 € H, and ¢2 = ¢5,, with so € QU {oo}.
As before, an input point ¢ = ¢1(2’) to ¢2,1 in ¢1(w(Ur2)) is of the form

q=¢1(n(7) = (7)) = (61(7"))h1, for some 7’ € Ul 2,
where §; = d,, and h; is the period of 71. So the corresponding output is

$2(2") = d2(m(v(7'))) = 12 (7(7'))  (since y(r) € Ua)
= exp(2mida(y(7')) /h2) = exp(2midaydy ' (81(7"))/h2),

where 09 : s9 — 00 is the straightening map of ¢2 and ho is the width of ss.
As a consequence, observe that the only case possible where the transition
function might not be holomorphic at ¢ (z) is when 01(71) = 0 and hy > 0,
i.e., 1 = 71 and 71 is an elliptic point of I". But this case is not possible,
since otherwise d2(y(71)) € N would also be an elliptic point of ', which is
an contradiction.

This argument also covers the case ¢; = ¢s,, with s;1 € Q U {o0}, and
¢2 = ¢r,, with 79 € H, since the inverse of a holomorphic biyection is also
holomorphic.

Suppose now that ¢1 = ¢s, and ¢a = ¢s,, with s1,s9 € Q U {oo}.
Let 01 : s1 — o0 and ds : s5 — 00 be the corresponding straightening maps.
As 7(Uy) Nm(Uz) # 0, there exists v € T such that dyd; ' is a translation,

1m

52751_1:1{0 1

} , for some m € Z.

As a consequence,

) =65 00) =251 [ | (00) = s
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In this case, an input point ¢ = ¢;(2') to ¢21 in ¢1(m(U12)) is of the form

q=¢1(n(7")) = P1(7") = exp(2midy (1) /1),

for some 7' € Ui o,

where h is the width of s;. So the corresponding output is

$2(2') = go(m(v(r))) = v2(v(7'))

(since v(7') € Up)

= exp(27ri52’y51_1((51 (T/)>/h1)
= exp(2mi(61(7") + m)/h1) = exp(2wim/h1)q

Observe that this proves that transition function is holomorphic at ¢ (z).

The modular curve X(I') is now a compact Riemann surface. Figure 1.5
summarizes the complex charts of X (I") for future references.

7 H* — X (I') is the natural projection.
U C H* is a neighbourhood containing at most one elliptic point or cusp.
The complex chart ¢ : 7(U) — V satisfies ¢ o m = 1,
where 1 : U — V is a composition ¢ = A o d.

About 7 € H:

About s € QU {oo}:

The straightening map is z = §(7'),

1 —7

1 _T], d(r) =0.
d(U) is a neighbourhood of 0.

where ¢ =

The straightening map is z = §(7'),

where ¢ € SLa(Z), §(s) = 0.
0(U) is a neighbourhood of co.

The wrapping map is ¢ = \(z)
where \(z) = 2", A(0) =0,
with period h = [{£I}I';/{£I}|.
V = X(0(U)) is a neighbourhood of 0.

The wrapping map is ¢ = \(z)
where A(z) = ™#/" \(00) = 0,
with width h = |SLy(Z),/{£I}T|.
V = X(0(U)) is a neighbourhood of 0.

Figure 1.5: Complex charts on X(T")

1.4.3 Genus

Let "1, 'y be congruence subgroups of SLy(Z) such that I'; C I's.

Theorem 1.26. The natural projection of the corresponding modular curves

F: X(Pl) — X(Fg),

FlT — FQT,

s a surjective morphism of Riemann surfaces. Its degree is

deg(F) = [{£I}Tq : {£I}T1| = {

[FQ . Fl]/2
[FQ : Fl]

if =1 €'y and —1 ¢ I,
otherwise.
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Proor: Consider the commutative diagram

U—4 y

A TN

(U m1(U) = ma(U) s(U)

el A

R
Vl local ‘/.2

where ¢; : m;(U) — Vj is a chart on X (I';), for j = 1,2. Observe that
Focal 091 = %2,  where 1 = \j 0 0.
Let § = 0., with 7 € H. Then \;(2) = 2", Aa(2) = 2”2 and the local map is
g€V ¢ ey,

where h; = [{£I}I'; ;|/2, for j = 1, 2. Further, as h; €{1,2,3} and hy/h; € Z,
we deduce that the ramification index of F' at m1(7) is

ho if 7 is an elliptic point of I'y and not of I'y,
eny(r)(F) = ha/h1 = { 1 otherwise,

= |{£I}To, : {£I}T1 7]

Let 6 : s — oo, with s € Q. Then A (2) = e2™2/M ) \y(2) = e?™#/h2 and
the local map is

g€ Vi ¢ ey,
where hj = [SLo(Z) : {£I}Tj,], for j = 1,2. Further, as hi/hy € Z,
we deduce that the ramification index of F' at m(s) is

e (S)(F) = hl/hg = |{:|:I}F2’s . {:l:]}l—‘175|.

1

As a consequence, 1 (s) is a ramification point of F' if and only if hy > ha.

This proves that the natural projection is a morphism of Riemann surfaces.
To compute its degree, let {+1}T9 = U?Zl{iI}Flfyj, where «y; are coset
representatives. Then the inverse image of a nonelliptic point ma(7) € X (T'3) is

Fl(my(r)) = {m(v1(7)), ..., m1(va(7))}.
This shows that
deg(F) = {1} : {&+I}1],

since

deg(F) = Z ex(F), Yye X(T9).
z€F~1(y)

O
To calculate the genus of X (I'), specialize to I'j =T" and I'y = SLa(Z).



42 Modular forms

Theorem 1.27. Let T be a congruence subgroup of SLa(Z), F: X(I') — X (1)
the natural projection and d = deg(F'). Let ea and es denote the number of
elliptic points of period 2 and 3 of X (I'), and e the number of cusps of X (T').
Then

where g is the genus of X(T'). As a consequence,

d g9 €3 €m0
1y L2 5s foo
9=t 5 "1 T3

Proor: Let yo = SLa(Z)i, y3 = SLo(Z)p and yoo = SLa(Z)oo be the
elliptic point of period 2, the elliptic point of period 3 and the cusp of X (1).
Since the elliptic points of period h of X (T') are in F~(y), for h = 2,3,

d= > ex(F)=h-(f""(n)| —en) +1-cn.

TEF ! (yn)
Using these equalities twice we obtain that

ST (eF) 1) = (= 1) (If " )| — o) = L d—en).

h
x€F~1(yn)

Also,
Y (ex(F) 1) =d—cwo.

T€F 1 (yoo)

Therefore, the Riemann-Hurwitz formula A.28 shows that

1 2
2g—2:—2d+i(d—eg)—i-g(d—ag)—i-(d—soo)

— — = — —~ — &, since the genus of X (1) is equal to 0.



Chapter 2

Automorphic, modular and
cusp forms

In this second chapter we introduce the C-vector spaces of automorphic,
modular and cusp forms. As mentioned at the introduction, modular forms
play a special role in the proof of Fermat’s Last Theorem. They are holo-
morphic functions on the upper half plane that satisfy certain transformation
and holomorphy conditions. We comment on the dimension formulas of the
spaces of modular and cusp forms, and we conclude with two interesting
applications:

- Transformation law of the Dedekind eta function

- Four squares problem

2.1 Basic definitions
Let f : H — C be a function which is SLy(Z)-invariant, i.e.,
f(r) = fla(r)), VreH, VaecSLy(Z).
If f is holomorphic, then its derivative satisfies the functional equation

1

F(0)= gl (@), ¥reH, Vo= [Z 3] € SLy(2).

Raising both sides of this functional equation to a positive integer k, we have

(f/(T))k = ! ok (f/(Oé(T)))k, VreH, Va= [Z 2} € SLy(Z).

(et +d)

Thus we conclude that (f')* is also SLo(Z)-invariant up to a factor that
depends on the variable 7 € H and on the matrix o € SLo(Z), 1/(cT + d)?*.

43
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Taking into account this argument, the definitions that we introduce below
are logic and natural.

The factor of automorphy j(«, ) : HH — C associated to o = [Z Z} € SLy(Z),
is defined as
jla,7)=cr+d, V7eH

The following lemma states the basic properties of the factor of automorphy.
Its proof is really easy and is left as an exercise to the reader.

Lemma 2.1. Let a, o’ € SLy(Z) and 7 € H. Then:
1. (aa')(7) = a(e/(7))

2. jlad', 1) = j(a, o/ (1))j(e,T)

3. Im (a(r)) = Im (7)/|j(a, 7)|?

4. da(t)/dr = 1/j(a, 7)?
Let k € Z. The weight-k operator associated to a = [Z 2] € SLy(Z),

[a]y, : M(H) — M(H),
is defined as
(fladi)(r) = j(a, ) *flal(r)), ¥VreH, V[feM(H).

As f(a(+)) is a meromorphic function and j(«,-) is a holomorphic function
without zeros, we deduce that the weight-k operator is well-defined, i.e.,

jla ) F f(al)
is also a meromorphic function. Further, note that o]y is a linear operator,
(Af + Bg)lele = A(flalk) + Blgledr), ¥V f,9 € M(H), VA BeC.
The chosen notation to denote the image of f under [a] is not usual,
the maps are normally written on the left of the argument in mathematics.

The reason why we write the weight-k operator on the right of the argument
is justified in the following lemma.

Lemma 2.2. Let o,/ € SLy(Z) and k € Z. Then

[ad ]k = [a]k[/]x (equality of operators).
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Proor: Let f € M(H). Then

(flad/]p)(7) = j(ad/, 7) f((aa')(7))
je' 1) e, o (1)) fale! (7))
J

(o, 1) (flali) (@ (1) = (flado)[@]k) (), V7€ H.

Definition 2.3. Let I' be a congruence subgroup of SLa(Z) and k € Z.
A meromorphic function [ : H — C is weight-k invariant under I’ if

fe=1f, Vyel.
Remarks 2.4.
> If f is weight-k invariant under I', then f is hZ-periodic, i.e.,
f(r)=f(r+mh), VreH, VmeLZ,

where

h = hr = min{h € Z* | [(1)?] eI'}.

> If f is weight-k invariant under I, then its zeros and poles are I'-invariants,
since the factor of automorphy is a holomorphic function without zeros.
> If f is weight-k invariant under a generating set .S of T,
fhlk=Ff VYveSs,
then f is also weight-k invariant under I'. This is because
1=j(a,a(7))jla™t,7), VreH, VYacSLy(Z),

and

> The functions that are weight-k invariant under I' form a C-vector space.
If f, g are weight-k invariant under I and A, 8 € C, then

Af + Bg is weight-k invariant under I'.

> If f is weight-k invariant under I' and g is weight-/ invariant under I,
then

- fg is weight-(k + 1) invariant under I', and
- f/g (g # 0) is weight-(k — ) invariant under T
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> If f is weight-k invariant under I'; —I € I" and k is odd, then f is the zero
function, since

f(r)=(=Dkf(r), VreH.

> Let a € SLy(Z). By Lemma 1.7 a T is also a congruence subgroup.
If f is weight-k invariant under I'; then the meromorphic function

(flade)(7) = j(a, )" fla(r)), V7 eH,
is weight-k invariant under o 'T'a. Indeed,
flalkla™ vale = flalela™ Tx[xlalk
= fla talsYkladk = fVkleds = flolk, Vv €T,
Let us now develop in detail the definition of automorphic form, modular
form and cusp form of weight k € Z with respect to a congruence subgroup I'.

Let f : H — C be a meromorphic function which is weight-k invariant
under I', h = hr and I the punctured unit disc,

D={zcC|0< 2| <1}.
As f is hZ-periodic, the function g : D — @,
g7 = f(r), VreH
is well-defined. Then:

We say that the function f is meromorphic (resp. holomorphic) at oo if
the function g associated to f is meromorphic (resp. holomorphic) at 0.

Note that if f is meromorphic at co, then g has a Laurent series,
9(an) =Y angy, where g, = >/,
nez

which has finitely many nonzero negative terms. We refer to this series as
the Fourier series of f. The order of f at oo is defined as

Voo(f) = min{n € Z | a,, # 0},

except when f = 0, in which case vy (f) = 400.
Let « € SLa(Z). Then a T« is also a congruence subgroup and the
meromorphic function

(flafw)(r) = j(a,7) " f(a(r)), V7 eH,

is weight-k invariant under o 'T'a.. Therefore, it makes sense to ask yourself
if f[a]x is meromorphic (resp. holomorphic) at co.
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Definition 2.5. Let I' be a congruence subgroup of SLa(Z) and k € Z.
A meromorphic function f: H — C is an automorphic form of weight k with
respect to I" if

> f is weight-k invariant under I, and

> flalg is meromorphic at oo, for all a € SLa(Z).

The zero function is evidently an automorphic form of any weight k € Z
with respect to SLa(Z). The constant functions are also automorphic forms
of weight 0 with respect to SLo(Z). In subsection 2.1.1 we present some
nontrivial examples of automorphic forms.

The set of automorphic forms of weight k with respect to I is denoted Ag(T").
It is a C-vector space, since if f, g€ Ai(T") and A\, B€C, then af + g € Ai(T).
The second condition of the definition, f[a]x is meromorphic at oo, must

be interpreted as a condition of meromorphy at the cusps s = a(oo) of T'.
Note that it only needs to be checked for finitely many coset representatives a;
in any decomposition SLy(Z) = U?:1 I'aj, since

a;'Ta; = (yay) "' T(yay)
and
flvagle = fIVlklogle = floyle, Yy eT.

Let f: H — C be an automorphic form of weight & with respect to I'.
The order of f at a cusp s € Q = QU {oo} is defined as

Us(f) = voo(fl]k), where a € SLa(Z), a(o0) = s.

We have to prove that this definition is independent of the chosen matrix .
Let h be the smallest positive integer such that [(1) H € a~'T'a. Consider

the Fourier series of f[a]g,

(flel)(7) =D andp,  an=e"7/".

ne”

By definition
Voo (flet]) = min{n € Z| a,, # 0}.

Furthermore, the matrices of SLa(Z) that take oo to s are

+afB, with §= [é‘”,jez,

and (f[+aBx)(t) = (£1D)*(f[ax) (T + 7), VT € H. Therefore,

(flEaBl)(r) = (ED*> anp’qy,  qn =™/,
n€z
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where j, is the complex h-th root of the unity e?™/" (e2mi(T+i)/h — M%Qh)-
Thus we can conclude that the definition of the order of f at the cusp s
is independent of the chosen matrix a € SLy(Z) with a(co0) = s.

Note that the order of f is also well-defined on the modular curve X(I'),
ie.,if s€Q and v €T, then

The modular forms are defined the same way as automorphic forms except
with holomorphy in place of meromorphy.

Definition 2.6. Let I' be a congruence subgroup of SLa(Z) and k € Z.
A holomorphic function f : H — C is a modular form of weight k with
respect to I' if

> f is weight-k invariant under I', and

> fla]g is holomorphic at co, for all « € SLa(Z).

If in addition,

> ag = 0 in the Fourier series of flalk, for all o € SLa(Z),

then f is a cusp form of weight k with respect to I'.

The sets of modular and cusp forms of weight k£ with respect to I' are denoted
M (') and  Si(T),
respectively. Note that both sets are vector subspaces of Ag(I"), since
M (T) ={f € Ax(T") | f is holomorphic and v (f[a]x) > 0,V € SLa(Z)}
and
Sp(T') = {f € Ak(T)| f is holomorphic and v (fla]x) > 1,V a € SLa(Z)}.
As a consequence,
Sk(T) € Mg(T) € Ax(T) € M(H).

Remarks 2.7.

> Let I'1, I's be congruence subgroups of SLy(Z) such that I'y C I's. Then

Sk(rg) C Sk(Pl), Mk(FQ) C ./\/lk(Fl) and Ak(Fg) C Ak(Fl).
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> Let a« € SLa(Z). The weight-k operator associated to the matrix «
induces the following isomorphisms of C-vector spaces:

Ap(T) =2 Ap(a'Ta) Mp(T) =2 Mi(a'Ta) Sp(T) = Sp(a 'Ta)
> If fe Ag(T) (resp. My(T") or S(I')) and g € A;(T") (resp. M;(I") or §(T')),
then fg € Ap4i(T) (resp. Mg4i(T) or S4i(I")). Indeed,

- fg is weight-(k + ) invariant under I', and
- the Fourier series of (fg)[a]g41), with o € SLa(Z), is

FDldgsn =D (D ady)ay, g =",

neZ s+j=n

where

flafk = ZGSQ;SN gloli = ij(ﬂ; and  h = h(g-1ra)-
SEZ JEZ

Thus the direct sums

AT) =P Au(T), M) =P M) and S(T)=HSKT)

keZ kEZ keZ

forms graded rings.

> Let R = A, M or S. For each a € SLy(Z), the map

S e RM) = > filolw € R(a™'Ta)

kezZ keZ

is an isomorphism of graded rings.

> If f € Mg(T) and g € S§(T), then fg € Sky(T'). As a consequence,
observe that S(I") is a graded ideal of M(T'), since

M@)S(T) € SI) and S(I') = PM(I) N S(T)).

keZ
> If f € Ax(T) and g € A(T) (g #0), then f/g € Ax_(T"). Indeed,

1/ge A(l') and f/g=f(1/g) € Ap—i(I).

In particular, note that

Ar(T) = fAo(L) = {ffo| fo € Ao(T)}, whenever f 0.



50 Modular forms

> T f,g € Ag(T) and A, 8 € C, then Af + Bg, fg, 1/ (f # 0) € Ao(T).
This implies that Ay(I") is a C-algebra that presents structure of field.
Moreover, the map

f(r) ifz=Tr,

feAl) = FeMX(T), F)= { f(s) if x=Ts,

defines an isomorphism of C-algebras.

> If —1 € T" and k is odd, then Si(I') = My(I") = Ax(I") = {0}, since
the only function that is weigh-k invariant under I' is the zero function.

Theorem 2.8. Let T' be a congruence subgroup of SLa(Z) of level N, k € Z
and f:H — C a holomorphic function. If f is weight-k invariant under I,
f is holomorphic at oo,

oo
f(T) = Z anq’r]ih qN = eQﬂzT/Na VT e Ha
n=0

and in addition, there exist positive constants C and r such that
lan] < Cn", ¥n>1,

then flal is holomorphic at oo, ¥V o € SLo(Z). As a consequence, f € My(T).

ProoF: Let o € SLy(Z). The function

(flalk)(r) = j(a,m)* f(a(r)), V7 eH,

is holomorphic and weight-% invariant under o~ 'T'a, so it has an expansion

(flali)(r) =D a,qk, VreH.

neL

Therefore, to prove that f[a]; is holomorphic at oo, it suffices to see that

lim ((f[edk)(7) - qv) = 0. (2.1)

qn—0

Let us suppose that we have proved that there exist constants Cy, C; > 0
satisfying the following property:

If(T)] <Co+Ci1/y", asy—o0 (1r=x+iyeH). (2.2)
If a(o0) = o0, then (2.1) is immediate, since o = i[é"ﬂ, with m € Z, and

(flali(m) = (ED)Ff(r +m) = (D) uf Y andly, V7 eH,

n=0
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where puy = €*™/N. Otherwise, we have ¢ # 0 and

|(fFlde) ()] = [f (a())ller +d| "
< (C’o + CqIm (04(7))_7") leT + d]_k
= (Co + Ciler + d*"y™") |er + d7%, as y — oo,

where ¢ and d are the lower entries of the matrix «. If we assume that

0<z<N ((flodr)(7) = (flale) (7 + N)),

then |eT+d| grows as y, and as a consequence, there exists a constant Cy > 0
such that
((flade)(T)] < Cay™™*,  as y — oo

Using this estimation we obtain (2.1), since y = (N/27)log(1/|qn|) and
|(fle]i)(7) - an| < Ca(N/2m)"Flog(1/lqn])" *lan] = 0, as gy — 0.

To conclude this proof we need to prove that there exist constants Cy, C; > 0
satisfying the property (2.2). By hypothesis,

oo
P < laol+C S we™2™/N | yr— iy e H.
n=1
Let g, : R — R be the function

gy(t) = e /N vt e R.

As its derivative is

P
g,(t) = (rt’”—l ~ ﬁt’") e~ 2/N  yi e R,

we deduce that this function decreases monotonically on the interval [%, 00).
Therefore,

) < laol + € (gy(1) + 3 gy ()
n=2

< lao| + 0(1 + Z/ g,(t) dt) [FN/27 < 4]
n=2 -1

<lao| +C + C/ e~ 2 W/N gt [t = 27ty /N]
0

oo
= lag] + C + C(N/27r)r+11/yr+l/ te~tdt, as y— oo.
0
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Letting
Co=lap|+C and Cj = C(N/QW)TH/ tre b dt,
0

we obtain that
1f(T) < Co+C1/y", asy—oo (17=x+iycH).

O]

The condition of holomorphy at the cusps, fla]x is holomorphic at o,
keeps the vector spaces of modular and cusp forms finite-dimensional.

Theorem 2.9. Let k be an even integer. Let I' be a congruence subgroup of
SLo(Z), g the genus of X(I'), €2 the number of elliptic points with period 2,
g3 the number of elliptic points with period 3 and €~ the number of cusps.
Then

(k=1)(g-D+ [§]ea+ [§]es+ece, ifk>2,
dim(My (D)) = { 1, if k=0,
0, if k<0,

and

k=1(g—D+ |5]ea+ [E]es+ (5 — Ve, ifk >4,
0, if k<0.

ProoF: [DS05, p.86-88]
O

Let s € Q and « € SLy(Z) taking oo to s. Recall that the width h € Z*
of s with respect to a congruence subgroup I' satisfies the condition

{1} To)oo = {£I} <[(1) QL] >, where Ty, = o 'Ta.

Therefore, this implies that

= e ([34]): @ ([BA]) o e = (- [14])

since the negative identity matrix —I might not be in the subgroup o~ 'Ta.
The cusp 7(s) € X(I') is called a regular cusp of I if

o) = =D ([§5]) o = ([0 1])-

Otherwise, m(s) is called irreqular cusp of T,

T =(=[o1])-

Note that this definition is independent of the chosen matrix o € SLa(Z).
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Theorem 2.10. Let k be an odd integer. Let I' be a congruence subgroup of
SLo(Z), g the genus of X(T'), e3 the number of elliptic points with period 3,

end the number of regular cusps and €77 the number of irreqular cusps.

If =1 ¢7T, then

_ k—1)(g—1)+ | & ez + Eeld 4 kLo yf g > 3,
dlm(/\/lk(f‘)):{é )9 ) L3J 3T 3 3 i;k;O

and

(k=1)(g—1) + | & e5 + E52e587 + E5Lelr, if k> 3,

If 59 > 2g — 2, then dim(M;(T)) = &2/ /2 and dim(S,(T")) = 0. Ifehed <
2g — 2, then dim(M (")) > €57 /2 and dim(Sy(T')) = dim(M (') —es? /2.

Proor: [DS05, p.90-91]
O

The demonstration of these dimension formulas uses the Riemann-Roch
Theorem A.44. Specifically, the following consequence:

Let X be a compact Riemann surface of genus g. If D is a divisor on X
such that deg(D) > 2g — 2, then

dim L(D) = deg(D) — g + 1.
We introduce some applications of these dimension formulas in Section 2.2.

Remark 2.11. Observe that we have not given dimension formulas for
the vector spaces

Mi(I') and &i(I'), when e} <2g—2.

Determining dimension formulas for these spaces is an open problem.

2.1.1 Eisenstein series for SLy(Z)

Let k > 3 be an even integer. The Eisenstein series of weight k for SLy(Z)
is defined as

! 1
Gk-(T) = Z m, VTEIHL
(c,d)

where the primed summation means to sum over the pairs (¢, d) € Z%\{(0,0)}.
If we let A, denote the lattice

T2+7Z = {cr+d|c,deZ}, Te€H,
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then another expression for the Eisenstein series of weight k is
r1
Gk(’]—) == Z m, V1 S H,
’U)EAT

where the primed summation means now to sum over the points w € A, \{0}.

The following lemma is an important technical result. We will use it
to prove that the Eisenstein series define holomorphic functions on the upper
half plane.

Lemma 2.12. Let A be a lattice in C and r > 0. Then the series

Z ‘wv < oo if and only if T > 2.
wEA

PrOOF: Let (wy,ws) be a basis of A. For each k € ZT, define
Ay, = {mwy +nwy | (m,n) € Z*,|m| + |n| = k} and

Sk = {xwl +3/U/2 | (‘/L‘ay) € R2a ’:L‘| + ‘y| = k}

Then
A, C S, S,=kS1 and ‘Ak’ =4k, Vke Zt.

Using this, we obtain that

DEEES SP P 29

wEA k=1 weAg
4 e.)
— 2.4)
T Z r = r—17 (
¢ k=1 kT k=1 weAy | ¢ k
where
C = max |z| and ¢ = min |z|.
z2€851 z€51
As the series of positive terms
=1
Zkr 7 <oo ifandonlyif r>2,
k=1

the proof of the lemma is an immediate consequence of (2.3) and (2.4).
O

Theorem 2.13. The Eisenstein series

/ 1 .
Gk(’r) = Z m, with k > 3,
(c,d)

defines a holomorphic function on the upper half plane.
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Proor: We show that the series converges uniformly on the subset
Qa,b) ={r € H||Re7| < a,Im7 >b}, a,b>0.
Let T € H, 7 = x + 1y, and ¢,d € Z. Then
ler 4+ d|* = 2a? + d* + 2cdx + Py
Choose 6 > 0 such that % < 6% < 1 and rewrite the anterior equality as
2 2 1 2| 2 e 2 2y 12
er +d? = |y + (1= 55 ) 2| c +(5d+7) (1 - 8.
If 7 € Q(a,b) (ie., |z| < aand y > b), we obtain that
1
ym+dP2PP+<L—y>ﬁy?+u—ﬁm2
1
> [zﬂ + <1 — 52) aﬂ A+ (1 -6%)d°
As the coefficients of ¢? and d? are both positive, there exists ¢ > 0 such that
ler +d* > e*(c* +d?), Ve, deZ,

or equivalently,

VY (c,d) € 7%, (c,d) # (0,0). (2.5)

1 <1 1
ler +d| ~ e|ci+d|’

Furthermore, by Lemma 2.12
>
Y <0
. 3 )
o |ci + d|

so it suffices to apply the Weierstrass M-test to deduce that the series

! 1
Z (e + d)F

(c,d)

converges uniformly on the subset (a, b).
O
We only have defined Eisenstein series of weight k > 3 even. If k > 3 is odd,
then Gy, is also a holomorphic function, but in this case it is the zero function,
since the terms corresponding to (¢, d), — (¢, d) € Z*\{(0,0)},
1 1
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cancel out - are cancelled.

Below, we show that G, is a modular form of weight k£ with respect to SLa(Z).
Let a = [2}] € SLy(Z). Then

/ 1
Gr(a(r)) = (/Zd/) ((a(r)) + d')F
/ 1
= (er+ d>k(§) (@ardom) + (@braap

Furthermore, as the map (¢,d') — (c’,d’)[gg] = (da+ dc,db+ dd) is
a bijection from Z2\{(0,0)} to itself, we deduce that the right side of this
equality is (¢c74d)*Gy (7). Therefore, G}, is weight-k invariant under SLy(Z),

Gk[a]k:Gk, VOCGSLQ(Z).

To compute the Fourier series of Gy, we use the following two identities
of the cotangent function:

1
mcot(mz) +Z< z+d>’ VzeC\Z (2.6)

1 i .
7 cot(mT) :mzi—l :Wi—QWiqu, g=e"" YrecH (2.7)

m=0

The first identity is a partial fraction decomposition of the meromorphic
function mcot(mz). We omit its proof since it is not trivial. It can be
consulted in [SS03, p.142]. The second identity follows from the expansion

oo

—— =—)q", VqeC g <L

m=0

Equating these two expressions for 7 cot(n7) and differentiating k—1 times
with respect to 7, we obtain that

1 2772 "
S 'Zm ", VreH, kz2 (28
deZ

For k > 3 even,

R Zdw?z(dezz )

(c, d) d#0 c=1

2 (k) .ZZ mh-lgm v c

'c—lm 1
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where ¢ denotes the Riemann zeta function,

((s) = Z%, VseC, Re(s) > 1.

n=1

Rearranging the terms of the last double series gives the Fourier series,

Gk(T) = QC(k) + 2

(

where the coefficients of the series are the values of the arithmetic function

op—1(n) = Z mFl, Vi > 1.

mln
m>0

9ri A
g{; il)l)l Zak—l(n)qna V1 e H7 (29)
" n=1

This proves that Gy is a modular form of weight k& with respect to SLs(Z).

Remark 2.14. For each 0 < r < 1, observe that

k—1| jem __ k-1
sz |4l _mz:;m 1— g™

c=1m=1

Therefore, the doubles series

o oo
Z Z mFt¢m, qeD, keZ,

c=1m=1

converges uniformly on compact subsets of the unit disc.

Remark 2.15. There is another way of proving that G, is holomorphic at co
without having to compute its Fourier series. Let a = 1/2 and b = 1. By the
proof of Theorem 2.13 there exists a positive constant C' such that

’ 1 / 1
< — < _— Q(a,b
|Gr(T)] < (Z;) or £ dF _C(z:d) T d V71 e Qa,b),

and since Gy, is Z-periodic
/ 1 .
’Gk(T”SCZ m, VT:$+ZyEH,y21
(c,d)
Hence Gy, is bounded as Im (7) — 0o, and the function g associated to Gy,

9(q) = Gi(1), q=¢>™T, VreH,

has a removable singularity at ¢ = 0.
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For an nontrivial example of cusp form of weight 12 with respect to SLo(Z),
let g2, 93 : H — C be the functions

92(7) = 60G4(7), g3(7) = 140G¢(T), V7 € H.
and define the discriminant function
A:H—=C, A(z)=g(r)® —27g3(1)%, V7reH

If we let o, denote the Weierstrass p-function for the lattice A; = 7Z + Z,
then the nonsingular cubic equation satisfied by o, and @/, is
(97)° = 4p} — g2(T)pr — g3(7),

since

1 11
ga(r) =60 5 ga(r)=140) . VreH
weA, wWEA,

Therefore, the discriminant function is nonvanishing on H by Theorem B.7,
A(r) #0, V7eH.

As g € M4(SL2(Z)) and g3 € Mg(SLa(Z)), we deduce that A € Mi2(SLa(Z)).
Furthermore, using the expansions (2.9) and the identities

(W= wd =3 L= (2.10)
=2 1= 0 =26~ o :
= n 90 = n 945

we obtain that
A(r) =n22%q+--), q=¢€¥7, VreH.
Thus we conclude that A is cusp form of weight 12 with respect to SLa(Z).

Remark 2.16. The identities in (2.10) are well-known. They can be derived
from (2.6) by taking Laurent series around z = 0 to both sides and equating
the coefficients of 23 and 2°.

The modular function j : HH — C is defined as

, (92(1))°
=1728——~—, V7t e H.
3(7) A(T) T
Observe that it is a holomorphic function since the discriminant function A
does not have zeros in H. Furthermore, as the numerator and denominator
are modular forms of weight 12 with respect to SLy(Z), we deduce that
the function j is an automorphic form of weight 0 with respect to SLa(Z).
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The coeflicient 1728 normalizes its Fourier series to

om)2 ... 1 = .
(2m) ~ + :f—i—Zanq”, g=¢e", VrecH. (2.11)

I = oy

n=0
It is possible to prove that the coefficients a,, are integer numbers [Apo90, p.21].

The following theorem states that any automorphic form of weight 0 with
respect to SLy(Z) is a rational expression in the modular function j, i.e.,

Ao(SL2(Z)) = C(j).

Theorem 2.17. The modular function j generates the field of meromorphic
functions on the modular curve X (SLa(Z)).

Before proving this theorem, observe that as a consequence of (2.11),
the modular function j : X (SLy(Z)) — C has a simple pole at Zoo =SLy(Z)oc.
Proor: Let f: X(SL2(Z)) — C be a nonconstant meromorphic function.
We can suppose without loss of generality that f has neither a zero nor
a pole at z., since if f has a zero or a pole at x, then we can replace it
by the function
fi¢, where e =ord,_(f).

Define the function

A — (2))

9:X(SLa(2)) = C, g(1) = s ,

[T, (i) = 5(pi))

where z1,...z, and p1,...p, are the zeros and poles of f, respectively,

listed with multiplicity. Observe that g has the same zeros and poles as f,
since by Theorem A.35 we have

MoGE =) g
- ’

Z ord;(f) =n—m=0 (g(o0) € C").

2€X (SLa(2))

Therefore, the function f/g has not zeros and poles, and as a consequence,
it must be constant by Corollary A.14. This proves that

f=cgeC(j), forsome constant ¢ € C.

Remarks 2.18.

> The modular function j : X(SL2(Z)) — C is a isomorphism of Riemann
surfaces, since j has only a simple pole at SLo(Z)oo (Theorem A.34).
As a consequence, the genus of X (SLa(Z)) is equal to 0.
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> The restriction of the modular function j to the fundamental domain F'
for SLy(Z) defined in Subsection 1.3.1,

F={r eH||Re(r)| <1/2,|7| > 1},
is a surjective function (Lemma 1.13).
> The derivative of the modular function j satisfies the functional equation
j'=(")lelz, Vo€ SLy(Z).
Furthermore, observe that j’ is meromorphic at oo, since
1 .
j’(T) = —271'@'(7 — Znanq”), q= 627”77 Ve H.
q n=0
Therefore, the spaces of automorphic forms Ay (SLo(Z)), with k& € Z,

contain nonzero elements.

> More generally, if I" is a congruence subgroup that does not contain
the matrix —1, then the spaces of automorphic forms Ag(I"), with k € Z,
are not trivial [DS05, p.91-92].

2.1.2 More examples of modular forms

The Eisenstein series of weight 2 for SLa(Z) is defined as

=% (CTLJ)Q, VreH,

cEZ dET/,

where Z, = Z \ {0} if ¢ = 0 and Z,, = Z otherwise. This double series
does not converges absolutely (Lemma 2.12), but if we sum in the indicated
order, we have a convergent series.

Theorem 2.19. The FEisenstein series of weight 2 defines a holomorphic
function on the upper half plane. Furthermore,

Go(7) =2((2) = 87°> o(n)g", ¢=¢"", Vrel,
n=1

where the coefficients of the series are the values of the arithmetic function

o(n) = Zd, Vn > 1.
din

d>0
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PROOF: As in the previous section, using (2.8) we have

2. e c7-+d 7 = X2 +2Z<Z(m+d)>

cEZ dEZ, deZ
o
= 2((2) + 2(—2mi)* Z > mg™, VreH.
c=1m=1

Therefore, GGo defines a holomorphic function on H, since the double series

oo o
> mg™, qeD,

c=1m=1

converge uniformly on compact subsets of the unit disc (see Remark 2.14).
To obtain its Fourier series it suffices to rearrange the terms of this double
series.

O]

An immediate consequence of this theorem is that the Eisenstein series
of weight 2 is Z-periodic, i.e.,

Go(1)=Gao(t+m), VreH, VmelZ,

and therefore it is invariant under the operator [T]s, where T = [(H]
However, if we let S = [(1) _(1)], then

(@SN =77 ), e

cEZL dGZ’
=Y dT+c 5 =2((2 +ZZ T V1€ H,
c€Z deZ., deZ 0750

which differs from G (7) = 2¢(2)+ > 3 (c7+d)~2 in the order of summation.
c#0deZ

Lemma 2.20. Let 7 € H. Then

ZZ (e +d)( CT—l—d—I-l) =0

c#0 dGZ

Proor: Using partial fractions, we have

1
ZZ (et +d) c7'+d+1 ZZ<0T+d (c7'—+-d+1))

c#0 dEZ c#0 deZ

and

> ((CleLd) " e +1d+ 1)> :Jde]Vz_:jV((mid) Tl +1d+ 1)) :

deZ




62 Modular forms

As the finite sum is telescoping, we deduce that

/1 1 1 1 Nooo
dz_:N<(CT+d)_(CT+d+1)>:(CT—N)_(CT+N) — 0

As a consequence of this lemma, observe that

G(7) ZZ (e +d)( c7’—|—d+1)

c£0 dEZ

2 +> > VreH.
Cﬂdez (T + d)? CT+d—|—1)

where the double sum is now absolutely convergent (recall the proof of
Theorem 2.13). Changing the order of summation in the double series
and separating the convergence terms back out, we obtain that

Ga +ZZ (e + d)? CT—i-d—i-l)

dez ;ﬁo

_ ZZ V71 eH,
= 750 (et +d)( c7'+d+1)

The error term is

_dzz et +d) CT+d+1 —]\}gnooz Z (et +d) c7'—|—d+ 1)
€Z c#0
:_Z\}Lmooz Z (CT+d CT+d+1>

c#0 d=—

i 2 (e )

c#0

since the finite series is telescoping. Using the identities 2.6 and 2.7 of the cotangent
function (Subsection 2.1.1), we can write

1 2 2 AT =, _omiN/rum
N e R AR s S W

c#0 m=0

and therefore
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Theorem 2.21. The FEisenstein series of weight 2 satisfies the functional
equation

2mic

Golala (1) = Gao(1) — )

ab
VreH, Va= [c d} € SLy(Z).

ProoF: Since SLa(Z) is generated by the matrices T' and S (Lemma 1.1),
it suffices to prove the following assertion: Suppose that Go satisfies the

equation for two matrices a; = [‘éi 31 ], g = [‘ég 3;} € SLy(Z),

27Ti61

= - H 2.12
Galai]a(7) = Ga(7) (o 7) VT e (2.12)
and o
TLCY
G =G — A HI. 2.13
2[a2]2(7) 2(7) (e, )’ T E ( )
Then G2 also satisfies the equation for the inverse 041_1 = [fcii *g}] and

the product
araz +bica  arby + bida

a1a2 = cias +dica c1bo +dida |

Applying the operator [afl]g to both sides of the equation (2.12) and
using that 1 = j(a1,a; ' (7))j(a;t, 7), we obtain that

2mi(—ecp)

— , VreH.
](al 177—)

Ga(r) = (G2la™2)(7) +

As a consequence, observe that G5 satisfies the equation for the inverse al_l.

Now applying the operator [as]s to both sides of the equation (2.12) and
using that j(ayag, 7) = j(a1, a2(7))j(ag, 7), we obtain that

B B 2micy
(G2laraz]2)(7) = (G2[az]2)(T) i(aras, T)j(az, 7)
B - 2mico B 2micy
B GQ( ) j(OéQ,T) j(OqOQ,T)j(OéQ,T) [(2.13)]
B B 2mi(cras + dica) j(ag, 7) cobo = a
= Ga(7) Jlarag, 7)  jlag,7) (14 cabe = aach)
—Gy(r) - MRt he) -y oy

jlaraz,T)

Therefore, observe that G5 also satisfies the equation for the product ajas.
O

For any N € Z7, define Ga y : H — C as

Gon(T) = Ga(T) = NGo(NT1), V7€M
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Then this holomorphic function is a example of modular form of weight 2
with respect to I'g(N), since
2mid N N
Gonlal2)(T) = Ga(T) — = - =
(Canlal) ) =60 = 50 5y ™
2mic

= Galr) = N (S Galalav)) (o = [241)

— Go(r) — NGo(N7), VreH, va:[

GQ(NCY(T))

and its Fourier series is
OO .
Gon () =20(2)(1 = N) = 87> > "o n(n)q", q=€e™", VreH,
n=1

where the coefficients of the series are the values of the arithmetic function

ULN(TL): Z d, VnZL

0<d|n
Nid

2.2 Some applications
2.2.1 Transformation law of the Dedekind eta function

The Dedekind eta function n : H — C is defined as the infinite product

o
n(7) = g4 H(1 —q"), qu =T/ =T YreH.
n=1

Lemma 2.22. The series
oo
> log(1—-q"), qeD,
n=1

converges uniformly on compact subsets of the unit disc. As a consequence,
the function n defines a holomorphic function on the upper half plane.

Proor: Let 0 < r < 1. Recall that

0 (_1)nzn+1

log(1+4 z) = Z
~ nt 1

, VzeC, |z| <L

Using this Taylor series, we obtain the estimation

2]
1—7’

[log(1+2)| <D |o™*! <

n=0

VzeC,|z| <
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Therefore,

Z|log1—q Z mER VqgeD,|ql <.
=1

Note that the function 7 is nonvanishing on H, since goq4 # 0 and
oo
[Tt —q") = eXimtosi=a) 20, wreH.
n=1
Theorem 2.23. The Dedekind eta function satisfies the transformation law

—1/7) =+/—imn(r), V7 eH,

where ./~ is the principal branch of the multivalued function /2.

Proor: The logarithmic derivative of 7 is

d . S
dTlog(n(T)):g—2wi;1qqcl—m—27r12d2qdm
:——szZdemzi—Qmi Zd q"
m=1d=1 n=1 \0<d|n

:EEQ( 7), VreH,

where Fs : H — C is the normalized Eisenstein series of weight 2,

G .
BEy(1) = 22((27 _1—242 V¢, q=¢€", YreH.

Therefore,

Using Theorem 2.21 with a = [(1) (1)] we obtain that

12
—, V71 eH,

T 2Ey(—1/7) = Ey(7) + 5im
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SO

% log(n(—=1/7)) — % log(v/—itn(1)) =0, V7eH.

As a consequence, observe that there exists a constant ¢ € C such that
n(—=1/7) = cvV—itn(r), V7 eH.

Letting 7 = i, we conclude that this constant ¢ must be equal to 1, since

(i) = n(=1/i) = eV =*n(i) = en(i).
The function 7?4 : H — C,
P r) =q A -¢)* q¢=€"", Vrel,
n=1

is a cusp form of weight 12 with respect to SLa(Z), since
i+ 1) =0* (1), n*(=1/7) =7 (r), V7 eH,
and

lim  7*'(r) = 0.

Im (7)—00

As the function A is also a cusp form of weight 12 with respect to SLa(Z)
and dim(S12(SL2(Z))) = 1 by Theorem 2.9, we deduce that

A = cn?t,  for some constant ¢ € C.

Equating the coefficients of their Fourier series, we obtain the identity

A = (2m)2,

2.2.2 Four squares problem
Let us consider the following questions:
Can each positive integer n be written as a sum of four squares,
n=z+25+25+2, z€L?

In which case, in how many ways can n be written as a sum of
four squares? Is it possible to determine an explicit formula?
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The answers to these questions are affirmative, i.e, each positive integer n
can be written as a sum of four squares, and in addition, there exists an
explicit formula that counts the representation number of n by four squares.

The proof that we present here uses basically the fact of that the functions

G22(7) = Ga(T) —2G2(27) and Gau(7) = Ga(1) — 4G2(NT)

(see Subsection 2.1.2) form a basis of the space of modular forms My (I'g(4)).
Define
r(nyk) =#{z € ZF|n=2}+-- + 22}, k>1,

and consider the generating function of the representation numbers,

o(r, k) = Zr(n, kE)¢", q=¢e*", recH.

n=0

This series defines a holomorphic function on the upper half plane, since
it converges uniformly on the subsets Q(b) = {7 € H|Im7 > b}, b > 0.
Indeed,

00 e}
r(n, k)lg* =Y r(n, k)(e ™)
n=0 n=0

<> (L+2vn)M (e ™) < oo, V7 =z +iycQb).
n=0

Furthermore, as

T(?’L, k) = Z ’I”(S, k‘l)’l”(j, k2)7 kl + kQ = k:a

s+j=n

we deduce that
O(7,k1)0(T, ko) = 0(1, k1 + ko), V7 e
Let 6 : HH — C be the function
0(t)=6(r,1), VreH

The following lemma summarizes the principal properties of this holomorphic
function. Its proof is immediate and it is left as an exercise to the reader.

Lemma 2.24. Let k be a positive integer. Then:
1. 0 is Z-periodic
2. (1) =0(r, k), VT € H
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3. 0(r)=> " or(n,1)¢" =3,z ezWi”2T, g=e>" VrecH.
This last expression for 0 allows us to determine another transformation law.

Theorem 2.25. The function 6 satisfies the transformation law
0(—1/21) = V—it0(1/2), VY71 €eH,
where /— is the principal branch of the multivalued function z/2.

Proor: Observe that it suffices to prove this transformation law for 7 = it,
with ¢ > 0, since the two sides of the equation are holomorphic functions on H.
Let f, fi : R — R be the functions

flx) = e ™ and fi(x) = e

Recall that the Fourier transform of the function f is itself, i.e.,

oo 2 . 2
/ e Ty — 7T Ve eR.

—00

The change of variables z = t}/2z in the integral shows that the Fourier
transform of the function f; is

~

Fi&) =712 e eR.

As a consequence, using the Poisson summation formula, we obtain that

S et = N e g s,

nez nez
or equivalently,

0(r)2) = ——0(—1/27), r—it, Vi>0.

—T

O
Note that the transformation law of the function 6 can also be written as

0(—1/47) = vV —=2i70(1), V7 e H. (2.14)

The matrix [2 7(1)} taking 7 to —1/47 is not in SLa(Z), but the product

o] = 5
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taking 7 to 7/(47 4+ 1), is in SLy(Z). Applying the corresponding succession
of transformations and using (2.14) twice, we obtain that

(1) = Caemir)
() P

= \/21' <1 + 1> (=2im)0(7) = VAT +16(7), V7 €eH,

4t

where in the penultimate equality we have used tacitly that

V2i(1/41 + 1)V =2it = \/2i(1/47 +1)(=2i1), V7€ H

As a consequence, observe that

B(v(7),4) = (cr + d)%0(r, 4), foryzj:[(l)ﬂ and i[i?]

Lemma 2.26. The subgroup I'g 4 of SLa(Z) generated by the matrices

11 10
:I:[Ol] and :I:[41]
18

To(4) = {[Z Z] € SLa(Z) | [Z Cﬂ = B :} (mod 4)}.

Proor: Let a = [gg] € I'p(4). Below, we describe an algorithm to
compute v € I'g 4 such that ay € I'g 4 (and therefore o € I'g 4).

We can suppose without loss of generality that ¢ # 0, since otherwise
a=[%'4] € Tya The identity

abl|ln]| [d ¥V ne
cd| |01 |ecnet+dl|’ ’
shows that there exists a matrix v € I'g 4 such that ay; € I'g(4) has bottom

row

(d,d) = (c,nc+d), with |d'| <||/2

(the inequality is clearly strict because of properties of ¢ and d modulo 4).
On the other hand, the identity

a/ b/ 1 0 a// b//
[c’ d’} {47@ 1] - [c’+4nd’ d’]’ n€Z,
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shows that there exists a matrix v € I'gp4 such that ay;y2 € I'g(4) has
bottom row

(", d") = (d +4nd',d"), with |¢"| < 2|d"|

(the inequality is again strict because of properties of ¢ and d’ modulo 4).
As a consequence, observe that these two multiplications allow us to reduce
strictly the absolute value of lower left entry of the matrix «, since

"] < 2|d"] = 2|d'| < || = |c].

Repeating this argument whenever the lower left entry of the resulting
matrix is nonzero (a finite number of times), we deduce that there exists a
matrix v € I'g 4 such that ay € I'g(4) has bottom row (0, £1), and therefore

ay € g 4.

Using Theorem 2.8 we can conclude that 6(-,4) € My(T'g(4)), since

o
0(r,4) = Zr(n, Dt =¥ Vr eH,

n=0
and

r(n,4) < (14 2vn)?, Vn>1.

Theorem 2.27. The representation number of a positive integer n by four
squares 18

r(n,4) =8 Z d.
0<d|n
41d

As a consequence, observe that n can be written as a sum of four squares.

Proor: Consider the modular forms Ga 2, G4 € Ma(I'o(4)),

2 (e 9]
Ga2(T) = —% (1 + 242 Ul,g(n)q"> , VreH
n=1

and

G2’4(T) = —7T2 (1 =+ 8201,4(n)q"> R VreH
n=1

The subset {G22,G2,4} forms a basis of the vector space M3(I'g(4)), since
it is linearly independent and dim(M3z(I'g(4))) = 2 (compute the dimension
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of this space using [DS05, p.107]). Therefore, the function 6(-,4) can be
expressed in a unique way as a linear combination of these modular forms,

9(',4) = CLGQ72 + bG274, a,beC.
The expansions

—pG2,2(7') = 1+24q+ -,
1
——5Gau(T) = 1+8¢+ -,

show that (-, 4) = —(1/7%)Ga,4. Equating the Fourier coefficients, we obtain
that the representation number of a positive integer n as a sum of four
squares is

r(n,4) =8014(n) =8 Z d.

0<d|n
4d
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Chapter 3

Modularity Theorem

In this third chapter we introduce moduli spaces for the modular curves
Yy(N), Yi(N), and Y(N), N € Z*,

and we explain a complex analytic version of the Modularity Theorem which
is equivalent to the original version that was proved about twenty years ago.

3.1 Weil pairing
Let A be a lattice in C with basis (wy,ws),
A =wZ+ weZ (assume wy/wy € H),
and N a positive integer. Consider the multiply-by-N map
[N]:C/A—C/A, z+A— Nz+A.

This map is a holomorphic group homomorphism (Remark B.6). Its kernel
is the set of N-torsion points of C/A,

ker[N] ={P € C/A|[N]P =0} = (w1 /N + A) + (w2 /N + A),
a subgroup isomorphic to Z/NZ x Z/NZ.

FoT Tt T T T T T T T 4
/ /
» . . ° . /
/ /
» . . . . /
/ /
» . . . . /
/ /
. . . . . /
/ /
——9o———o-——0————-4
0 w1

Figure 3.1: ker[5]: the 5-torsion points of C/A

73
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Let E denote the torus C/A, E[N] its subgroup of N-torsion points and
pn the cyclic group of the complex N-th roots of unity,

py ={z € ClN =1} = (7).
The Weil pairing ey : E[N] X E[N] — py is defined as
en(P,Q) = *™ 9tV v (P Q) € E[N] x E[N],
where the matrix v € Ma(Z/NZ) is determined by the condition

[P} :V[wl/NJFA] [ ki(P) ky(P) ] [wr/N + A

Q wy/N +A| [kl(Q) k:g(Q)] [wz/NWLA]‘ (3.1)

Even though the determinant of the matrix 7 is defined only modulo N,
the root 2™ detM/N ig well-defined, since the function 2™#/N is NZ-periodic.

The Weil pairing is independent of the chosen basis (w1, ws) of the lattice A.
Let (w},w}) be another basis of A, with w}/wh € H, and 7/ € My(Z/NZ)
satisfying the condition

[P] _ [w’l/N+A].

Q wh/N + A
Then
w) _lab|[w _lab
[ ,J = [c d} [wJ, for some a = [c d] € SLa(Z),
and

Pl J[wy/N+A] ,[ab][w/N+A
Q| =" wh/N + A “Tled wa/N+A|°
As a consequence,

y=9 [g (lﬂ , and therefore det(vy) = det(v').

Remark 3.1. If P and ) generate the group E[N], then the matrix ~y
satisfying the condition (3.1) is invertible, i.e., v € GLo(Z/NZ). Therefore,
GN(P, Q) — €27rz'det(’y)/N

is a primitive complex N-th root of unity, since det(vy) € (Z/NZ)*

The following lemma states the principal properties of the Weil pairing.
We leave to the reader as an exercise its proof, which is easy and routine.



3. Modularity Theorem 75

Lemma 3.2. The Weil en-pairing has the following properties:

1. It is bilinear,

en(P1+ P2, Q) = en(P1,Q)en(FP,Q), VP, P,Q c E[N],
en(P,Q1+ Q2) = en(P,Q1)en(P,Q2), VP, P, Q€ E[N].

2. It is alternating,

en(P,P)=1, VPe€E[N].
In particular, observe that
en(P,Q) =en(Q,P)"", VP,Q € E[N].
3. It is nondegenerate,
if P € E[N] and en(P,Q) =1, VQ € E[N], then P = 0.
4. It is compatible with N, i.e., for any positive integer d, the diagram

edN("')

E[dN] x E[dN] P
d(.’.)i d
EIN] x BIN] —— 00

commutes, where the vertical maps are suitable multiplications by d.

Let A’ be another lattice in C. Suppose that the torus C/A and C/A’
are isomorphic, i.e., there exists a € C such that «A = A’ (Corollary B.4).

Theorem 3.3. The isomorphism of Riemann surfaces
s+ AeC/A az+ N eC/N
preserves the Weil en-pairing, ex(P,Q) = en(F(P),F(Q)), VP,Q € E[N].

Let E' denote the torus C/A’ and E'[N] its subgroup of N-torsion points.
Before proving this theorem, recall that F' is also an isomorphism of groups,
since F'(0+A) = 0+A’ (Remark B.6). Therefore, F(P) € E'[N],V P € E[N].

Proor: Let (w], wh) = (qwi, cws), a basis of the lattice A’. If y € My (Z/NZ)
satisfies the condition

Pl  |w/N+A
Q - ’U)Q/N + A’
then applying the isomorphism F' to both sides of the equation gives
F(P)| _[wiy/N+A
FQ ]~ 7 [wh/N+A|
Observe that this proves that ex(P, Q) = en(F(P), F(Q)), VP, Q € E[N].
O
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3.2 Moduli spaces for modular curves

Recall that a complex elliptic curve is a compact Riemann surface of genus 1.
The reader can consult the results over complex elliptic curves in Appendix B.
Since any complex elliptic curve E is isomorphic to a complex torus C/A,
in this section we let the term complex elliptic curve be a synonym for com-
plex torus.

Let F = C/A and E' = C/A’ be two complex elliptic curves. If E and E’
are isomorphic, then there always exists a holomorphic group isomorphism

F:E—FE, Fz+A)=az+A, withaeC,al=A\"

We are interested in these isomorphisms since they preserve the group struc-
tures on the complex elliptic curves. Therefore, to simplify in this section,
we also assume that the term “isomorphism” always means holomorphic
group isomorphism.

Let N be a positive integer:

> An enhanced elliptic curve for To(N) is an ordered pair (E,C) where
F is a complex elliptic curve and C is a cyclic subgroup of F of order N.
Two such pairs (E,C) and (E’, C") are equivalent, denoted (E,C) ~ (E',C"),
if there exists some isomorphism E — E’ taking C' to C’. The set of equiv-
alence classes is denoted

So(N) = {enhanced elliptic curves for T'o(N)}/ ~ .

An element of Sy(N) is denoted [E,C], the square brackets [] connoting
equivalence class.

> An enhanced elliptic curve for T'1(N) is an ordered pair (F, P) where
FE is a complex elliptic curve and P is a point of E of order N. Two such
pairs (E, P) and (E’, P') are equivalent, denoted (E, P) ~ (E’, P"), if there
exists some isomorphism F — E’ taking P to P’. The set of equivalence
classes is denoted

S1(N) = {enhanced elliptic curves for I';(N)}/ ~ .

An element of S;(N) is denoted [E, P].

> An enhanced elliptic curve for I'(N) is an ordered pair (E, (P, Q)) where
E is a complex elliptic curve and (P, Q) is a pair of points of E that gen-
erates the N-torsion subgroup E[N] with Weil pairing ex (P, Q) = e*™/N.
Two such pairs (E, (P,Q)) and (E’, (P’,Q’)) are equivalent, denoted

(E,(P,Q)) ~ (E',(P,Q)),

if there exists some isomorphism E — E’ taking P to P’ and Q to Q.
The set of equivalence classes is denoted

S(N) = {enhanced elliptic curves for I'(N)}/ ~ .
An element of S(N) is denoted [E, (P, Q)].
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The sets Sp(N), S1(N) and S(N) are moduli spaces of isomorphism classes
of complex elliptic curves enhanced by associated N-torsion data. Observe
that when N = 1, the three moduli spaces reduce to the isomorphism class
of complex elliptic curves, since the N-torsion data do not play any role.

For each 7 € H, let E; denote the elliptic curve C/A;, where A, = 7Z + Z.

Lemma 3.4. Let E = C/A be a complex elliptic curve. Then there exists
7 € H such that E is isomorphic to E; as Riemann surfaces.

Proor: Let (w1, ws) be a basis of A, with wy/we € H. Then
(1/wo)A = A;, where T = w;/ws.
As a consequence, the map
2+ A€ Ew (1/wa)z+ A, € E;

is an isomorphism between the complex elliptic curves E and E ;.

Theorem 3.5. Let N be a positive integer.
1. The moduli space for T'g(N) is
SO(N) = {[E’ry <1/N + A’T>] ’T S H}

Two points [Er, (1/N+A;)] and [E, (1/N+A.1)] are equal if and only if
Lo(N)T =To(N)7'. Thus there exists a bijection

Yo : So(N) = Yo(N), [Er (1/N 4+ A;)]— To(N)T.

2. The moduli space for T'y(N) is
S1(N)=A{[E-,1/N + A;]| T € H}.

Two points [E;,1/N + A;] and [E;/,1/N + A] are equal if and only if
Iy (N)T =T1(N)7'. Thus there exists a bijection

¥ S1(N) = Yi(N), [Er,1/N + A+ Dy(N)r.

3. The moduli space for I'(N) is
S(N)=A[E;,(t/N +A;,1/N + A;)]| 7 € H}.

Two points [E;, (T/N+A;,1/N+A;)] and [E, (7' /N 4+ Ay 1/N 4+ Ap)]
are equal if and only if T(N)T = T'(N)7'. Thus there exists a bijection

¥ :S(N) = Y(N), [Er,(r/N+ Ar,1/N + A;)] > T(N)r.
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Proor: We only prove the third case that is perhaps the more complicated.
Let [E,(P,Q)] be a point of S(NN). Since E is isomorphic to E,s for some
7/ € H (Lemma 3.4), we can suppose without loss of generality that £ = E_..
Thus

P=(ar"+b)/N+A, and Q= (cr’'+d)/N+ Ay, with a,b,c,deZ.
As P and Q generate E[N] and have Weil pairing en(P,Q) = e2mi/N |
the matrix o = [@3] € SL2(Z/NZ). Indeed,

C

P _ T//N+AT’ _ 2midet(a)/N
[Q}_a{l/N—I—AT/} and en(P,Q)=c¢e .

In Section 1.2 we proved that SLo(Z) surjects to SLa(Z/NZ), therefore
we can also suppose that [ 3] € SL2(Z) (since this does not affect P and Q).

Let 7 = [23](7”) € H and m = ¢’ + d. Then m7 = a7’ + b, so
mA; =m(tZ+7Z) = (a7’ +b)Z + (7' + d)Z = T'Z + 7 = A,

m(t/N+A;)=P and m(1/N+A;)=Q.

This proves that [E./, (P, Q)] and [E-, (T/N+A;,1/N+A;)] are equal points.
Suppose now that two points 7, 7" € H are I'(IV)-equivalent, i.e.,

ab

c d] e I'(N).

7 =7(7"), for some v = [

Letting m = ¢’ + d as before, we obtain that mA, = A/,
m(1/N+A;)=1/N+A. and m(1/N+A;)=1/N+ A,

since v = I (mod N) (the matrix congruence is interpreted by entries).
Reciprocally, suppose that

[E-, (/N +A;,1/N +A;)] and [E., (7"/N + Ao, 1/N + A,
with 7, 7" € H, are equal points. Then for some m € C, mA,; = A,
m(t/N+A;)=7/N+ A and m(1/N+A;)=1/N+ Ay,

As a consequence of the equality mA,; = A/, observe that

mT 7/ ab
[m]_fy[l]’ for some 'y—[cd} € SLs(Z),

so in particular m = ¢’ + d. Using this the other equalities become

(a7’ +b)/N+ Ay =7 /N+ Ay and (e’ +d)/N+A=1/N+ A,
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showing that v = I (mod N). Therefore, I'(N)r = T'(N)7/, since 7 = (7).
O

In the special case N = 1, the previous theorem shows that the space
of isomorphism classes of complex elliptic curves parametrizes the modular
curve

SL2(Z)\H = Yp(1) = Yi(1) = Y (1),
Recall that the modular function
j:SLe(Z)\H — C

is a bijective function (see Remark 2.18). Therefore, we can associate to
each isomorphism class of elliptic curves a complex number, the value of j at
the corresponding orbit SLa(Z)7 € SLo(Z)\H. This value is also associated
to any elliptic curve F in the isomorphism class and is denoted j(F).

3.3 Complex analytic version of the Modularity
Theorem

The complex analytic version of the Modularity Theorem states that the
elliptic curves with rational j-values come from the modular curves

XO(N)7 N e Z+a

via surjective morphisms of Riemann surfaces.

Theorem 3.6 (MODULARITY THEOREM, COMPLEX ANALYTIC VERSION).
Let E be a complex elliptic curve with j(E) € Q. Then for some positive
integer N there exists a surjective morphism of Riemann surfaces from the
modular curve Xo(N) to the elliptic curve E,

Xo(N) — E.

The surjection in the theorem is called a modular parametrization of E
of level N. Observe that if I" is a congruence subgroup of SLs(Z) such that
I' € To(N) (e.g., I'(N) or I';(N)), then the composition of the natural
projection from X (I') to Xo(/N) with a modular parametrization of E,

X(T) — Xo(N) — E

is also a surjective morphism of Riemann surfaces (Theorem 1.26).



80

Modular forms




Appendix A

Riemann surfaces

A Riemann surface is simply a nonempty connected Hausdorff topological
space endowed with an equivalence class of complex atlases. In this chapter
we introduce all the theory of Riemann surfaces we need in this work:

- Holomorphic maps

- Meromorphic differentials

- Divisors and Riemann-Roch Theorem

A good reference book about Riemann surfaces is for example [Mir95].

A.1 Basic definitions

Let X be a topological space. We want X to behave locally as an open subset
of the complex plane, thus it will allow us to define complex coordinates
at each point of X.

Definition A.1. A complex chart, or simply chart, on X is a homeomor-
phism ¢ : U =V, where U C X is an open subset of X and V C C is an
open subset of C.

A complex chart ¢ : U — V is denoted by (U, ¢). The open subset U is
called domain of the chart ¢. Furthermore, the chart ¢ is centered at p € U

if ¢(p) = 0.
Ezamples A.2.

1. In the euclidean plane, consider any open subset U C R%. The map
¢y U — U, ¢py(z,y) =z + iy, is a chart on R2,

81
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2. In the Riemann sphere, consider the open subsets Uy = C, Uy = C \ {0}.
The maps ¢; : U; — C,

01(2) =2, ¢a2(z) = % (where L :=0),

00
are charts on C.

Two complex charts ¢1 : Uy — V; and ¢o : Us — Vo on X are compatible
if either Uy NUs = () or U; N Uy # () and

pa0prt: ¢1(UL NU2) — ¢o(Ur N U2)
Vi2 Va1

is holomorphic. Note that the definition is symmetric, i.e., if Uy N Uy # ()
and

$20¢7 " p1(UL NUs) = ¢o(Ur N Ua)
is holomorphic, then

¢10¢y" : pa(Ur NUs) — ¢1(Ur N Ua)
is holomorphic. As a consequence,

(pe o7V (2) #0, Vze ¢ (U NUs).

The function (bgO(bl_l is called transition function between the two charts.

Figure A.1: Transition function

Definition A.3. A complex atlas, or simply atlas, A on X is a collection

{ba : Us — Vo }

of pairwise compatible complex charts whose domains cover X, i.e., X = JU,.
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Ezamples A.4.
1. In the euclidean plane, the collection of charts
A= {¢y:U — U|U C R?is an open subset}
is an atlas on R2.
2. In the Riemann sphere, the collection of charts
A={¢; :U; - Cli=1,2}
is an atlas on C. Indeed, U3 NUy = C* and ¢ o ¢p1H(2) =1/2, V2 € C*.

Two complex atlases on X are equivalent if every chart of one is compatible
with every chart of the other. Note that two complex atlases are equivalent
if and only if their union is also a complex atlas. Moreover, every complex
atlas A on X is contained in a unique maximal complex atlas A* on X
which consists of all charts on X that are compatible with every chart of A.
Therefore, two complex atlases are equivalent if and only if they are both
contained in the same maximal complex atlas.

Definition A.5. A complex structure on X is an equivalence class of complex
atlases on X, or equivalently, a mazximal compler atlas on X.

As any complex atlas on X determines a unique complex structure on X,
this will be the usual way to define a complex structure on X.

Definition A.6. A Riemann surface is a nonempty connected Hausdorff
topological space endowed with a complex structure.

Convention. If X is a Riemann surface, then by a chart on X we always
mean a chart belonging to the maximal atlas of the complex structure on X.

Remarks A.7.

> A domain in a Riemann surface is a nonempty connected open subset.
Note that these subsets inherit naturally the structure of Riemann surface.

> Each point of a Riemann surface has an open neighbourhood which is
homeomorphic to an open disc of the complex plane. As a consequence,
the topological local properties of the euclidean plane are preserved.
For example, any Riemann surface is locally path-connected, locally com-
pact, locally contractible, locally metrizable. ..

> According to Radé’s Theorem [NR11, p.71], every Riemann surface is
second-countable, i.e., there exists a countable base for its topology.
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> Classically, a compact Riemann surface is called closed while a noncompact
surface is called open. It is important to note that there exist notable
differences between the theory of compact Riemann surfaces and that of
noncompact Riemann surfaces.

> Every Riemann surface is an orientable connected 2-dimensional smooth
manifold, since any complex atlas is an oriented smooth atlas. Therefore,
every compact Riemann surface is diffeomorphic to a torus with g holes,
for some unique integer g > 0. This integer ¢ is called the genus of the
Riemann surface and is a topological invariant.

Ezxzamples A.8.

1. The euclidean plane endowed with the complex structure determined by
the atlas A = {¢p2 : R> — R?} is a noncompact Riemann surface called
Complex Plane. It is denoted by C.

2. The Riemann sphere endowed with the complex structure determined by
the atlas A = {¢; : U; — C|i = 1,2} is a compact Riemann surface
called Riemann Sphere. It is denoted by C.

A.2 Morphisms

Let X,Y, Z be Riemann surfaces.

Definition A.9. Let U be a nonempty open subset of X.

> A map F : U — Y is holomorphic at p € U if there exist charts
¢1: U1 — Vi on X, withp € Uy, and ¢2 : Uy — Vo on'Y', with F(p) € Us,
such that the composition

¢r0Fod!
is holomorphic at ¢1(p).

> A map F:U —Y is holomorphic on a nonempty open subset V.C U if
F' is holomorphic at each point of V.

> A map F: X — Y is a morphism if F is holomorphic on X.

Ezamples A.10.
1. The holomorphic functions on a nonempty open subset of C.
2. The fractional linear transformations T : C — @,

T(z) =

az+b

———,  with ad — bc # 0, are bijective morphisms.
cz+d
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3. Let C/A1,C/A2 be complex tori and « a complex number such that
al; C Ay. For each € C, the map F, 5 : C/A; — C/Ay,

Fa,B(Z—I-Al):(OéZ—FB)-FAQ, VZ—FAG(C/Al,
is a morphism.

4. Let T'q, I's be congruence subgroups of SLy(Z) such that 'y C T's.
The natural projection of the corresponding compact modular curves

F:X(T) — X(T2), T'i7eTor,
is a surjective morphism.

In the special case Y = C, it is important to note that a function f : U = Y
is holomorphic at p € U if and only if there exists a chart ¢1 : Uy — V4 on X,
with p € Uy, such that the composition f o gi)fl is holomorphic at ¢1(p).

The set of holomorphic functions on U is denoted by Ox (U),

Ox(U) ={f:U — C| f is holomorphic on U}.

It is a C-algebra, since the constant functions are holomorhic functions and
the sum and product of holomorhic functions are also holomorphic functions.
Moreover, if U is connected, then O(U) is an integral domain.

The following proposition states the main results concerning holomorphic
maps between Riemann surfaces.

Proposition A.11. Let U be an open subset of X, F':U —Y a map and
pelU.

1. If F is holomorphic at p, then F is continuous at p.

2. If F is holomorphic at p, then F is holomorphic on an open subset U, C U
with p € Up.

3. F is holomorphic at p if and only if for any pair of charts ¢1 : Uy — V1 on
X, withp € Uy, and ¢o : Us — Vo on Y, with F(p) € Uy, the composition

¢pop0Fogr!
is holomorphic at ¢1(p).

4. If Fis continuous at p and there exists an open subset U, C U, with
p € Uy, such that F' is holomorphic on Up\{p}, then F' is holomorphic at p.

5. LetV be an open subset of Y and G : V' — Z a map such that F(U) C V.
If F is holomorphic at p and G is holomorphic at F(p), then G o F s
holomorphic at p.
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It is not difficult to prove that if F': X — Y is a bijective morphism, then
F~1:Y — X is also a morphism. A bijective morphism F : X — Y is called
isomorphism. The Riemann surfaces X and Y are isomorphic if there exists
an isomorphism F' : X — Y. Note that the relation of being isomorphic
is an equivalence relation on Riemann surfaces, since the composition of
morphisms is a morphism.

As usual, a self-isomorphism F' : X — X is also called automorphism.
The automorphisms of X form a group under the operation of composition.

A.2.1 Theorems on morphisms

Now we present several results about morphisms between Riemann surfaces.
In the majority of cases these results are immediate consequences of the
corresponding results of complex analysis about holomorphic functions.

Theorem A.12 (IDENTITY THEOREM). Let F,G : X — Y be morphisms.
If there exists a subset S C X such that S # () and F(z) = G(x), Vz € S,
then F'=G.

Theorem A.13 (OPEN MAPPING THEOREM). Let F': X — Y be a non-
constant morphism. Then F' is an open map.

Corollary A.14. Let F' : X — Y be a nonconstant morphism. If X is
compact, then F is surjective and Y 1is compact.

As a consequence, observe that if X is compact, then O(X) = C.

Corollary A.15 (DISCRETENESS OF PREIMAGES). Let ' : X — Y be a
nonconstant morphism. Then F~1(q) is a discrete subset of X forallqg €Y.
In particular, if X is compact, then F~1(q) is a nonempty finite subset of X
forallgeY.

Theorem A.16. Let F' : X — Y be an injective morphism. Then its
restriction on its image F : X — F(X) is an isomorphism.

Theorem A.17 (LOCAL NORMAL FORM). Let F': X — Y be a nonconstant
morphism and p € X. There exists a unique integer m > 1 which satisfies
the following property: For each chart ¢ : Uy — Vi on'Y, centered at F(p),
there exists a chart ¢1 : Uy — Vi on X, centered at p, with F(Uy) C U,
such that

ppoFog (z)=2", Vze V.

Proor: [Mir95, p.44] O
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Definition A.18. Let F : X — Y be a nonconstant morphism. The
ramification index of F' at p € X is the unique integer m > 1 which satisfies
the property cited in the previous theorem. It is denoted by e,(F).

Ezamples A.19.

1. Let f : C — C be the holomorphic function f(z) = 2™, with m > 1.
The index ramification of f at z € C*is e,(f) = 1 and at 0 is eg(f) = m.

2. Let f: C — C be the holomorphic function

1

f(z)=2"+c12™ -+ (where f(o0) := 0),

with m > 1. The index ramification of f at 0o is ex(f) = m.

There exists an easy way to compute the ramification index without having
to find centered charts which put the morphism into local normal form.
Let us fix two charts ¢ : U} — V3 on X, withp € Uy, and ¢p2 : Uy — V5 on Y,
with F(p) € Us. As the composition

¢o0Fog!

is holomorphic at zo = ¢1(p),
$p20F o' = an(z—2)"
n=1

Then
ep(F) = min{n > 1|a, # 0}.

Proposition A.20. Let F': X — Y be a nonconstant morphism andp € X.
The following conditions are equivalent:

1. ey(F) =1

2. F is a local isomorphism at p, i.e., there exist connected open subsets
Up C X, withp € Uy, and Vg C Y, with F(p) € Vi, such that
ﬂUp :Up = Vp(p) s an isomorphism.

Definition A.21. Let F' : X — Y be a nonconstant morphism. A point

p € X is a ramification point of F if ep(F) > 1. A point y € Y is a branch

point of F' if it is the tmage of a ramification point of F.

As a consequence of the above, the ramification points of a nonconstant
morphism F : X — Y form a discrete closed subset of X.
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Definition A.22. A morphism F : X — Y is a branched covering if
for each g € Y holds that

> F~Y(q) is a nonempty finite subset of X, F~'(q) = {p1,...,pr}, and

> there exist charts ¢; : U; — V; on X, centered at p;, ¢ : U -V onY,
centered at q, with

and integers e; > 1, such that for alli=1,...,r,

poFop;t(z)=2% VzeV.

Note that the integers e; are the ramification indexes of the points p;.

Ezxzamples A.23.

1. The holomorphic function f : C — C, f(z) = 2™, with m > 1, is a
branched covering.

2. The holomorphic function f : C - (E, f(z) = 2™+ 2™t e,
with m > 1, is a branched covering.

The following theorem is really useful to prove that a morphism is a
branched covering since it characterizes the branched coverings in a simple way.

Theorem A.24 (CHARACTERIZATION OF BRANCHED COVERINGS). Let
F : X — Y be a nonconstant morphism. The following conditions are
equivalent:

1. F is a branched covering.

2. Foreachq €Y, F~1(q) is a nonempty finite subset of X, and in addition,
the map

gEY Y e(F)EL
pEF~1(q)

1s constant.
3. F is a proper map.

In particular, observe that if X is compact, then F' is a branched covering.

ProorF: [Gir70, p.7]
O
Since any proper map between locally compact topological spaces is closed,
we deduce from this result that any branched covering is a closed map.
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Definition A.25. Let F': X — Y be a branched covering. The number
deg(F)= ) ¢l(F)
pEF~1(q)

1s called the degree of the branched covering F'.
Proposition A.26. Let ' : X — Y, G :Y — Z be branched coverings.
Then the composition G o F' is a branched covering and

deg(G o F') = deg(G) deg(F).

Proposition A.27. Let F : X — Y be a branched covering and
R={pe X|ey)(F)>1}.

Then F(R) is a closed discrete subset of Y. Moreover, R is empty if and
only if F' is an étale covering.

Finally, we present the Riemann-Hurwitz formula which relates the genus
of two compact Riemann surfaces through a nonconstant morphism between
each other.

Theorem A.28 (RIEMANN-HURWITZ FORMULA). Let ' : X — Y be a
nonconstant morphism. If X is compact, then

29(X) — 2 = deg(F)(29(Y) = 2) + Y _(ep(F) — 1)
peX

Proor: [Mir95, p.52]

A.2.2 Meromorphic functions
Definition A.29. Let U be a nonempty open subset of X.

> A function f : U — C is meromorphic at p € U if there exists a chart
o1 : U = Vi on X, with p € Uy, such that the composition f o qﬁl_l 18
meromorphic at ¢1(p). In this case, for any chart 1y : Uy — V| on X,
with p € Uy, the composition f o wl_l is meromorphic at ¥1(p).

> A function f: U — C is meromorphic on a nonempty open subset V.C U
if f is meromorphic at each point of V.

Note that a function f : U — Cis meromorphic at p € U if and only if
f is holomorphic at p (as Riemann surfaces) and there does not exist a
neighbourhood U, of p, with U,, C U, such that f is identically infinity on U),.
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Ezxamples A.30.
1. The meromorphic functions on a nonempty open subset of C.

2. Let C/A be a complex torus. For each elliptic function f with periods A,
the induced function F': C/A — C,

F(z4+A) = f(2), Vz+AecC/A,
is a meromorphic function on C/A.

3. Let I' be a congruence subgroup of SLg(Z). For each automorphic form
f of weigh 0 with respect to I', the induced function F': X (T') — C,

Fz) = { ;8 L g Ve X(T),

is a meromorphic function on X (I).
The set of meromorphic functions on U is denoted by M x (U),
Mx(U) ={f:U — C| f is meromorphic on U}.

Note that it is a C-algebra that contains Ox (U) as subalgebra. Furthermore,
if U is connected, then M x (U) is a field, since if f is a meromorphic function
which is not identically zero, then 1/f is also a meromorphic function.

Definition A.31. Let f : X — C be a nonzero meromorphic function on X.
The order of f at p € X is defined as

ord,(f) = min{n € Z|a, # 0},

where {an}nez is the sequence of Laurent coefficients of f around p with
respect to a chart ¢1 : Uy — Vi on X, with p € Uy, t.e.,

0¢1 ZanZ_ZO . 20 = ¢1(p)-

nel

One can easily check that this definition is independent of the chosen chart
to define the coefficients of the Laurent series.

We say that the function f has a zero of order n at p € X iford,(f) =n>1
and has a pole of order n at p € X if ord,(f) = —n < —1.

Examples A.32.

1. The function induced by the Weierstrass gp-function for a lattice A in C
~ 1
:C—=C - — VzeC A
A ;o opa(z) = 5 + wZEA ( w2> ; z 2 ¢ A,

has a double pole at 0 + A.
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2. The function induced by the modular function

g2(1)?

j:H—-C, j(r)=1728 A

V7 eH,

has a simple pole at SLg(Z)oc.

Convention. If f : X — C is identically zero, then ordy(f) = +o0, Vp € X.
Remarks A.33.

> Let f be a nonzero meromorphic function on X:

- If f has a zero at p € X, then e,(f) = ord,(f).
- If f has a pole at p € X, then e,(f) = —ord,(f).

- If f has neither a zero nor a pole at p € X, then
ep(f) = ordy(f — f(p))-

> Let f, g be nonzero meromorphic functions on X. Then

ord,(f £ g) > min{ord,(f),ordy(g)}, ordy(1/f) = —ordy(f),
ord,(fg) = ord,(f) + ord,(g), ordy(f/g) = ord,(f) — ordy(g).

The following theorems are immediate consequences of the characterization
of branched coverings, since if f : X — C is a branched covering, then the
map

1€Cr Y o) el

pef~1(q)

is constant.

Theorem A.34. Let f : X — C be a branched covering. If f has a unique
simple pole, then f is an isomorphism. Therefore, X is isomorphic to C.

Theorem A.35. Let f: X — C be a branched covering. Then

Z ord,(f) = (number of zeros of f) — (number of poles of f) = 0.
peX

A.3 Meromorphic differentials

Let X be a Riemann surface and n an integer.
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Definition A.36. A local representation of a meromorphic differential on X
of degree n is a collection of pairs

((rbon fOc))

where ¢o Uy — Vo, is a chart on X and f,:V, ~Cisa meromorphic function,
that satisfies the following conditions:

> {bq : Uy — Vo } is a complex atlas on X,

> and in addition, if Uy, N Uy, # 0, then

for (2) = faz(Pas,01 (2)) (g0 (2))"s V2 € Gy (Uay N Uay),

where ¢ay. ., 15 the transition function from the chart ¢, to the chart ¢q,.

Two local representations of meromorphic differentials on X of degree n,

{(¢aa fa)} and {(¢a’a fo/)}

are equivalent (or represent the same meromorphic differential of degree n)
if its union

{<¢a; fa)} U {(¢a’> fa’)}

also satisfies the second condition of the previous definition.
Let {(¢a, fa)} be a local representation of a meromorphic differential
of degree n. If {¢:Uy — Vv } is another complex atlas, then we can define

far(2) = fa(Paa (2))($a,0 ()", V2 € ¢ (Ua NUw),

where ¢, o is the transition function from the chart ¢, to the chart ¢,.
As a consequence, observe that the representations

{(¢o¢a fa)} and {(¢0¢’7 fa’)}

are equivalent.

Definition A.37. A meromorphic differential w on X of degree n is a equiv-
alence class of local representations of meromorphic differentials of degree n.

Although a meromorphic differential w of degree n is a equivalence class,
we keep the same notation

w = {(Qba, fa)}

if there is no risk of confusion.
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The set of meromorphic differentials on X of degree n is denoted M ™ (X).
It is a C-vector space together with the operations

w + w = {((ba,fa —I—ga)}n w = {((Z)a;fa)}a w = {(¢a>ga)}

and
)\w:{<¢a7)\fa)}7 w:{(¢047f01>}7 AG(C
Observe that these operations are independent of the local representations.

If w = {(¢a)fa)} € MENX) and v’ = {(¢a,9a)} € MU)(X), then
the product

ww' = {(¢av faga)} € M(S+j)

is well-defined. Thus the direct sum over all the degrees

@M(”)(X)

neL

forms naturally a graded ring.

Remark A.38. The space M is a C-algebra together with this product.
Furthermore, the map

FeMX)— {(¢a, fodz )} € MO where {¢y} is an atlas on X,

defines an isomorphism of C-algebras.

Ezamples A.39.

1. The collection
{((bRQa f)}7 with f € M((C)a

is a meromorphic differential on the complex plane of any degree n € Z.
2. The collection
{01, 1=1), (2, fal2) = (-1/2%)")}
is a meromorphic differential on the Riemann sphere of any degree n € Z.
3. Let C/A be a complex torus. The collection
{(¢z: m(D2) = Dz, f = 1) |2 € C}

is a meromorphic differential on the complex torus of any degree n € Z.

Definition A.40. Let w = {(¢q, fa)} be a meromorphic differential on X
of degree n. The order of w at p € X is defined as

ordy(w) = vz, (fa),

where (¢o:Ua— Vi, fa) is a pair in w, with p € Uy, and z, = ¢o(p).
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One can easily check that this definition is independent of the chosen pair,
i.e, if (pos : Uy — Vi, for) is another pair in w, with p € Uy, then

Vzp(fa) = Vz;,(fo/)a where ZII) = o (p)-

A.4 Divisors and Riemann-Roch Theorem

Let X be a compact Riemann surface.

Definition A.41. A divisor D on X is a map from X to Z whose support
{p e X[D(p) # 0}
is a finite subset of X.
A divisor D on X is denoted
D = anp, where n, = D(p), Vp e X.

The set Div(X) of divisors on X forms a Abelian group, the free abelian
group generated by the set X, under the addition

D+D’:Z(np+n;)p, D:anpv D/:Zn;p-

The degree of a divisor D = > n,p on X is defined as deg(D) = > ny,.
Observe that the map deg : Div(X) — Z is a homomorphism of groups.
Its kernel is the subgroup

Divo(X) = {D € Div(X) | deg(D) = 0}.
Each meromorphic function f: X — C defines a divisor on X ,

div(f) =Y ord,(f)p (f #0).

The divisors D on X of the form D = div(f) are called principal divisors.
Let M(X)* be the multiplicative group of nonzero meromorphic functions.
Observe that the map div : M(X)* — Div(X) is also a homomorphism of
groups, since

div(fg) = div(f) +div(g), V/f,ge M(X)"
By Theorem A.35 its image

PDiv(X) = {div(f) | f € M(X)"}
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is a subgroup of the group Divy(X). Abel’s Theorem [Mir95, p.250-263]
states that the quotient Divy(X)/PDiv(X) is isomorphic to a g-dimensional
complex torus CY/A,, where g is the genus of X and A, is a lattice in CY.
Let D = > nyp, D' = Y ny,p be divisors on X. If nj, <ny,, Vp € X, then
we write
D'<D or D>D.

The linear space L(D) associated to a divisor D on X is defined as
LD)={feM(X)|f=0 or div(f)+ D > 0}.
The inequality
ordy(f +g) > min{ordy(f),ordy(g)}, Vp € X, ¥ f.g € M(X),

shows that L(D) is a vector subspace. It is well-known that this subspace
turns out to be finite-dimensional [Mir95, p.151]. Its dimension is denoted ¢(D).

Remarks A.42.
> If D is the zero divisor, then
L(D)=C,
since the meromorphic functions without poles are the constants functions.
> If D is a divisor with degree deg(D) < 0, then L(D) = {0}, since

deg(div(f) + D) = deg(D), Vfe M(X)".
Each meromorphic differential w € M (X) also defines a divisor on X,

div(w) = Zordp(w)p (w #0).
Observe that
div(wlwg) = diV(U)1) + diV(wg)

for any nonzero meromorphic differentials w; € M®)(X) and wy € MU (X).
The divisors D on X of the form D = div()\), with A € MM (X), X\ # 0, are
called canonical divisors.

Lemma A.43. Let A1, Ay € MW (X) be nonzero meromorphic differentials.
Then there exists a unique nonzero meromorphic function f : X — C such
that Ao = fA\1. As a consequence, observe that

div(Ae) = div(f) + div(\y).
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Proor: Let {¢q : Uy — V,} be a complex atlas on X. There exist local
representations

AL = {(Qbavfé)} and Ay = {(¢a7f§)}'

Then the meromorphic function f: X — @,

~ fda(p)
I®) = FiGaty "PEY

is well-defined and is the unique nonzero meromorphic function on X that
satisfies the desired property.
O

Theorem A.44. [RIEMANN-ROCH/ Let X be a compact Riemann surface

of genus g. If div(\) is a canonical divisor on X, then for any divisor
D € Div(X),

¢(D) = deg(D) — g+ 1+ £(div(\) — D).

ProOF: [Mir95, p.192]
O
Observe that if div()\') is another canonical divisor on X, then the vector
spaces Ly = L(div(\) — D) and Ly = L(div(\') — D) are isomorphic, since
the map

g€ Ly— g/f €Ly, where fe M(X)* XN = f)\,
is an isomorphism of C-vector spaces. As a consequence,
((div(\) — D) = £(div(\) — D).

Corollary A.45. Let X, g, div(\) and D be as above. Then
1. £(div(\) =g
2. deg(div(A)) =2g — 2
3. If deg(D) < 0, then ¢(D) =0
4. If deg(D) > 2g — 2, then {(D) = deg(D) — g+ 1
Proor: To prove the first equality let D = 0 in the Riemann-Roch Theorem

and recall that £(0) = 1. To prove the second equality it suffices to apply
the Riemann-Roch Theorem with D = div(\), since

g2 0(div(y)) = deg(div() — g+ 2
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We now argue the third assertion by contradiction. Let us suppose that there
exists a nonzero meromorphic function f € L(D). Then div(f) > —D, and
taking degrees follows that deg(D) > 0, which is a contradiction. Finally,
the fourth assertion is consequence of (2) and (%) since if deg(D) > 2g — 2,
then

deg(div(n) — D) 2 29 — 2 — deg(D) < 0.
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Complex elliptic curves

The compact Riemann surfaces of genus equal to 1 are called complex elliptic
curves for reasons to be explained in this chapter. It is possible to prove that
any complex elliptic curve is isomorphic to a complex torus (as Riemann
surfaces). As a consequence, these curves can be endowed with an analytic
group structure which is uniquely determined by the choice of identity ele-
ment. In this chapter we detail all these results over complex elliptic curves.

B.1 Complex Tori

Let us begin by defining the Riemann surfaces called complex torus.
It is well-known that the discrete subgroups of C are

- {0}7
- Zw, with w € C*, and
- Zwi 4 Zws, with wy,we € C linearly independent over R.

A lattice A in C is a discrete subgroup of C of the third kind, that is,
A = Zwy + Zws, with wy, we € C linearly independent over R. Note that the
pair (w1, ws) has the property that any w € A has a unique representation

w = miwi + Mows, Wwith my, mg € Z.

Any pair with this property is called a basis of the lattice A.

It is usual to make the normalizing convention w;/we € H, but this still
does not determine a basis given a lattice. In fact, two pairs (w1, wz) and
(w},w}) are bases of a same lattice if and only if

w) _|ab w1 _lad
) [22[2) s 22

99
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Figure B.1: Lattice with basic (w;,ws)

If we make the normalizing convention wy /we, w) /wh € H, then o € SLo(Z).
Let A be a lattice in C, with basis (w;, w2),

A = Zwy + Zws.

Let us consider the quotient group C/A endowed with the topology induced
by the natural projection 7 : C — C/A, that is, a subset U C C/A is open
if and only if 77*(U) is open in C. Note that C/A is a compact connected
topological space, since 7 is a continuous map with respect to this topology
and 7(P,) = C/A, for any period parallelogram

Pa:Pa(wl,fwg):{a+)\w1+ﬁw2\0§)\,ﬁ<1}, a € C.

4
a a + wy

Figure B.2: Period parallelogram

Furthermore, 7 is an open map, since

mlx(V)=Jw+V, VVcC
weEA

Let us now prove that C/A is a Hausdorff topological space. Let z1 + A,
z9 + A be points in C/A, with z9 — 21 ¢ A. Then

= min|(zp — 21) — 0.
1= min|(z; — z1) —w| >
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As a consequence,
m(D(z1,1/2)) and  7(D(z2,71/2))

are disjoint open subsets of C/A containing z; + A and z3 + A, respectively.

Finally, let us define an atlas on C/A. For each z € C, consider the disc
D, = D(z,6/2), where

5= mi .
weHAn\rEO}{IwI}

Note that mp, : D, — 7(D,) is a homeomorphism. We denote by ¢, its
inverse homeomorphism. Below, we show that the collection of charts

A={¢,:n(D,) = D,|z€C}
is an atlas on C/A:
- Evidently, C/A = |J,cc 7(D>).

- Furthermore, if 7(D,,) N w(D,,) # 0, with 21,22 € C, then there exists
w € A such that

¢Z20¢;11(2):Z—|—w7 vzevl,Qa
where Vi 2 = ¢, (7(D,,) N1(D,,)). Indeed,
90(2) = (Z)ZQO(ZS,;ll(Z)_ZGAa \V/ZGVLQ,

and
lp(s1) — p(s2)] <0, Vs1,80 € Vipo.

The topological space C/A endowed with the complex structure determined
by the atlas A is a compact Riemann surface called Complex Torus. It is
important to note that the group structure on C/A is analytic, i.e., in terms
of local charts about any two given points in the complex torus, addition is
a holomorphic function of two complex variables.

Let z1 + A, z2 + A € C/A. Consider the charts

¢z i m(Dyy) = Dy,
Gzy : T(Dyy) = Dy,
Gug : T(Dyy) = Dy,

where 23 = 21 + 22, and fix an open neighbourhood V' of (z1, 22) in D, x D,
such that s; + s2 € D, V(s1,52) € V. Then

Dz ((;5;11(81) + (25;21(82)) = 81 + S92, V(Sl,SQ) eV.



102 Appendix B

B.1.1 Analytic group structure

As mentioned at the beginning of this chapter, if F is a complex elliptic
curve, then there exists a lattice A in C such that E is isomorphic to C/A
as Riemann surfaces [Mir95, p.265]. Therefore, there exists an isomorphism

F:C/A— E.

Now, through this isomorphism the complex elliptic curve E inherits the
analytic group structure on C/A. To see this, it suffices to define

F(z1+A)+ F(za+A):=F((z1 +22) +A), Vzi+Az+AeC/A.

Note that the isomorphism becomes a group isomorphism from C/A to E
with respect to this group structure.

The following theorem states that an analytic group structure on a complex
elliptic curve is uniquely determined by the identity element.

Theorem B.1. Let E be a complex elliptic curve and pg € E. Then there
exists a unique analytic group structure on E such that py s the identity
element.

Proor: Let A be a lattice in C such that E is isomorphic to C/A and
F : E — C/A an isomorphism. The map G : E — C/A,

G(p) = F(p) — F(po), VpeE,

is an isomorphism, taking py to 0 + A. So the inverse isomorphism defines
an analytic group structure on E as above, such that

po=G 0+ A)

is the identity element.

Let us now prove the uniqueness.
First, we consider the case E = C/A, with A a lattice in C, and py = 0+ A.
Let & : F x E — E be another addition which defines an analytic group
structure with identity element 0 + A. Below, we show that

21+ =21D2, Vi=2n+ANz2=2+AcE.
- For 2z = 0+ A, it is obvious.
- For 2z #0+ A, the map Fz, : E — E,
F(Z) =zZ® 2z, Vz=z+A€E,
is an automorphism without fixed points. Then

F;(3)=%+7%, Vi=z+AcE,
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for some z3 = z3+A € E, with z3 ¢ A (Corollary B.5). As a consequence,
Zo =F5;(0+A) = z3.

The arbitrary case of an elliptic curve F, with identity element pg € E,
follows from the case just considered since if there exists another analytic
group structure on F, with identity element pg, then the isomorphism

G:E—C/A

defined above carries the two analytic group structures on E to two distinct
analytic group structures on C/A, with identity element 0 + A.
O

From the uniqueness stated in the previous theorem, we obtain the following
corollary.

Corollary B.2. Let Ey, Es be two complex elliptic curves with identity
elements p(l) and pg, respectively. If F' : E1 — FEs is an isomorphism of
Riemann surfaces such that F(p}) = pg, then

F(p)+ F(q)=F(p+q), Vp,qc€E.

Therefore, the isomorphism F is also a group isomorphism from Ey to Eo.

B.2 Morphisms between complex tori

Let C/A1,C/A2 be two complex tori.

Theorem B.3. If F : C/Ay — C/Ag is a morphism of Riemann surfaces,

then there exist a, 8 € C, with aAy C Ag, such that
F(z—i—Al):(az—i—ﬁ)—i-AQ, VZ+A1€(C/A1.

Reciprocally, if there exists a € C, with aAy C As, then for each § € C
the map Fo, 3 : C/A1 — C/As,

Fa75(2+A1):(OéZ+B)+A2, Vz+ A G(C/Al.
18 a morphism of Riemann surfaces. Its degree is the index of aAy in As,
deg(Faﬂ) = [AQ : OéAl].

Proor: [Mir95, p.63]
]

Note that the map Fy, g is bijective if and only if aAy = Ay. In such case,
its inverse is

Fih(z+ M) = (1/a)z — B/a+ A1, Yzt Ay € C/As.
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Corollary B.4. The isomorphisms from C/Ay to C/Ay are
Fz4+ M) =(az+p)+ N2, Vz+ A1 € C/Ay,

where o, f € C, aA; = As.

Therefore, the complex tori C/A; and C/Ag are isomorphic (as Riemann
surfaces) if and only if there exists a € C such that aA; = Ag, ie.,
if the lattices A1 and Ay are homothetic.

Corollary B.5. Let C/A be a complex torus.
1. The morphisms from C/A to itself are
F(z4+A)=(az+B8)+A, Vz+AecC/A,
where o, 5 € C, aA C A.
2. The automorphisms of C/A are
F(z4+A)=(az+B8)+A, Vz+AecC/A,
where a, 5 € C, aA = A.
3. The automorphisms of C/A without fized points are
F(z+A)=(z+08)+A, Vz+AecC/A,
where f € C\ A.
Remark B.6. The maps F, 3 : C/A1 — C/A,,

Faﬁ(z —|—A1) = (az—|— ﬁ) + Ay, Vz+A € C/Al

are group homomorphisms if and only if F, g(0+ A1) =04+ Ay, ie., B € Ag.

B.3 Weierstrass gp-function

The Weierstrass p-function for a lattice A in C is defined as
1 ! 1 1
pr(2) = 5 + ze;\ <(Z_w)2 —w2>, VzeC,z¢A,
w

where the primed summation means to sum over the points w € A\ {0}.
It is the most important specific example of elliptic function with periods A,

or(2) = pa(z+w), VzeC,VweA.
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As the series converges uniformly on compact subsets which do not meet A,
the function is holomorphic on C/A and has double poles at lattice points.
So its order is 2, i.e, the number of poles in any period parallelogram

Py(wi,wy) ={a+ Aw; + pwe |0 <\, <1}, a€C,

where (wy,ws) is a basic of A, is equal to 2.
Its derivative is also an elliptic function with periods A,

()= oS5 L
Palz) = 2% w0 VzeC,z ¢ A.

In fact, it turns out that pa and @), are the only specific examples we need

since the field of elliptic functions with periods A is generated by pa and ¢y.

It is important to note that p, is an even function while g/, is an odd function.
The following theorem states the main results of the Weierstrass p-function.

Theorem B.7. Let pp be the Weierstrass function with respect to a lattice A.

1. The Laurent series of pp is

1 s " :
pale) = - nZ:Q (n+1)Gri2(A)2", V2 € D(0,9),
where )1
G — -
k(A) Z e k> 2 even,
weA
and
0= i )
wEHAu\r{lO}{\w!}

2. The functions pa and @' satisfy the cubic equation
(92)% = 4p% — g2(A)pa — g3(A),
where g2(A) = 60G4(A) and g3(A) = 140Gg(A).

3. Let (w1, w2) be a basis of A and ws = wy + we. Then the cubic equation
satisfied by pa and @'y is

y2:4(w—61)(x—62)($—63), where e; = ppa(w;/2), Vi=1,2,3.

This equation is nonsingular, meaning its right side has distinct roots.
In particular, its discriminant up to constant multiple

A(A) = g2(A)? — 27g3(A)? # 0.
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PrOOF: [Ap090, p.9-14]

As a consequence of this result, the following question arises:

Let ¢, c3 be complex numbers satisfying ¢ — 270% # 0. Does there
exist a lattice A in C such that

gk(A) = Ck, k:2,3?

Using properties of the modular function
g2(7)°

i H (1) = 172
Jj:H—=C, j() 78A(7)’

V7 eH,
it is possible to demonstrate that the answer to this question is affirmative.

Theorem B.8. Let ca, c3 be complex numbers satisfying c3 — 276% £ 0.
Then there exists a unique lattice A in C such that

gk(A) = Ck, k= 2,3.

PROOF: [Apo090, p.42]

O
Therefore, we can conclude that there exists a natural bijection between
Complex Nonsingular
tori — cubic equations
C/A y? = 42% — cox — c3

Definition B.9. A elliptic curve over C is any nonsingular cubic equation
of this form,

E:y* =42 —cor —c3, ca,c3€C, c3—27ck #0.
A good reference book about elliptic curves is for example [Sil09].

B.3.1 Algebraic models

Let A be a lattice in C, with basis (w,wsz). Consider the nonsingular cubic
equation satisfied by pa and g,

y® = 42® — go(N)x — g3(A).
Observe that it determines a noncompact topological subspace X, of C?,

X = {(x,y) € C?|y* — 42> + go(A)x + g3(A) = 0}.
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To compactify it we add an additional point that will be denoted by (o0, 00),
Epn = X5 UA{(00,00)},
and we define the following topology: The open subsets of Ey are
- the open subsets of X, and

- the complements of compact subsets in Xy.

Theorem B.10. The complex elliptic curve
Ey =X\ U {(OO, OO)}

18 a compact conmected Hausdorff topological space with respect to this topology.

Let us now define an atlas on E,. Consider the natural projections
Ty C? = C, mp(x,y) =2, and Ty C? > C, y(z,y) =y.

We need a version of the implicit function theorem for polynomials in C|x, y].

Theorem B.11. Let p € Clz,y] and (a,b) € C2. Suppose that
p(a,b) =0 and Jyp(a,b) # 0.

Then there exist open subsets Vy, Vi, C C, witha € V,, b € Vy, and a holomorphic
function g : Vo, — Vi, such that for all (x,y) € V, x Vj,

p(z,y) =0 if and only if y = g(x).

This result allows us to invert locally the natural projections 7, and m,
on the curve E,. Define

f=y"—42° + g2(A)z + g3(A) € Clz, ]

and
4 1

foo=y*— w4(ﬁ = 92(A)~ = g3(A)) € Cla, y]
The map ¢ : U — U defined as

1
blay) = (o 5). Vi) el

where
U={(z,y) €C*|z #0, f(z,y) = 0}
and
Uso = {(z,y) € C* |2 # 0, foo(,y) = 0},

is a homeomorphism. Its inverse homeomorphism is defined in the same way,

¢_1 Uy — U, v,b_l(zv,y) = (7¢ 7)7 V(l’,y) € Uso.
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Remark B.12. Let (x,y) € U. Observe that

Yy 2 1 3 1
<ﬁ) = g(‘l?ﬂ — g2(A)z — g3(A)) ~ ~oas T oo,

Making the change of variables z = 1/z and w = y/2%, we obtain that

w? = 25— ga(A)] — gs())

This argument justifies the previous definition of the polynomial f, € Clz, y].

Let (a,b) € Xa. Suppose that 0, f(a,b) # 0. Then there exist open subsets
Vo, Vi € C, with a € V,, b € V}, and a holomorphic function g : V, — V4
such that for all (z,y) € Vo, x V4, f(z,y) = 0 if and only if y = g(z).
Therefore, the projection 7, : Uggp) — Va, where Uiy = (Vo X Vp) N Xy,
is a chart on Fy. Its inverse homeomorphism is 7' (z) = (z, g(x)), V& € V.

We can define a chart m, : Ugyp) — Vb in the same way as above if
0z f(a,b) # 0. Since the partial derivatives of f are not both zero,

Ouf(a.0) 0 or 8,f(a,b) #0,

we have defined a complex chart on the curve E for each point (a,b) € Xj.
Observe now that 0, f5(0,0) = —4, since

Oufoo = —4 + 3ga(A)2? + 4gz(A)a>.

Then there exist open subsets V1, Vo C C, with 0 € V4 N V5, and a holomor-
phic function h : Vo — Vj such that for all (z,y) € Vi x Va, foo(z,y) =0
if and only if = h(y). As above, the projection m, : Ui o — Va, where
Uiz = {(z,y) € Vi x Va| foo(z,y) = 0}, is a homeomorphism. Therefore,
the composition T = my 01 : ¢~ H(Uy2) U{(00,00)} — V2,

7TOO(£7 y) = y/.’L‘2, v (.%', y) € wil(Ul,Q) [zp(oo, OO) = (0, 0)]7

is a chart on E, about the point (oo, 00).

Proving the compatibility of these charts is left as an exercise to the lector.
The elliptic curve E) endowed with the complex structure determined by
this collection of pairwise compatible charts is a compact Riemann surface.

Let Fj : C/A — E) be the map

Fr(z+A) = (pa(2), 9h(2)), Vz+A e C/A.

Observe that it is well-defined since pj and @/, are both elliptic functions.

Theorem B.13. The map Fy is an isomorphism of Riemann surfaces.
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Proor: Let us begin by proving that F} is bijective. Let (xo,y0) € Ea.
If (x0,y0) = (00, 00), then the only preimage of this point is 0+A. Otherwise,

the equation
pa(Z) =x0, Z=2z+4+Ae C/A,

has two solutions 27,23 € C/A, since pp is an elliptic function of order 2.
If zg is a root of the polynomial

—4a” + go(A)z + g3(A) € Cla],
then these two solutions are the same, since

(ph(20))? = =4(pa(2))” + g2(M)palz:) +g3(A) =0, i=1,2.
And if zg is not a root of this polynomial, then these two solutions must
be distinct, since otherwise we can conclude that pp does not have order 2.
Therefore, it suffices to see that

o (21) # Ph(22),

to conclude that (zg,yp) has only a preimagen in C/A. As g, is even and
Z1 # —2z1 (since the derivative ), only vanishes at the points of C/A that
have order 2, Theorem B.7), we deduce that z = —2;. Using now that gy
is odd, we obtain that

P (22) = P (—21) = =gl (21).

To prove that F) is holomorphic at zg = zp + A € C/A we distinguish
the following three cases:

- If z9 ¢ A and pp(z9) # 0, then a complex chart on Fy about the point
(x0,y0) = Fa(20) is 7y, since 0y f(zo,y0) # 0. So

my 0 F)p o ¢Z_Ol(z) = Ty (FA(z + A))
= T (9A(2), P4 (2)) = pa(2)
- If 29 ¢ A and pp(zp) = 0, then a complex chart on Fy about the point
(0,y0) = Fa(20) is my, since 0, f(0,y0) # 0. So
myoFpo qb;ol(z) = my(Fr(z 4+ A))
= my(pa(2), Pa(2)) = ) (2).

-If zo € A (204+ A =0+ A), then a complex chart on Fj about the point
(00, 00) = Fp(20) iS Teo. Therefore,

Too © Fp 0 ¢! (2) = oo (FA(z + A))

— 2). oA () = P (2)
~ (a2 () = AL
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and

/
Zli_}rgo m = Zli_}rglo —2(z — 29) + (higher order terms) = 0.

Observe that the three compositions are well-defined in neighbourhoods of zj.
O

Final conclusion: Let E be a complex elliptic curve (compact Riemann
surface of genus 1). Then there exist a lattice A in C and an isomorphism
F : E — C/A. Therefore,

E-5c/n By

is an isomorphism from E to Fj.
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