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Abstract 

This paper presents two approaches to symbolic 
analysis of large analog integrated circuits via simplifica- 
tion during the generation of the symbolic expressions. 
Both techniques are examined from the point of view of 
matroid theory. Finally, a new approach which combines 
the positive features of both approaches is introduced. 

1. Introduction 

Symbolic analyzers are CAD tools which calcu- 
late network functions of analog circuits, with the com- 
plex frequency s and the circuit parameters kept as 
symbols. Those network functions are typically given as 
a cancellation-free sum of products: 
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T in which x = { x l ,  x2, . . ., xe}  is the vector of symbolic 
parameters, and and gi are sums of products. Many 
potential applications have been reported for symbolic 
analysers, most of which can be found in [I]. 

One of the major drawbacks that has prevented 
symbolic analyzers from being widely accepted by the 
analog design community has been that the size of the cir- 
cuits that they can analyze is still much smaller than for 
numerical simulators. This is due to the exponential 
growth of the symbolic formula complexity with the cir- 
cuit size. This not only limits the maximum analysable 
circuit size but also makes more difficult formula inter- 
pretation and its use in design automation applications, 
where expressions should be the smallest possible for 
increased evaluation efficiency. 

Experience with the application of symbolic ana- 
lyzers to real analog integrated circuits shows that, usu- 
ally, a very small part of the symbolic expression contains 
most relevant information. So the approximation of sym- 
bolic expressions, defined as the reduction of formula 
complexity while maintaining the accuracy as high as 
possible, has become a must. The general topic of expres- 
sion simplification will be described in Section 2. 

* This work has been performed in the framework of the 
AMADEUS Project of the ESPRIT IV Program of the CEC. 
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]However, formula approximation after thle com- 
plete exact expression has been generated only eases 
interpretation and manipulation but circuit size limita- 
tions remain. A major breakthrough has been prioduced 
with tlhe introduction of simplification during generation 
algorithms [2],[3],[41. Sectiion 3 will explain hsow the 
approximation during genwation problem can be under- 
stood in terms of matroids, a general mathematical the- 
ory that guarantees that if Ithe matroid problem has a 
solution, the particular problem at hand can also be 
solved, and at least as efficiently as the matroid problem. 

2. Symbolic expression approximation 
Conventionally, reported symbolic analyzers have 

incorporated the approximation feature by first ciilculat- 
ing the exact network function and then simplifying it as 
a postprocessing step [5],[6],[7]. For this reason 'we will 
call it Simplification After Generation (SAG). It is based 
on the elimination of the least significant terms or subex- 
pressions while some error criterion is satisfied. Relative 
significance is evaluated based on numerical estimates of 
the symbolic circuit parameters. Assume 

T 
h, (x:l = h,, (x) + h,, (x) + . . . + h,, (x) = c h,, (x) (2) 
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reprexnts eitherfk(x) or g k ( x )  in (1). The P least signifi- 
cant terms in (2) are eliminated, one by one and begin- 
ning with the smallest, while the sum of the elirninated 
terms keeps below some givlen threshold, 

P T 

(3) 

where xo represents the design point of the circuit param- 
eters and ek is a discrimination threshold. 

The principal drawback of SAG techniques is that 
simplification is performed alfter the exact network func- 
tion has been generated. So the exact expression, which 
usually is not used any more after the approxiimation, 
limits the analysable circuit size to around 10 tran,sistors. 

In order to extend the capabilities of conventional 
symbolic analyzers, the new concept of Simpl@cation 
During Generation (SDG) has recently been proposed. 
SDG is based on the following idea: terms are generated 
in strictly decreasing order of magnitude, starting with 



the largest, for each power of s, until they represent a 
given fraction of the total magnitude of the coefficient. 

SDG has two main advantages. First, the analysis 
is faster, as no time is wasted generating terms that would 
be neglected later on. Second, its smaller memory needs 
make possible that much larger circuits can be analyzed. 
This is clearly illustrated in Fig. l(b), which shows the 
computation time of approximated expressions with 
E+ = 0.25 versus the number of circuit nodes in 
Fig. l(a). It can be seen that the new SDG approach is 
orders of magnitude faster than the conventional one to 
get the same approximated expression. Moreover, the 
maximum analysable circuit size increases considerably. 
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Figure 1 :  (a) Ladder network; (b) CPU time compari. 
son for the calculation of its voltage gain. 

2.1. Term generation with the two-graph method 

Term generation by the two-graph tree enumera- 
tion method has been shown to be the most efficient tech- 
nique to implement the SDG idea. The two-graph 
method makes use of a voltage graph Gv and a current 
graph GI, both easily built from the original network [8]. 
Fig. 2 illustrates the construction of both graphs for a 
simple circuit. Each valid term corresponds to the admit- 
tance product of every branch in a spanning tree common 
to both graphs. 

Therefore, the term generation problem for each 
power of s (say the k-th power) reduces to the following 
graph problem: enumerate all spanning trees common to 
both, the voltage and the current graph, in decreasing 
order of weight and containing k capacitance branches. 

Reported techniques [2],[3],[4] started from the 
algorithm in [9] for the enumeration of spanning trees of 
a one-colored graph in decreasing order of weight. As the 
valid terms are given by common spanning trees to volt- 

Figure 2: Example circuit and its two-graph representation 

age and current graphs, this algorithm is applied to the 
voltage graph and for each generated spanning tree it is 
checked if it is also a spanning tree in the current graph. 
But, each spanning tree must contain exactly k capaci- 
tors. Therefore, the original algorithm for one-colored 
graphs had to be extended to two-colored graphs (con- 
taining two branch types: capacitors and conductances). 

3. The enumeration problem in terms of 
mat raids 

Matroids are mathematical abstractions which 
offer a model for many mathematical structures and com- 
binatorial problems. If our problem can be expressed in  
terms of matroids, then, generally, better algorithms 
improving the running time (exploiting special structures 
of those matroids) may be found. Some general concepts 
about matroids are defined next. 

3.1. Matroid preliminaries 

A matroid M=(E,J) is a structure in which E is a 
finite set of elements and J i s  a family of subsets of E, 
which satisfy some axioms [lo]. A subset I in 3 is an 
independent set of the matroid M=(E,J). A maximal inde- 
pendent set is a base of the matroid. A matroid M=(E,J) 
is said to be the graphic matroid of the graph G if E is the 
set of arcs of G and a subset I E is in  g i f  and only if I 
is a cycle-free subset of arcs. In a connected graph, a base 
of its graphic matroid corresponds to a spanning tree. 

Finally, let K be a partition that separates E into m 
disjoint blocks B 1 ,  ..., B m ,  and let di, (i=l, ..., m )  be m 
non-negative integers. Then, M=(E,fi  is a partition 
matroid if J is the family of subsets I that satisfy 
I n B .  I d . , i  = 1 ,..., m ) .  I II 1 

3.2. Application of matroid theory to our problem 

The tree enumeration problem can be understood 
as a 3-matroid intersection problem. These three 
matroids are: 
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A graphic matroid defined on the voltage graph Gv 

Another graphic matroid defined analogously on Gp 
* A partition matroid defined so that each set of 

branches with k capacitors is a base of the matroid. 

so that each spanning tree in G ,  is a base. 

The tree enumeration problem corresponds to the 
enumeration of bases common to the three matroids in 
decreasing order of weight (grid area in Fig. 3). Unfortu- 
nately, the intersection of three matroids is considered to 
be, in general, a NP-hard problem [ I  I ] .  However, there 
are polynomial time algorithms for the weighted inter- 
section of two matroids [ 12],[ 111. Reported symbolic 
simulators that incorporate SDG have solved the prob- 
lem by finding first the intersection of two matroids and 
checking which elements of that intersection are also a 
base in the third matroid. Two different possibilities 
arise: 

First intersectioning a graphic matroid and the parti- 

First intersectioning the two graphic matroids (verti- 
tion matroid (horizontally-striped area in Fig. 3). 

cally-striped area in Fig. 3). 

dution 
space 

Figure 3: Illustrating the 3-matroid intersection problem. 

The first one has been implemented in ADAGIO 
[2],[3] and RAINIER [4] as it has been described in Sec- 
tion 2.1. This method has the disadvantage that many 
spanning trees of the voltage graph may be generated that 
are not spanning trees in the current graph and, hence, do 
not lead to valid terms. The ratio of generated valid terms 
over the number of spanning trees in the voltage graph 
tend to decrease when the circuit size increases, impos- 
ing a limit to the maximum analysable circuit size. 

It is not easy to compare the two implementations 
of this approach: that in [2],[3], on the one hand, and that 
in [4], on the other. This is mainly due to the different 
error criteria applied, and the fact that the tool in [4] per- 
forms a simplification before generation procedure 
which significantly reduces the circuit size. 

For illustration's sake, the tool in [3] provides a 
simplified expression of the voltage gain of the folded- 
cascode opamp in Fig. 4 in 54.7 s. The generation of a 

symbolic expression for the pA741 's transfer function at 
low frequencies with a magnitude error of 0.11% (110 
symbolic terms) requires 38 s. An approximated expres- 
sion (57 terms) for the pA741 is provided in [4] in 19 s. 

Figure 4: : Folded-cascode opamp. 

1 0 

The second approach, that is, intersectioning the 
two graphic matroids has been implemented in  [13]. 
There, common spanning trees of the voltage and current 
graphs, in decreasing order of tree admittance product, 
are directly generated using the algorithm in  [12]. So, no 
time is wasted in generating spanning trees of one of 
these graphs which afterwards are not spanning trees in 
the otlher graph. But no control can be performed on the 
branch type (conductance or capacitor), and, hence, 
capacitor admittances (the branch weight) must be eval- 
uated at a fixed frequency: CUC. 

This approach approximates the network function 
over a frequency range and considers a set of sample fre- 
quencies within this range. The algorithm in [ 121 for gen- 
eration of common spanning trees (without any 
constraint in the number of capacitance branches) is 
applied at each sample frequency until some given error 
criterion is met. Since there: is no constraint in the num- 
ber of capacitance branches, terms are generated with 
different powers of s. A g'enerated term is kept in the 
approximated expression if it appears for at least one of 
the sample frequencies in the frequency range. 

But this method has two important drawbacks: on 
the one hand, most terms are generated at more than one 
sample frequency, and this means a loss of efficiency. On 
the other hand, large errors can occur at frequencies dif- 
ferent from those of the set of sample frequencies as no 
control is performed on the (expression accuracy between 
two sample frequencies. Improving the accuracy requires 
taking more sample frequencies but this is done at the 
expense of additional computation time, greatly deterio- 
rating the efficiency of the method. 

The same expression than [4] for the pA.741 has 
been reported to be obtained in 20 s. practically the same 
than with the previous techinique [13]. However, a more 
accurate expression (1185 ,terms) is obtained in 57.7 s, 
less than half the time needed with previous technique. 
For this example 4 sample frequencies were used. 
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3.3. A 3-matroid intersection algorithm 

The first of the reviewed approaches has in its effi- 
ciency for large circuits its main drawback. This is par- 
tially overcome in the second approach but at the cost of 
uncontrolled accuracy of the resulting expressions. The 
new algorithm introduced in this section combines the 
positive features of both approaches by directly address- 
ing the intersection of our three particular matroids. 

The algorithm in [12] allows the generation of 
spanning trees common to the voltage and current graphs 
in decreasing order of weight: from each common span- 
ning tree (the maximum weight common spanning tree is 
not difficult to find), the next one is obtained by carrying 
out the branch exchanges indicated by the best primitive 
border path (PBP) of the border graph (BG), built from 
the spanning tree and both the voltage and current 
graphs. This best primitive border path is more effi- 
ciently found in the condensed border graph (CBG), 
which is easily derived from the border graph [ 121. This 
algorithm makes use of the lexicographic Floyd-War- 
shall algorithm to find the best PBP in either the BG or 
the CBG. But this way, in both the construction of the 
CBG and in the Floyd-Warshall algorithm, we have no 
control on the type of the branches as it only looks at their 
weights, so it is undetermined the final number of 
branches of each type (capacitance or conductance), and 
thus it is not adequate for our needs. 

In order to solve the problem of the control on the 
branch types, we perform extensive modifications in the 
construction of the CBG, leading to the Extended Con- 
densed Border Graph (ECBG). In the ECBG, each 
branch can have up to two weights, instead of one weight 
as it occurs in the conventional CBG. These two weights 
correspond to the capacitance and conductance nodes of 
the BG that satisfy the condition needed to have a corre- 
sponding branch in the CBG, with the highest weight of 
all the capacitance/conductance nodes of the BG. It 
reflects the fact that a conductance/capacitance branch 
can be exchanged by, either a conductance or a capaci- 
tance branch. Each branch weight has an associated 
branch type, which corresponds to the number of induced 
capacitance branch exchanges. 

To find the best PBP in this ECBG an algorithm, 
called Multilevel Shortest Paths (MSP), has been devel- 
oped. The MSP algorithm finds all shortest paths 
between each pair of nodes in the ECBG. These paths 
correspond to every possible net number of capacitance 
branch exchanges with respect to the common spanning 
tree from which the BG was built. This is done consider- 
ing the combinations of the different branches between 
nodes, and taking into account also their types. Thus, cal- 
culation of the following common spanning tree in the 

same coefficient in (1) reduces to taking the best PBP 
with zero net capacitance branch exchanges. 

Conclusions 

Two algorithms of approximation during genera- 
tion for the symbolic analysis of large analog integrated 
circuits have been reviewed. The first one has in its accu- 
racy its stronger feature, decreasing its efficiency with 
the circuit size. The second gives priority to the effi- 
ciency but with a high risk of large inaccuracies. This has 
motivated the introduction of a new approach which 
overcomes previous drawbacks and constitutes the first 
polynomial time algorithm for the three matroid intersec- 
tion problem. 
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