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Abstract

We explain how to compute all the solutions of a nonlinear integer problem using
the algebraic test-sets associated to some linear subproblem. These test-sets are
obtained using Grobner bases. We compare our method with previous approaches .
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1 Introduction

In many real-life combinatorial optimization problems is of great interest for
the decision-maker to have not only one solution, but the set of all optimal
solutions (see [10] or [7], for example). The information provided by this set
can give some additional information about the solutions, and sometimes is
a first step for multi-objective optimization. On the other hand, sometimes
these problems requires non-linear constraints to be modeled properly.

A method for problems of the form

min cz?
s.t. Azt < b
z e

r e N"

where A € Z™*", ¢ € Z™,b € Z™ and the region ( is defined by linear and
nonlinear constraints was proposed in [9]. This method makes use of the
test-sets associated to the linear subproblem

min cx?
s.t. Azt < vt (Pr)

ze N

A set T C Z" is a test-set associated to (Pp) if T' C ker(A), and for any
non optimal x feasible for P, there exists a t € T" such that x — t is feasible
and c(x —t) < ¢(x). As a consequence, starting from a optimal point Z of (Pp)
you can recover the set of all the feasible points, adding elements of the test-
set until you eventually complete all the feasible region. In this way you can
obtain the optimal points of (P) walking back from the linear optimal point
until you reach the region €. Technical details can be found in [9]. There
are several ways of computing test-sets, and one of the most efficient is using
Grobner bases (see for example [3]) with the software 4ti2 (see [5]).

In [1] and [6] the method of [9] is applied to real-life size problems with very
competitive results. In this work: 1) we explain how to modify the walk-back
method to obtain all the optimal points and 2) we compare its performance
with the natural generalization of the algorithm presented in [10] using the
computational system COUENNE (see [2]).



2 An algebraic algorithm to find all optimal points.

The main idea of our method is quite simple: starting from optimal point of
the linear problem (Pp), we add test-set vectors until we find the points inside
the non-linear region €2. We save all points that has the best cost into €2. The
pseudocode is the following one:

INPUT: ¢, A, b;Q; optimal point 5 of Pr; T associated test-set of Pp,.

Opt = {J;
Leaves := {f + t|Vt € T} NN"
costOpt = oo

IF g€ Q
THEN Opt := {5};
costOpt := cft

WHILE (Leaves # () DO
FOR h € Leaves DO
IF ¢(h) < costOpt
Leaves = (Leaves \ {h}) U ({h + t|Vt € T} NN")
IFheQ
THEN Opt = {h};
costOpt = ch;
Leaves = (Leaves \ {h}) U ({h + t|¥Vt € T} NN")

g the list of old candidates is deleted
# and updated with a new candidate

ELSE IF ¢(h) > costOpt
THEN Leaves = Leaves \ {h}
f these branches are discarded

ELSE IF ¢(h) = costOpt
THEN Leaves = (Leave \ {h}) U ({h +t|Vt € T} "N")
IF h e Q
THEN Opt = Opt U {h};
f a new candidate to be an optimal point has been obtained

END WHILE

OUTPUT: Opt the set of all optimal points with cost costeOpt




3 Computational experiments: reliability of series-parallel
systems

Reliability problems are considered an important measure in the design of
engineering processes, in which a series of systems is similar to a chain in which
all the components must operate, since the failure of one of these components
will suppose the failure of the complete system.

A mathematical model to minimize the cost of the system is

min Z Z Cij%ij

=0 j=

s.t. R(x) > Ry
k

j=1
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with R(x) =

=1

< f[(l—r”) ) Where:

e n: number of subsystems

e k;: number of different kinds of components in subsystem 1.
* r;;: reliability of component j in the subsystem i.

* ¢;;: cost of component j in the subsystem 4.

* l;j,u;;: upper and lower dimensions of the numbers of components j in the
subsystem 7. We can suppose that [;; = 0.

* Ry: Minimum reliability required return for the whole system.

* x;;: numbers of components j in the subsystem .

In our experiments, we have considered that all subsystem have equal
numbers of components, that is, k; = k, Vi.

e 1;;€(09,099),Vi=1,....,n, j=1,...,k

e ¢ e{l,2,...,10}L,Vi=1,....n, j=1,...,k
* Ry=0.9

cu; =4, Vi=1,....,n, j=1,...,k

e n e {34}



e ke {23}

We have run about 120 examples to test our algorithm coded in Python in
a computer with an Intel Core i5, 3.5 Ghz, 8 Gb of RAM, under Ubuntu. The
General Cut row stands for the natural generalization of the method proposed
in [10], we have been used COUENNE ([2]) for the example which have been
sent to neos-server.org.

Number of examples

% examples

Test-set 84 70 %
General cut 36 30 %
Table 1

Reliability examples n = 3,4, k = 2,3 with all solutions.

We can observe that:

Number of examples

% examples

Test-set 42 97,67 %
General cut 1 2,33 %
Table 2

Reliability examples n = 3,4, k = 2,3 with multiplies solutions.

Number of examples

% examples

Test-set 42 54,55 %
General cut 35 45.45 %
Table 3

Reliability examples n = 3,4, k = 2,3 an unique solution.

3 Systems

4 Systems

2 components

3 components

2 components

3 components

Test-set 0,07 0,19 0,37 0,51
General cut 0,43 1,23 0,84 1,50
Table 4

Average CPU times Reliability examples n = 3,4, k = 2, 3.




e The Test-Set method and the General Cut are both exact
¢ The General Cut is worse in CPU time than the test-set method.
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