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We prove in an explicit way a duality formula between two A2-modules M log and M̃ log

associated to a plane curve and we give an application of this duality to the comparison
between M̃ log and the A2-module of rational functions along the curve. We treat the 
analytic case as well.

1. Introduction

Let R = C[x1, . . . , xn] be the ring of complex polynomials in n variables. Denote by
∂i = ∂

∂xi
the partial derivative with respect to xi and by An = R〈∂1, . . . , ∂n〉 the complex

Weyl algebra of order n.
Let f ∈ R be a non-zero polynomial. The ring of quotients Rf = { g

fm | g ∈ R,m ≥ 0}
is a left An-module by considering ∂i( g

fm ) = ∂i(g)
fm − m g∂i(f)

fm+1 for 1 ≤ i ≤ n. From the
existence of the Bernstein polynomial (Bernstein, 1972), Rf is a finitely generated An-
module. More precisely, there exists an integer k ≥ 1 such that Rf = An

1
fk (i.e. Rf has

a single generator 1
fk as left An-module). The integer k is related to the roots of the

(polynomial) b-function of f (Bernstein, 1972).
A C-derivation of R, δ =

∑
i ai∂i is said to be logarithmic w.r.t. f if δ(f) =

∑
i ai∂i(f)

= af for some a ∈ R. We denote by Der(R, log f) the R-module of logarithmic derivations
w.r.t. f and by I log f (or simply I log) the left ideal of An generated by Der(R, log f). The
quotient module An/I log is denoted by M log.

The set of differential operators δ + a ∈ An, for δ ∈ Der(R, log f) verifying δ(f) = af ,
generates a left ideal in An that will be denoted by Ĩ log. The quotient module An/Ĩ log

is denoted by M̃ log.
From Ĩ log ⊂ AnnAn

(1/f) we deduce a natural morphism from M̃ log to An 1
f and by

composing with the embedding An 1
f ⊂ Rf we obtain a natural morphism

φ : M̃ log → Rf .

Most results in this paper are concerned with the case n = 2. The main goal is to 
prove in a explicit way a duality formula between M log and M̃ log (in the sense of An-
modules). The duality between M log and M̃ log extends to the category of analytic D-

modules (Theorem 3.1) and we give an application of this duality to the comparison 
between M̃ log and Rf (Section 4).

To achieve these goals we calculate explicit free resolutions of both M log and M̃ log. 
For M log the free resolution is the Spencer logarithmic resolution of Calderón (1997) (see 
also Calderón, 1999).

Finally we show that some results can be generalized to special examples in dimen-
sion 3.



2. Preliminaries: Analytic DDD-modules

For each p = (p1, . . . , pn) ∈ Cn denote byOp the ring of germs of holomorphic functions
in p. The ring Op is isomorphic to the ring C{x1 − p1, . . . , xn − pn} of convergent power
series in a neighborhood of p and we have R ⊂ Op. Instead of the rings R and An we
can consider Op and Dp = Op〈∂1, . . . , ∂n〉 the ring of linear differential operators with
coefficients in Op. In fact An is a subring of Dp and the elements in Dp can be written
as finite sums

∑
α aα∂

α where α = (α1, . . . , αn) ∈ Nn, aα ∈ Op and ∂α = ∂α1
1 · · · ∂αn

n .
More generally, we can consider onX = Cn the sheaf DX of linear differential operators

with holomorphic coefficients.
Let us fix a point p ∈ Cn. For each f ∈ R (or more generally f ∈ Op) we denote

by Der(Op, log f) the Op-module of C-derivations of Op logarithmic w.r.t. f (i.e. C-
derivations δ such that δ(f) = af for some a ∈ Op).

According to Saito (1980) we say that f is free at p if there exists a family {δ1, . . . , δn} ⊂
Der(Op, log f), δi =

∑
j cij∂j , such that the following condition holds:

det((cij)) = upf, for some up ∈ Op, up(p) 6= 0. (∗)

If f is free at p then Der(Op, log f) is a free Op-module of rank n with basis {δ1, . . . , δn}
verifying the condition (∗) (Saito, 1980). As the inclusion R ⊂ Op is flat, for each el-
ement f ∈ R, free at p, there exists a basis ∆ = {δ1, . . . , δn} of Der(Op, log f) with
coefficients cij in R. Such a basis can be computed in an algorithmic way by considering
a finite system S of generators of the R-module SyzR(∂1(f), . . . , ∂n(f), f) of syzygies
among (∂1(f), . . . , ∂n(f), f). Each syzygy

∑
i ai∂i(f)+mf = 0 produces the logarithmic

derivation
∑
i ai∂i. Indeed, we have Der(R, log f) ' SyzR(∂1(f), . . . , ∂n(f), f). If there

is no family of n derivations in S holding (∗), then f is not free at p.

Remark. Suppose now f ∈ R free at every point in Cn. Then Der(R, log f) is a locally
free R-module, so it is free (using the theorem of Quillen–Suslin). The basis of this free
R-module could be obtained in the general case applying, for example, the algorithms of
Logar and Sturmfels (1992).

However, in dimension 2 we have an alternative way of computing a basis of the free
C[x1, x2]-module Der(C[x1, x2], log f) using the Hilbert–Burch theorem (e.g. Eisenbud,
1994). If f defines a smooth plane curve, there is nothing to calculate. Suppose f is not
smooth. We apply the Hilbert–Burch theorem to the ideal J generated by the homoge-
nized polynomials h(f), h(∂1(f)), h(∂2(f)) in S = C[x0, x1, x2] because the variety V (J)
has dimension 0 in the projective plane P2(C). More precisely, J has a minimal free
resolution (that can be computed explicitly) of the form

0 −→ S2 A−→ S3 −→ J −→ 0,

where A is the matrix whose rows are a set of generators of the module of syzygies
SyzS(h(f), h(∂1(f)), h(∂2(f))). Dehomogenizing (making x0 = 1) the matrix A produces
the matrix whose rows generate the module SyzR(f, ∂1(f), ∂2(f)). These two rows must
be a basis. We think that this argument could be generalized to dimension n.

From now on we assume p = 0 in Cn and we will write D0 = D and O0 = O. We
consider on D (resp. on An) the filtration by the order of the differential operators. The
order of P =

∑
α aα∂

α is the maximum value of |α| = α1 + · · · + αn for aα 6= 0. The



graded associated ring is the polynomial ring gr(D) = O[ξ] (resp. gr(An) = R[ξ]) where
ξ = (ξ1, . . . , ξn).

The principal symbol of P ∈ D (resp. P ∈ An) is the element of gr(D) (resp. gr(An))
defined by σ(P ) =

∑
|α|=d aαξ

α where d is the order of P .
For each left ideal I in D (resp. in An) we denote by gr(I) the ideal of gr(D) (resp.

gr(An)) generated by the family σ(P ) for P ∈ I. The characteristic variety of An/I is
the algebraic set of C2n (denoted by Ch(An/I)) defined by the ideal gr(I) ⊂ gr(An). In
the analytic case the characteristic variety of D/I is the germ of subvariety in U ×Cn

defined by the ideal gr(I) ⊂ gr(D); here U is a small neighbourhood of the origin in
Cn such that the coefficients of the elements of a finite system of generators of I are
holomorphic functions on U .

A left An-module An/I is said to be holonomic if dimCh(An/I) = n and we have a
similar definition for D-modules.

Remark. For each f ∈ R we can consider the (left) ideal I log
an generated by Der(O, log, f)

in D and the (left) ideal Ĩ log
an generated by the family δ + a for vector fields δ such that

δ(f) = af with a ∈ O. We denote M log
an = D/I log

an and M̃ log
an = D/Ĩ log

an . By flatness
of the extension R ⊂ O we have the equalities I log

an = DI log and Ĩ log
an = DĨ log. Then

M log
an = M log ⊗R O and M̃ log

an = M̃ log ⊗R O.

Given a left holonomic An-module M , the dual module of M (denoted by M∗) is the
left An-module associated to the right An-module ExtnAn

(M,An) (Björk, 1979). We have
the analogous definition for left holonomic D-modules.

3. Duality

In this section we suppose n = 2 and f a reduced polynomial in R. For each p ∈ C2

let us denote by Op the ring of germs of holomorphic functions in the neighborhood of p.
By Saito (1980, 1.7) Der(Op, log f) is Op-free of rank 2 for all p ∈ C2 and so, according

to the results in 2, Der(R, log f) is R-free of rank 2.
Let {δ1, δ2} be a basis of Der(R, log f) (and hence a basis of Der(O, log f)). Let us

write {
δ1 = c11∂1 + c12∂2,
δ2 = c21∂1 + c22∂2

for some polynomials cij ∈ R.
According to the first remark of Section 2 we can suppose that

det((cij)) =
∣∣∣∣ c11 c12
c21 c22

∣∣∣∣ = f.

According to Calderón (1997) (see also Calderón, 1999, Corollary 4.2.2), {σ(δ1), σ(δ2)}
is a regular sequence in gr(D) and then also in gr(A2). In particular

〈σ(δ1), σ(δ2)〉 = gr(I log) = gr(Ĩ log),

where 〈σ(δ1), σ(δ2)〉 denote the ideal of gr(A2) generated by {σ(δ1), σ(δ2)}. From this
equality one can deduce Ch(M̃ log) = Ch(M log) and dim(Ch(A2/I

log)) = 2. So, both
modules M log and M̃ log are holonomic. From the last remark of Section 2 we obtain
Ch(M log

an ) = Ch(M log) and Ch(M̃ log
an ) = Ch(M̃ log).

Now we will compute free resolutions of M log and M̃ log.



Remember we have an explicitly computed basis {δ1, δ2} of Der(R, log f), δi = ci1∂1 +
ci2∂2, with det((cij)) = f and explicitly computed polynomials mi verifying δi(f) = mif .
Let us write [δ1, δ2] = α1δ1 + α2δ2 for some (explicitly computed) α1, α2 in R.

From Calderón (1997) (see also Calderón, 1999) a free resolution of M log is

0 −→ A2
ψ2−→ A2

2
ψ1−→ A2 −→M log −→ 0

where ψ2 is defined by the matrix (−δ2 − α1, δ1 − α2) and ψ1 by
(
δ1
δ2

)
. So, one has the

following proposition.

Corollary 3.1. Ext2A2
(M log, A2) ' A2/J where J is the right ideal of A2 generated by

{δ1 − α2, δ2 + α1}.

Proposition 3.1. A free resolution of M̃ log is

0 −→ A2
φ2−→ A2

2
φ1−→ A2 −→ M̃ log −→ 0 (∗∗)

where φ2 is defined by the matrix

(−δ2 −m2 − α1, δ1 +m1 − α2),

and φ1 by
(
δ1 +m1

δ2 +m2

)
.

Proof. It is easy to prove that (∗∗) is a complex of A2-modules. To check its exactness,
it is enough to consider the order filtration on that complex and to verify the exactness
of the resulting complex (see Björk, 1979, Chapter 2, Lemma 3.13). We are using here
the same argument of Calderón (1997), (see also Calderón, 1999, 4.1.3).

The graded associated complex to (∗∗) is precisely

0 −→ gr(A2)
M1−→ gr(A2)2

M2−→ gr(A2) −→ gr(M̃ log) −→ 0,

where the matrices are

M1 = (−σ(δ2), σ(δ1)), M2 =
(
σ(δ1)
σ(δ2)

)
,

which is exact because {σ(δ1), σ(δ2)} is a regular sequence in gr(A2) (see Calderón,
1999). 2

Theorem 3.1. We have (M log)∗ ' M̃ log and the same result holds in the analytic case.

Proof. According to 3.1 it is enough to prove the equalities

−δT1 + α2 = δ1 +m1, −δT2 − α1 = δ2 +m2,

where ()T means the corresponding adjoint operator.
We denote by C the matrix (cij) and by δ (resp. ∂) the vector (δ1, δ2) (resp. (∂1, ∂2)).

We can write

[δ1, δ2] = (α1, α2)δt = (α1, α2)C∂t

where ()t means transpose.



On the other hand,

[δ1, δ2] = (δ1(c21)− δ2(c11), δ1(c22)− δ2(c12))∂t.

From the last two equalities and multiplying by Adj(C)t we obtain

(α1, α2)f = (δ1(c21)− δ2(c11), δ1(c22)− δ2(c12))Adj(C)t.

It follows that

(α1, α2) = (m2 + ∂1(c21) + ∂2(c22),m1 − ∂1(c11)− ∂2(c12))

using δi(f) = (ci1∂1 + ci2∂2)(c11c22 − c12c21) = mif .
The same method can be applied to establish that (M log

an )∗ ' M̃ log
an . 2

Remark. In dimension n, if M log admits an analogous free resolution as in 3.1, we have
a proof for the last theorem that generalizes the ideas above. See Castro and Ucha (2000).

4. An Application: Comparing Modules

In this section n = 2.
A polynomial f ∈ R is said to be quasi-homogeneous if there exists w = (w1, w2) ∈ N2

such that f(xw1
1 , xw2

2 ) is an homogeneous polynomial and wi > 0 for i = 1, 2.
The duality formula has an interesting application in order to compare M̃ log to Rf

and M̃ log
an to O[1/f ]. We need two previous technical propositions to give the theorem.

Proposition 4.1. If f is a quasi-homogeneous (reduced) polynomial, then Ĩ log =
AnnA2(1/f) and Ĩ log

an = AnnD(1/f)

Proof. By flatness we only have to consider the first case. We have

• Let s be an indeterminate and let us denote A2[s] = A2 ⊗C C[s]. Let α0 be the
smallest root of the global b-function of f . If α /∈ α0 + 1 + N then

AnnA2(f
α) = {P (α)|P (s) ∈ AnnA2[s](f

s)}.

See Kashiwara (1976, 6) or Saito et al. (2000, 5.3.13) for a proof.
• AnnA2[s](f

s) = 〈χ− s, ∂1(f)∂2 − ∂2(f)∂1〉 where χ(f) = f . See Yano (1978, 2.24).
• If f is a plane curve then the local b-function has no integer roots less than −1

(Varchenko, 1982). From this fact, as the global b-function is the least common
multiple of the b-functions localized at any point (Mebkhout and Narváez-Macarro,
1991), then the global b-function has the same property.

We deduce that
AnnA2(1/f) = 〈χ+ 1, ∂1(f)∂2 − ∂2(f)∂1〉,

where χ is an Euler vector field associated to the quasi-homogeneous curve f . Clearly,
these elements of the annihilator generate the ideal Ĩ log. 2

Proposition 4.2. If f is not a quasi-homogeneous (reduced) plane curve, then

Ext2D(M̃ log
an ,O) 6= 0.



Proof. The proof of this statement contains, as an essential ingredient, a re-reading of
the demonstration of Calderón et al. (1999, Theorem 3.7).

By proposition 3.1, a free resolution of M̃ log
an is

0 −→ D φ2−→ D2 φ1−→ D −→ M̃ log
an −→ 0,

where φ2 is the matrix
(−δ2 −m2 − α1, δ1 +m1 − α2).

Now we apply to the complex above the functor HomD(−,O). Hence,

Ext2D(M̃ log,O) ' O/Img(φ∗2).

Here φ∗2 denotes the associated mapping to φ2 by applying the functor Hom. To guarantee
that this vector space has dimension greater than zero, it is enough to show that a pair
of functions h1, h2 ∈ O such that

(−δ2 −m2 − α1, δ1 +m1 − α2)
(
h1

h2

)
= 1, (∗ ∗ ∗)

does not exist, that is to say, that 1 /∈ Img(φ∗2).
Let us take δ1 = c11∂1 + c12∂2. As m1−α2 = ∂1(c11)+ ∂2(c12), (from the proof of 3.1)

we will show either c11 and c12 have no linear parts, or after derivation these linear parts
become 0.

Of course f has no quadratic part: in that case, because of the classification of the
singularities in two variables, f would be equivalent to a quasi-homogeneous curve x2

1 +
xk+1

2 , for some k. Then we can suppose that

f = fn + fn+1 + · · · =
∑
k≥n

fk =
∑
k≥n

∑
i+j=k

aijx
i
1x
j
2,

where n ≥ 3 and fn 6= 0.
We will write

δ1 = c11∂1 + c12∂2 = δ10 + δ11 + · · · =
∑
k≥0

∑
i+j=k+1

(β1
ijx

i
1x
j
2∂1 + γ1

ijx
i
1x
j
2∂2),

where the linear part δ10 is (x1x2)A0(∂1∂2)t, and A0 is a 2 × 2 matrix with complex
coefficients.

If A0 = 0, we have finished. Otherwise, the possibilities of the Jordan form of A0 are

A0 =
(
λ1 0
0 λ2

)
, A0 =

(
λ1 0
1 λ1

)
.

As δ1 is not an Euler vector (because f is not quasi-homogeneous), we deduce:

• If we take the first Jordan form, then (see the cited demonstration of Calderón
et al., 1999) fn = xp1x

q
2 and δ0 = qx1∂1 − px2∂2. After a sequence of changes of

coordinates we have that f = xp1x
q
2 with p + q = n ≥ 3, that contradicts that f is

reduced.
• For the second Jordan form with λ1 6= 0, it has to be fn = 0, that contradicts that
f has its initial part of degree n.

• For the second option with λ1 = 0 we have δ10 = x2∂1 and, in this situation, the
linear part of c11 is x2. If we precisely apply ∂1, we obtain 0.



In a similar way, we prove the same for m2 + α1.
So the minimal order of monomials in

(−δ2 −m2 − α1)(h1) + (δ1 +m1 − α2)(h2)

is greater or equal to 1, for any h1, h2 ∈ O. So (∗ ∗ ∗) has no solution. 2

Theorem 4.1. The natural morphism M̃ log
an

ψ−→ O[ 1
f ] is an isomorphism if and only if

f is a quasi-homogeneous (reduced) polynomial.

Proof. If f is quasi-homogeneous then Ĩ log
an = AnnD(1/f) because of Proposition 4.1

and therefore ψ is an isomorphism. Reciprocally, if ψ is an isomorphism, then

Ext2D(O[1/f ],O) ' Ext2D(M̃ log
an ,O).

Because of a result of Mebkhout (1989), Ext2D(O[1/f ],O) = 0 and, if we take into account
proposition 4.2, we obtain that f has to be quasi-homogeneous. 2

Remark. Another argument could be used in the second part of the last proof apply-
ing a result of Torrelli (1998, 3.2.2.3): if f is not a quasi-homogeneous (reduced) plane
curve then AnnD(1/f) cannot be generated by elements of degree one in ∂ and then
AnnD(1/f) 6= Ĩ log

an .

Remark. In the polynomial case we have an analogous theorem to 4.1. Suppose first that
M̃ log is isomorphic to Rf . Then by the last remark of Section 2 follows M̃ log

an ' O[1/f ]
so f is a quasi-homogeneous polynomial in R. Reciprocally if f is quasi-homogeneous we
use Proposition 4.1.

5. An Explicit Example in Dimension 3

Let R = C[x, y, z]. In Calderón (1997, 4.1.3), the condition of being Koszul-free (that
is, the principal symbols of the generators of I log

an form a regular sequence) is a sufficient
condition to assure the existence of the free resolution of M log

an . We illustrate in this
section that this condition is not necessary to have the duality formula.

We will consider the surface defined by Calderón (1997) with

h = xy(x+ y)(xz + y) = 0.

We obtain in this case that:

• AnnA3(1/h) = Ĩ log.
• M̃ log ' (M log)∗.

and the results are valid in the analytic case as well. The calculation is as follows:

1. We can compute a basis of Der (R, log h) with a set of generators of the syzygies
among h, ∂h∂x ,

∂h
∂y ,

∂h
∂z . We obtain

δ1 = x∂x + y∂y

δ2 = xz∂z + y∂z

δ3 = x2∂x − y2∂y − xz∂z − yz∂z



with

δ1(h) = 4h, δ2(h) = xh, δ3(h) = (2x− 3y)h,

and ∣∣∣∣∣∣
x y 0
0 0 xz + y
x2 −y2 −xz − yz

∣∣∣∣∣∣ = h.

2. The global b-function of h in A3 is

b(s) = (4s+ 5)(2s+ 1)(4s+ 3)(s+ 1)3.

This polynomial has no integer roots smaller than −1, so

Rh ' A3
1
h
.

3. We check that AnnA3(1/h) is equal to Ĩ log using Groebner bases obtained from
the corresponding sets of generators. The computations of the b-function and the
annihilating ideal of hs have been made using the algorithms of Oaku (1997), im-
plemented in Maekawa et al. (2000). The same Groebner basis computation shows
that M log = A3/I

log (where I log = (δ1, δ2, δ3)) is holonomic.
4. We calculate a free resolution of the module M log. The first module of syzygies is

generated in this case by the relations deduced from the expressions of the [δi, δj ]
with i 6= j :

[δ1, δ2] = δ2

[δ1, δ3] = δ3

[δ2, δ3] = −xδ2.

The second module of syzygies is generated by only one element s = (s1, s2, s3):

s1 = −y2∂y + x2∂x − zy∂z − zx∂z − x

s2 = −y∂z − xz∂z

s3 = y∂y + x∂x − 2.

The computation of this free resolution is performed using Groebner bases.
5. With a similar procedure to the one used in 3.1 we obtain that (M log)∗ is the left
A3-module associated with the right A3-module A3/(s1, s2, s3)A3. Then

(M log)∗ ' A3/(st1, s
t
2, s

t
3).

It is enough to compute st1, s
t
2, s

t
3 and check that they generate Ĩ log. Hence

(M log)∗ = (A3/I
log)∗ ' A3/Ĩ

log = M̃ log.

Remark. As we pointed, it is interesting that {σ(δ1), σ(δ2), σ(δ3)} does not form a
regular sequence in gr(A3) = C[x, y, z, ξ, η, ζ]. We have zηζ − ξζ /∈ 〈σ(δ1), σ(δ2)〉 such
that

(zηζ − ξζ)σ(δ3) ∈ 〈σ(δ1), σ(δ2)〉.
So h is not Koszul free and nevertheless duality holds.
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algébrique complexe et le théorème d’existence de Riemann. Publications Mathematiques, 69, 47–
89.
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