
ISCAS 2000 - IEEE international Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

Implementation of Non-Linear Templates using a Decomposition Technique by a
0.5pm CMOS CNN Universal Chip.

G. Liiihn, P Foldesy, A. Rodriguez-Vhzquez, S. Espejo and R. Dominguez-Castro.
Instituto de Microelectrhica de Sevilla - CNM-CSIC

Edificio CICA-CNM, C/Tarfia s/n, 41012- Sevilla, SPAIN
Phone: +34 95 4239923, Fax: +34 95 4231832, E-mail: linan@imse.cnm.es

ABSTRACT?
This paper demonstrates the processing capabilities of a

recently designed Analog Programmable Array Processor [l].
This new prototype, that is called CNNUC3, follows the Cellular
Neural Network Universal Machine computing paradigm [2],
[3], [4]. Due to its very advanced features and algorithmic capa-
bilities, this chip has been demonstrated to be able to perform not
only linear templates executions, but also to be very adequate for
the implementation of non-linear templates by using a decompo-
sition method. This paper focus on the application examples of
the execution of non-linear templates with the CNNUC3 proto-
type. A brief description of the theoretical background is also
presented in the paper.

1. INTRODUCTION.
Cellular Neural Networks (CNNs) [2] exhibits outstanding

image processing capabilities. When considering the CNN para-
digm, linear and nonlinear operations (so called templates) can
be distinguished. The linear operations are mainly linear convo-
lutions among the pixel values, regardless the value of the pixel
that is being processed. On the other hand, the nonlinear tem-
plates present the property of changing or adapting the strength
of the connections between different cells (weights) according to
the current value of the pixels under operation.

These nonlinear functions play an important role in image
processing. However, the nowadays available CNN implementa-
tions are not capable to implement such operations because of
the hardware difficulty of implementing, and moreover make
them programmable, non-linearities. To solve this problem some
algorithmic methods have been developed [5]. These algorithms
use simple nonlinear functions and extensions of the original
CNN paradigm. Fortunately, these extensions are defined in the
CNN Universal Machine architecture [3], [4], which comprises
the gray-scale (or analog) and binary (or logic) operations with
distributed internal memories.

The CNNUC3 prototype [I] is, by far, the most complex
CNN implementation reported up to now. This is the first

high-density CNN chip that can process and provide gray-scale
images also containing many advanced features pointing
towards the CNNUM. Among these extensions we could empha-
size:

The algorithmic capability of the chip is enough to run algo-
rithms with dozens of operations without external code or
data movement.
It can store four gray-scale and four binary images.
It can sum or subtract gray-scale images.
It has the capability of selecting which cells are going to be
processed (so called freezing map).
It is possible to combine two binary images by any logic
operation (such as logic “and”, “or”, to that purpose, it con-
tains a fully programmable two input digital device within
each cell).

The paper is organized as follows; Section 2 establishes a
theoretical background about the technique of non-linear tem-
plates decomposition. Section 3 describes some applications
examples. Some additional comments are provided in Section 4.
Finally, the conclusions are presented in Section 5.

2. DECOMPOSITION OF NON-LINEAR
TEMPLATES.

Implementing a non-linear template by decomposing it into
the execution of several linear ones is not a new problem for tem-
plates engineers. In this section we will briefly describe the
method reported in [5] in order to accomplish this uansforma-
tion.

Therefore, we will deal with the decomposition of 3 x 3
templates where only the B term is a non-linear function. Fur-
thermore, we will assume that the non-linearities appearing on
the feedforward term arc piecewise linear functions and that the
input image is time invariant.

With these assumptions, the dynamic evolution of a cell
(considering the FSR model [6]) is given by:

t. This work has been partially funded by ONR-NlCOP
N68 17 1 -98-C-9004 and DICTAM IST-1999- 19007.

0-7803-5482-6/99/$10.00 02000 IEEE

11-40 1

The problem is how to substitute the non-linearities associated

Let us suppose that the non-linear piecewise function can be
to the B term by using a sequence of linear templates.

expressed as:

Y(5) = Y (a ’ + P ’ ukr) (3)

where CI and P are real numbers, and that the linear regions
are defined by a set of m breaking points { c2, ... , t,}. In that
case, that is also the most common in practice, the non-linear tem-
plate can be decomposed into a sequence of linear template execu-
tions. The algorithm that is exhaustively described and examined
in [5], runs as follows:

The process starts by selecting the first linear region of the
non-linear function. Let us call R , this region that is defined
by the breaking points c1 , c 2 .
The next step is to select which are the cells belonging to that
region. This calculation is realized by two templates execu-
tions and a logic operation (all of them are done on-chip).
With the first template, the so called threshold template, we
drive to black all those cells having 5 > c1 , while with the
second one, the so called inverse threshold, we drive to black
all those cells having 5 < t 2 . Finally a logic AND operation
of both results will select those pixels where k1 < 5 < t2 *.

Equations (4), (5) , show the threshold and the inverse
threshold templatett.

A = [; ; i 0 0 0 B = [: - ; i 4 0 0 , 2 = 5 2 (5)

The non-selected cells are “frozen”, by using the freezing
mask provided by the chip, while in the selected ones the cor-
responding contribution to the state equation is evaluated and
stored as a “bias map” that will be updated (or not) in the next
iteration by adding the new result to the one that was previ-
ously stored. The updating law for the state variables of the
cells that are selected must be given by the equation of a
straight line (due to the fact that “(5) is linear between each
two breaking points) crossing the points and t2 . All the
points belonging to this line satisfy:

$. Keep in mind that 5 = ct . uij + p ukl and the subindex kl denotes
the cell’ neighbors.
ii. These are the FSR version of the templates. In order to get the original
Chua-Yang template increase by one the self-feedback term.

And from the CNN theory, it can be demonstrated that this
relationship is obtained if the following template is exe-
cuted*$:

A = [; : i 0 0 0 B = [: k . (3 k ; a i 0 0

z = y (4 1) - k . 5 1
(7)

where,

The process continues for the next linear region.
Finally, a template execution is needed. In this template the
feedback term is the same as in the’original one defined in (I) ,
the feedforward term is set to zero (modified B template),
since it has been already calculated, and the offset term is the
addition of the original one z , and the “bins map” that is
stored in some memory on the cell.

3. APPLICATION EXAMPLES.

3.1 Absolute Value Calculation.
In this subsection we consider only pixel-wise transforma-

tions, or with other words, B templates with the size of 1x1
As a consequence of missing neighbor connections the decom-

position method can be simplified, avoiding the accumulation of
the partial results. Moreover, the selection of cells belonging a
given interval is done by the two threshold templates, which also
contain only central elements (where ct = 1 , p = 0 and

= 0) :

0 0 0 0 0 0
A = [; m J B = [; ; i z = - 5 1 (9)

As an example we show how the absolute value can be calcu-
lated. The used operation and template is shown in Fig..

A

Fig. 1: The absolute value calculation template

Since there are two intervals, the positive and negative valued
cells, there are two cell maps. The first one contains black pixels at
the cell positions where the input image contained negative values
and the second is the opposite of it. As a special case, the first

$$. The position of the P coefficient must be rotated in order to perform
this operation for each of the neighbors of the cell appearing as a non-linear
connection on the original B template. Therefore, each linear region could
require up to 16 templates and 8 logic operations to be selected, 8 tem-
plates to update the state variable, and 8 templates to perform the addition
of the results, that is 32 templates and 8 logic operations.

11-402

transformation is equal to inversion and the second one practically
can be avoided (since it lets the cells unchanged at their original
values). Fig.. shows the result of the execution of the absolute
value calculation.

(a) Input (b) Absolute value

Fig. 2: The absolute value calculation.

3.2 Gradient calculation

thresholded gradient.
The second example is the calculation of the gradient and the

The gradient template is defined as follows: - -
A = It]
El = r (t) Y(t) Y(<) 0 Y(S) Y (t j y;Lj-ug

-2 t 2
Y(<) Y(S) Y(S)

z = o

Fig. 3: The gradient template.
The template contains eight neighboring connections that can

belong to two intervals. After the usage of the decomposition
method the total number of linear template executions and thresh-
old functions is 3 2 .

The thresholded gradient operation differs from the gradient
calculations in the values of the modified B template.

0 0 0 0 0 0

A = [; t, B = [; ; j = Zjhreshold (10)

Execution examples can be seen in Fig.. and in Fig..

3.3 Contour Detection on Gray-Scale Images.
The third example is the contour detection. The operation is

defined in such a way that the output contains black pixel at the cell

(a) Input
Fig. 4: The gradient calculation.

I 1

(b) Gradient

(a) Input (b) Thresholded gradient

Fig. 5: The thresholded gradient extraction.

position where the input value of the cell is larger than some of the
neighbors by a certain amount (0.1 in the case of Fig.).

Fig. 6: The contour Detection Template.

Both the number of used mask generating templates and trans-
formation templates are 16 ?++. The result of the execution of this
sequence to a gray scale image can be observed in Fig..

(a) Input (b) Detected contour

Fig. 7: Contour Detection on Gray-Scale Images.

3.4 Local Maxima
This example shows how the local (3 x 3) maxima can be

extracted. The cell's output is black (or contains a local maxima)
if the cell's input value is larger by certain amount (0.05 in the
case of the template in Fig.) than any of the neighbors.

The decomposition is similar to the previous one, but in this
case all of the partial results should provide a positive detection,
while the contour operation required only one positive detection.
The decomposed sequence contains 8 templates. An example of
the application of this template can be seen in Fig..

ttt. See that the number of required templates is not 64 as it should cor-
respond to the case of having 8 non-linear connections. This is explained
by the fact that the linear regions have an infinite or zero slope, and so, the
linear transformation defined by (7) is not needed.

11-403

Fig. 8: The Local Maxima Template

(a) Input (b) Local maxima

Fig. 9: The local maxima detection.

4. ADDITIONAL COMMENTS.
In this section we mention some additional ideas about the

decomposition, which reduce the number of the required opera-
tions. This reduction arises from some special functions that are
available in the CNNUC3 chip.

The first example shows that when the number of intervals is
only two, the “freezing” masks are the opposite of each other.
This implies that the calculation of the second mask by tem-
plate execution can be replaced by a logic operation.
The third and fourth examples demonstrate that there are spe-
cial cases when the general method can be modified in order
to get a more efficient decomposition. Specially, when the
partial results contains only black or white pixels.

In these cases, the generated interval maps contain all the
information about the partial results. That means that the lin-
ear transformation (the third step of the algorithm in Section
2) is not needed. Moreover, when the final result is the logic
sum (operation OR) or logic product (operation AND) of the
partial outputs, the final result can be accumulated by the
Local Logic Unit (LLU) in a Local Logic Memory (LLM)
instead of by using the gray-scale accumulation process in an
analog memory.

4.1 Processing, Precision, and Time
Since we use an VLSI analog implementation, precision and

processing time are important issues that should be mentioned.
The global precision of the chip is slightly below 8 bits, that

refers to the spatial uniformity. On the other hand, the nonlin-
ear-to-linear transformation of a piecewise function containing
about 8-10 breaking points is possible. Furthermore, a non-linear
function not belongingto the piecewise class, could also be imple-
mented if there exist a good enough piecewise approximation
(containing up to 10 breaking points).

The processing time of a single template execution and a logic
operation are 20ps (including internal calibrating phases and the
settling time for changing the template coefficients) and Ips
respectively.

Fig. 10: Piecewise approximation of a generic function

5. CONCLUSIONS.
The executions of non-linear templates defines an important

application area in the field of image processing. However, previ-
ous VLSI CNNs implementations did not provide to the template
engineers sufficiently accurate and versatile features to mxp the
nonlinear-to-linear existing algorithms. We have presented exper-
imental evidences in this paper about how a wide set of non-].inear
templates can be executed with a reasonable accuracy with a
recently designed CNN prototype, the so called CNNUC3. We
have also briefly outlined a general decomposition method for
implementing non-linear-to-linear template transformations.

6. REFERENCES.
[I] G . Liiibn, P. Foldesy, S. Espejo, R. Dom’nguez-Castro and A.

Rodriguez-Vizquez. “ A 0.5mm CMOS 106 Transistors Ana-
log Programmable Array Processor for Real-Time Image Pro-
cessing’’, Proc. of the 25‘h European Solid-state Circuits
Conference, pp. 358-36, Duisburg-Germany, Sept. 1999.

[2] L.O. Chua and L. Yang. “Cellular Neural Networks: Theory”,
IEEE Trans. Circuits and Systems, vol. 35, pp. 1257-1272,
Oct. 1988.

[3] T. Roska and L.O. Chua. “The CNN Universal Machine: An
Analogic Array Computer”, IEEE Trans. Circuits and Sys-
tems 11, Vol. 40, pp 163-173, March 1993.

[4] L.O. Chua and T. Roska. “The CNN Paradigm”, IEEE Trans.
Circuits and Systems I, ~01.40, pp.147-156, March 1996.

[5] L. Kek and A. Zarandy. “Implementation of Large Neighbor-
hood Non-Linear Templates on the CNN Universal
Machine”. International Journal of Circuit Theory and Appli-
cations, vo1.26, No. 6, pp. 551-566, 1998.

[6] S. Espejo, R. Carmona, R. Dom’nguez-Castro and A.
Rodriguez-Vbzquez: “A VLSI-Oriented Continuous-Time
CNN Model”. International Journal of Circuit Theory and
Applications. Vol24, No. 3, pp 341-356, May-June 1996.

11-404

